A Deep Dive Into Malicious Direct Syscall Detection

4 paloaltonetworks.com/blog/security-operations/a-deep-dive-into-malicious-direct-syscall-detection/

Or Chechik, Ofir Ozer February 13, 2024

Executive Summary

In this blog post we will explain how attackers use direct syscalls to overcome most EDR
solutions, by first discussing the conventional Windows syscall flow and how most EDR
solutions monitor those calls. Then, we will dive into different attack techniques threat actors
use to stay hidden from those EDR solutions, including the use of direct syscalls.

Finally, we'll go over how Cortex XDR can monitor direct syscalls and detect their malicious
uses, as demonstrated by a real-world example.

Background

Endpoint detection and response (EDR) solutions have revolutionized the cybersecurity
landscape in recent years. These innovative tools were born out of a pressing need to
bolster defenses against the growing sophistication of cyberattacks.

At their core, EDR solutions serve as a sentry for an organization's endpoints, such as
computers and servers. They continuously monitor these endpoints by logging different
actions taking place in real-time. EDR solutions can be a central pillar in cybersecurity
strategies, and by collecting and analyzing vast amounts of endpoint data, they can uncover
patterns, anomalies, and potential threats, thereby fortifying their ability to mitigate risks.

Naturally, threat actors have wanted to find ways to bypass or subvert the EDR detections.
To achieve this goal, they have targeted one of the most critical functionalities of EDR
solutions, including the ability to monitor API calls, which tracks process actions on the
installed endpoint. This led them to use direct syscalls, which is one of the most prevalent
techniques to bypass user mode EDR solutions.

Let’s go into the direct syscall technique and how Cortex XDR is able to detect malicious
uses of them in the Windows operating system.

Windows System Call Flow

First, we need to understand what a syscall is. A system call, abbreviated syscall, is an
assembly instruction that enables the transition from user mode to kernel mode for the
purpose of executing a task by the kernel. Tasks such as access to hardware peripherals,
reading a file or sending packets over a TCP network socket can only be executed by the

1/11

https://www.paloaltonetworks.com/blog/security-operations/a-deep-dive-into-malicious-direct-syscall-detection/

kernel. In a conventional flow, the system call is implemented inside system call stubs
located inside ntdll.dll or win32u.dll, Windows DLLs, and it is usually called in the context of a

Windows API.

The following example is intended to illustrate how system calls work within the Windows

operating system:

A user mode application requests the kernel to open a handle to a file. As seen in Figure 1,
the application starts by calling the Windows API CreateFileW in kernel32.dIl. Then, it calls
the CreateFileW function implemented inside kernelbase.dll, which in turn calls the

undocumented function CreateFilelnternal.

The latter calls the Native API NtCreateFile in ntdll.dll.

User Mode

Kernel Mode

As seen in Figure 2, the system call stub for NtCreateFile executes the syscall instruction
with the syscall index for NtCreateFile, populated into the EAX register.

Application

J

kernel32!CreateFileW

4

kernelbase!CreateFileW

4

kernelbase!CreateFilelnternal

{

ntdll!NtCreateFile

___________________ \1

ntoskrnl!...

4

ntoskrnl!NtCreateFile

®
®
®

Figure 1. Conventional system call flow

2/11

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntcreatefile

il s

public ZwCreateFile
fwCreateFile proc near

I rle, rcx

Mo eax, 55h

test byte ptr ds:7FFEB388h, 1

jnz short loc_13889C345

] ']
[l e (=] s =

syscall

retn loc_ 13809C345:
int 2Eh
retn

ZwCreateFile endp

Figure 2. System call stub for ZwCreateFile in ntdll

How Most EDRs Monitor API Calls

Most EDRs monitor system calls and API calls by hooking user mode Windows DLLs. The
common method EDRs use is inline hooking, which is a method of intercepting calls to target
functions as a way to prevent or monitor potentially malicious operations. An example of
EDR inline hooking is shown in Figure 3. By modifying the assembly instructions of the
prologue of CreateFileW to a JMP instruction, the execution is redirected to the EDRs proxy
function where it can monitor or prevent the operation. In turn, the EDR Proxy jumps to the
trampoline function which will execute the original CreateFileW prologue and then jumps
back to CreateFileW, right after the prologue, to resume the function execution.

Process Address Space EDR DLL
Original CreateFileW Installs hooks .. Hooked CreateFileW Proxy Function
push ebp jmp <Proxy Function> g [T

mov ebpesp | e o e
...................... jmp <Trampoline>

Trampoline Function

push ebp
mov ebp,esp
jmp <CreateFileW>

Figure 3. Inline Hooking Example

3/11

https://www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-1.html

EDRs commonly inject their DLL as early as the process starts, and this DLL usually hooks
Windows API and Native API functions inside the Windows libraries such as kernel32.dll,
kernelbase.dll, and ntdil.dll.

