
1/8

Glyc3rius February 11, 2024

Analysing STOP Ransomware
glyc3rius.github.io/2024/02/stop/

Contents

Glyc3rius included in Reports
 2024-02-11 1459 words
 7 minutes

Overview

STOP/DJVU ransomware can be executed with one of the parameters listed: --Admin, --ForNetRes, --Task , --AutoStart or --
Service . It gathers location information of the victim with the help of a geolocation API service and compares its hard coded
country codes to the victim’s code, if one of them matches the malware stops running. It uses the Salsa20 algorithm to encrypt
files and adds the .cdpo file extension at the end of each one of them. The malware maintains persistence with two methods: a
run key named SysHelper and a scheduled task called Time Trigger Task. It drops additional payloads (in our case Vidar and a
Clipboard Hijacker) from malicious URLs and a Public Key is also loaded from the C2 server.

Unpacking

The unpacking procedure is fairly simple. We only have to put a breakpoint on the WriteProcessMemory function that writes data
to an area of memory in a specified process, then run the program until it hits that breakpoint. We need to dump the 3rd argument
of WriteProcessMemory which is the lpBuffer that is a pointer to the buffer that contains data to be written in the address space
of the specified process. After following it in dump, the MZ signature is found which is a clear indicator of a Windows executable.
The last thing that should be done is to clear the junk code in a hex editor and we finally obtain the unpacked file.

Figure 1: Unpacking STOP Ransomware

Execution Parameters

Before we get into analysing what this malware is capable of, it’s important to note that it can execute itself with different
parameters from command line.
First, the ransomware tries to launch itself with --Admin IsNotAutoStart IsNotTask
parameters. It gives admin access rights while the IsNotAutoStart indicates it won’t run automatically when the system starts up
and the IsNotTask parameter means the execution of the program is not scheduled automatically.

However, STOP ransomware has five more ways to start its execution:

https://glyc3rius.github.io/2024/02/stop/
https://glyc3rius.github.io/
https://glyc3rius.github.io/categories/reports/

2/8

--Admin IsAutoStart IsTask

--ForNetRes IsAutoStart IsTask

--Task

--AutoStart

--Service

Location Information

The malware first makes a request to the Geo-IP API service https[:]//api.2ip.ua/geo.json which obtains quite a few
location related information of the victim and collects it in a JSON file. Here is an example of it according to the geolocation site:

{"ip":"8.8.8.8",

"country_code":"US",

"country":"United states of
america",

"country_rus":"США",

"country_ua":"США",

"region":"California",

"region_rus":"Калифорния",

"region_ua":"Каліфорнія",

"city":"Mountain view",

"city_rus":"Маунтин-Вью",

"latitude":"37.38605",

"longitude":"-122.08385",

"zip_code":"94035",

"time_zone":"-08:00"}

The country_code field is compared and checked to numerous other countries:

Figure 2: Country codes that stop execution

Where RU is Russia, BY is Belarus, UA is Ukraine, AZ is Azerbaijan, AM is Armenia, TJ is Tajikistan, KZ is Kazakhstan, KG is
Kyrgyzstan, UZ is Uzbekistan, SY is Syria. In case one of the hard coded country_code is detected, the ransomware stops
execution. However, if it doesn’t match, the execution of the malware continues.

3/8

Persistence

This malware uses two types of persistence methods. Under the Software\Microsoft\Windows\CurrentVersion\Run registry
key, it creates a value called SysHelper. This makes the malware run every time the victim logs on. Then it executes the following
command inside the created directory:

icacls "C:\Users\admin\AppData\Local\8a4577dc-de55-4eb5-b48a-8a3eee60cd95" /deny *S-1-1-0:(OI)(CI)

(DE,DC)

The command denies the “Delete” and “Delete Child” permissions for the group ‘Everyone’ on this specific directory. The
randomly named directory 8a4577dc-de55-4eb5-b48a-8a3eee60cd95 is generated by the malware itself with the UuidCreate and
UuidToStringW functions.