How Attackers Bypass Most EDRs

Most EDRs use user mode hooks for their syscall monitoring, therefore a lot of the EDR
bypasses are user mode hook bypasses.

Most of those EDR bypasses map a clean copy of the hooked DLL or try to restore the
hooked DLL to its original disk content to avoid the EDR hooks.

Out of the many EDR bypass techniques, the most prominent one is the “Direct Syscall”
technique. To achieve maximum stealth, attackers frequently use it in conjunction with other
evasion techniques, as it is very hard to detect and differentiate between malicious and
benign use of it.

Following are notable bypass techniques:

Manual Load DLL From Disk

A technique in which the attacker manually loads a clean copy of a hooked DLL using
Reflective DLL Loading. This technique allows the attacker to avoid getting through the
Windows Loader, and avoid the EDR callbacks that effectively install the hooks.

The attacker implements the Windows Loader functionally on its own, loading the DLL
directly from memory, giving it a different mapping type than the loader would.

Clone DLL

Similarly to the previous technique, this technique loads a secondary DLL to avoid the EDR
hooks. This technique however does go through the Windows Loader and uses the Windows
API. The attacker copies the target DLL from %system32% to a new location with a new
name, then it uses the LoadLibrary Windows API to load it from disk and use it in its code.
The cloned DLL will have a different name than the hooked DLL, so the EDR won’t install
hooks for it.

Direct Syscall

Attackers use the direct syscall technique to avoid going through the user mode hooks,
because it allows an attacker to execute a system call without going through the Windows
and the Native API. Essentially, the attacker implements the system call stub in its own
application as seen in Figure 4.

4/11

https://www.ired.team/offensive-security/code-injection-process-injection/reflective-dll-injection
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

; Procedure for the NtAllocateVirtualMemory syscall

MtAllocateVirtualMemory PROC
mov rld, rcx Move the contents of rcx to rl@. This is necess
mov eax, whtAllocateVirtualMemory ; Move the syscall number into the eax register
syscall 3 Execute syscall
ret 3 Return from the procedure.
NtAllocateVirtualMemory ENDP 3 End of the procedure

Figure 4. Example of system call stub that performs the syscall NtAllocateVirtualMemory

The syscall instruction forwards the execution flow to the corresponding syscall
implementation in the kernel according to the syscall index. It's the last step in user mode.

Different Windows builds and service packs use different syscall indexes.

To address this issue, attackers often parse NTDLL in runtime and find the correct syscall
indexes out of the syscall stubs.

Cortex XDR is not affected by any of the mentioned techniques.

Cortex XDR Direct Syscall Detection

Compared to other EDR solutions, Cortex XDR employs a kernel mode syscall interception
technique, providing access into kernel structures, and the ability to synchronously block or
record syscalls, ensuring robustness against user mode hook bypass methods. Using this
method, Cortex XDR detects direct syscalls for many different syscalls commonly used by
attackers.

Cortex XDR leverages the KTRAP_FRAME structure built on top of the base of the thread’s
kernel mode stack upon syscall handling.

The syscall handler builds the KTRAP_FRAME, a structure in which the kernel saves the
state of execution that gets interrupted, by an exception, an interrupt or a syscall, and stores
the initial user mode context, that is, it stores the registers to restore execution in user mode
once the syscall is done.

To detect a direct syscall, for every intercepted system call, Cortex XDR extracts the RIP
from the KTRAP_FRAME, which is the return address to user mode, then it resolves the user
mode return address to the corresponding loaded module the address points to (effectively
the user mode module that called the syscall instruction).

The resolution of the address is done by a unique component of Cortex XDR called
ImageTracker that can resolve addresses to image paths and to an image’s closest export.
ImageTracker keeps track of the loading and unloading actions of images for all the
processes in the system. Cortex XDR uses ImageTracker to resolve addresses across the
entire product.

5/11

As we mentioned above, in a conventional Windows syscall flow, the captured return
address would be inside the ntdll.dll or win32u.dll modules, so if the return address is inside
any other DLL, or can't be mapped into any DLL (shellcode), then the event is marked as a
direct syscall and the path to the initiating module (for a non-shellcode case) is recorded as
part of the event.

Lastly, in order to detect if this is a malicious direct syscall, the event is sent to the cloud for
statistical analytics and anomaly detection and to the Behavioral Threat Protection module
which runs on the endpoint.

Are Direct Syscalls Malicious?

Using direct syscalls is not always malicious. This action can be performed frequently by
legitimate software, such as security products, gaming anti-cheat modules, Chromium-based
applications and more.

It is very difficult to differentiate between legitimate and malicious direct syscalls, based on
single-event information or static signatures.

Our solution to this problem was leveraging the power of the Cortex XDR Analytics Engine.

How Analytics Detects a Malicious Use of Direct Syscalls

The Cortex XDR Analytics Engine is a learning mechanism used to detect attacks that are
otherwise very difficult or even impossible to detect using other methods. Analytics
capabilities on XDR data relies on collection and ingestion techniques that operate in a
highly scalable and efficient manner.

The Analytics Engine creates aggregations dynamically based on real-time events from
Cortex XDR agents. These aggregations are then used to define baselines of "common"
behaviors for each customer locally and globally.

In order to establish a baseline using the Analytics Engine, we look for the appropriate
questions that will enable us to determine with certainty whether an action is common or rare
for each event. Those questions point us to the key artifacts we should aggregate and the
relations between them.

These are the questions that we found to be most effective at profiling direct syscall
behaviors:

e How common is this direct syscall?
» Does this process usually execute direct syscalls?
» How often does the mapped memory location call a direct syscall?

6/11

Using local and global aggregations, we answer those questions in real time and conclude
whether a direct syscall event is benign or malicious.

Real-Life Example - Lumma Stealer

Let's take a look at a real-world attack that we discovered using Direct Syscall Analytics,
which detected the injection method used by the Lumma Stealer malware.

Lumma Stealer is a malicious tool that’s part of a malware-as-a-service campaign that was
first seen in 2022 when it was advertised in dark web forums. It is an info stealer that
primarily targets cryptocurrency wallets and two-factor authentication (2FA) browser
extensions in addition to exfiltrating sensitive data from its targets.

We will not go over all stages of the attack, but we will go over the steps it takes to perform
the direct syscalls.

It all starts with a legitimate looking install file called “Setup.exe”, which is the Lumma Stealer
unpacker and injector. This file contains an expired Kaspersky certificate:

7/11

https://blogs.vmware.com/security/2023/10/an-ilummanation-on-lummastealer.html

Property Value

File Name _Setup.exe

File Type Portable Executable 32

File Info Microsoft Visual C++ 8

File Size 10.27 MB (10765648 bytes)

PE Size 10.26 MB (10753536 bytes)

Created Thursday 02 Novernber 2023, 14.08.47

Modified Monday 06 Movember 2023, 14.13.07

Accessed Wednesday 02 Movember 2023, 15.43.22

MD35 TA939924177EOBY31B9FE2F1E2804DFE

SHA-1 89C30E4FBE2B4DFOFF25A2ASFAEROBD32BD03BCC
Property Value

CompanyMame Kaspersky

FileDescription Kaspersky [21.13.5.506.0.26.0]

FileVersion 21.13.5.506

LegalCopyright © 2023 AC Kaspersky Lab

LegalTrademarks Registered trademarks and service marks are the property of the...
ProductMame Kaspersky

ProductVersion 21.13.5.506

InternalMame Setup

Figure 5. LummasStealer signature information

Upon execution, the malware tries to send a beacon to arthritis[.Jorg - upon failure, the
malware stops running.

Following the beacon, Lumma Stealer decodes a shellcode, loads the signed Windows DLL
“‘mshtml.dll”, overwrites the start of the .text section of the DLL with the decoded shellcode
and calls the address of the written shellcode directly.

Running from mshtml.dll, the shellcode decodes another shellcode that is destined to be
executed in a different process - cmd.exe for another loading step.

First, the malware loads “ntdll.dllI” from disk and extracts the right syscall’s index while
parsing the functions it needs.

In order to do that it holds a list of hashes (calculated with MurmurHash?2), those hashes are
then compared to hashes of function names extracted from the loaded “ntdll.dll” file. Upon
finding the right one, the function extracts the current syscall index and stores it in a variable
for later use.

8/11

FAC71836 lea ecx, [ebp+var 888 ntdll path]
78C7183C call Read file

FAC71841 add esp, 8

FAC71844 mov eax, [ebp+var_2882uCreateSection_Hash]
FAC7184A push eax

FAC7184B movw ecx, [ebp+var_28 ntdll buffer]

FAC7184E push ecx
FAC7184F call get_syscall num ; ZwCreateSection

7OC71854 add esp, 8

FAC71857 movw [ebp+var_ 35C ZuCreateSection OpCode], eax
FAC7185D mov edx, [ebp+var 284 ZuMapUiew Hash]
FBC71863 push edx

FAC71864 movw eax, [ebp+var_28 ntdll buffer]

FAC71867 push eax

7O8C71868 call get syscall num ; ZwMapUiewDfSection
7AC7186D add esp, 8

7AC71878 mov [ebp+var_ 358 ZuMapUiew OpCode], eax

Figure 6. Snippet of syscall index extractor functions
The syscall indexes extracted are:

o ZwCreateSection

o ZwMapViewOfSection

o ZwWriteVirtualMemory
o ZwProtectVirtualMemory
e NtSuspendThread

o ZWResumeThread

o ZwOpenProcess

o ZwGetContextThread

¢ NtSetContextThread

Lumma Stealer uses those syscall indexes for the next stages of the injection. Each syscall
index has a dedicated function that sets up the arguments it needs and calls the syscall
invoker function:

Mshtml shellcode

call syscall_function_ZwWriteVirtualMemory

syscall_function_ZwWriteVirtualMemory

Setup arguments for ZwWriteVirtualMemory syscall

invoke_syscall

SYSCALL
push ZwWriteVirtualMemory_syscall_index

call invoke_syscall

Figure 7. Lumma Stealer direct syscall invocation chart

9/11

In the syscall invoker function, we can see another technique that the malware writers used
to wrap the syscall execution - Heaven’s Gate.

This technique enables manual transaction of x86 CPU mode to a x64 CPU and vice versa.

The “invoke_syscall” function uses two instances of Heaven’s Gate before and after the
direct syscall execution. It switches the CPU mode to x64 first:

89 65 Fu mou [ebp+var C], esp

83 E4 FA and esp, BFFFFFFFBh

6A 33 push aan ;. "3

EE 068 68 80 88 call §+5

83 04 24 @5 add [esp+8Bh+var_ 808], 5
CB retf

Figure 8. x86 to x64 Heaven’s Gate before direct syscall execution
Figure 8. x86 to x64 Heaven’s Gate before direct syscall execution

Then the direct syscall is executed followed by another instance of Heaven’s Gate that
switches the CPU mode back to x86:

push quord ptr [rbp-54h]

pPop r18

mov rax, [rbp+8]

sub rsp, 28h

syscall

mowv rcx, [rbp-3Ch]

1lea Fsp, [FSprrcx=8+ 1
pop rdi

mov [vbp-44h], rax

call 445

mov dword ptr [rsp+i], ; H
add dword pty [rsp], BDh
retf

Figure 9. Direct syscall execution and x64 to x86 Heaven’s Gate

Using this method, the shellcode within mshtml.dll memory space is able to run the listed
functions via direct syscalls.

In order to inject the second shellcode to cmd.exe (as mentioned above), LummaStealer
executes a Wow64 cmd.exe process, using CreateProcessW (not a direct syscall). Then, it
uses the direct syscalls to suspend the process, create memory sections in the target
cmd.exe process and write the shellcode to them. Finally, it sets cmd.exe thread context to
execute the written shellcode and resume the thread.

Cortex XDR has detected those direct syscall executions as malicious using several
aggregations on local and global levels:

o “Setup.exe” is not a process that invokes those direct syscalls normally.

10/11

https://sachiel-archangel.medium.com/analysis-of-heavens-gate-part-1-62cca0ace6f0

e The direct syscalls were executed from the mapped memory of mshtml.dll, which also
doesn’t usually execute those direct syscalls.

Conclusion

As seen in the case above, direct syscalls are used to subvert detection of malicious actions
by most EDR solutions. This case is only one example of using direct syscall in a malicious
manner, as we have seen more uses of it during our research.

To detect this elusive attack vector, we had to combine methods for monitoring and enriching
direct syscall events using the agent with a learning mechanism for detecting rare and
malicious direct syscall uses.

Palo Alto Networks customers with Cortex XDR are protected from this kind of attack with
Cortex Analytics BIOC alerts:

WAME T SEVERITY AGS T MITRE ATTE&CK TACTIC T MITRE ATT&CK TECHNIQUE

A suspicious direct ——————) Direct Syscall

syscall was exscurted Analytics TADDOZ - Execution T1106 - Native API

Suspicious module load — Direct Syscall
using direct syscall © Analytics

TADOOZ2 - Execution T1104 - Native APl

Figure 10. Cortex XDR Direct syscall alerts and their source

Related Blogs

Our library of online content is here to help you learn more, no matter what format you
prefer or which topic interests you most.

11/11