The other persistence mechanism is a scheduled task with the Task Scheduler COM API. After viewing and searching the
scheduled tasks on the infected machine, we notice a suspicious task called Time Trigger Task. The action details confirm that
it is indeed related to the malware and it is repeated after every 5 minutes indefinitely.

Figure 3: Scheduled task under the Time Trigger Task name

HTTP Communication

Public Key

In this specific PCAP, we have three crucial HTTP messages to analyse. First, it sends a GET request to the habrafa[.]com C2
host which contains a pid in the URL that is an MD5 hash of the victim’s MAC address. The host then responds back with a
PUBLIC KEY (in PEM format) and an id which are stored in a text file called bowsakkdestx.txt on the victim’s machine.

Figure 4: HTTP Stream of the Public Key

Malicious Payloads

The second HTTP message requests a file from brusuax[.]com with the name build2.exe which is a Windows executable. After
unpacking, it is revealed that it’s a Vidar stealer malware which is quite common in case of STOP ransomware. It steals
information and cryptocurrencies, if you want to get familiar with the infostealer and its functionalities, look for related articles in
Malpedia’s collection.

https://malpedia.caad.fkie.fraunhofer.de/details/win.vidar

4/8

Figure 5: HTTP Stream of build2.exe

There is also a build3.exe loaded by the ransomware from the habrafa[.]com C2 host. This is also a Windows executable as
the MZ signature indicates.

Figure 6: HTTP Stream of build3.exe

This PE file seems packed, but fortunately the unpacking is pretty easy and similar to the one described above. We just have to
set a breakpoint on the NtWriteVirtualMemory function, then follow the third argument in dump. After that, follow in memory map
and dump it to a file. The very last thing we have to do is cleaning the file in a hex editor.
This additional payload is a Clipboard
Hijacker that keeps track of the clipboard activity and aims to replace the cryptocurrency address with the attacker’s own
address. It executes the following command on the victim:

/C /create /F /sc minute /mo 1 /tn "Azure-Update-Task" /tr

"C:\Users\admin\AppData\Roaming\Microsoft\Network\mstsca.exe"

This creates a scheduled task named Azure-Update-Task with a schedule frequency of one minute, and runs the mstsca.exe file
which is the malicious executable.
Further looking into the unpacked sample, a mutex named M5/610HP/STAGE2 and several
cryptocurrency addresses were found:

Cryptocurrency Addresses

1My2QNmVqkvN5M13xk8DWftjwC9G1F2w8Z

3NLzE3tXwoagBrgFsjNNkPZfrESydTD8JP

bc1qx8vykfse9s9llguez9cuyjmy092yeqkesl2r5v

bnb136ns6lfw4zs5hg4n85vdthaad7hq5m4gtkgf23

LLiNjWA9h4LxVtDigLQ79xQdGiJYC4oHis

MBD2C8QV7RDrNtSDRe9B2iH5r7yH4iMcxk

ltc1qa5lae8k7tzcw5lcjfvfs3n0nhf0z3cgrsz2dym

addr1qx4jwm700r2w6fneakg0r5pkg76vu7qkt6qv7zxza3qu3w9tyahu77x5a5n8nmvs78grv3a5eeupvh5qeuyv9mzpezuq60zykl

Ae2tdPwUPEZDqNhACJ3ZT5NdVjkNffGAwa4Mc9N95udKWYzt1VnFngLMnPE

t1VQgJMcNsBHsDyu1tXmJZjDpgbm3ftmTGN

DBbgRYaKG993LFJKCWz73PZqveWsnwRmGc

5/8

Cryptocurrency Addresses

89SPVUAPHDLSq5pRdf8Eo6SLnKRJ8BNSYYnvPL6iJxGP4FBCBmkeV3CTSLCbk6uydxRnub4gLH6TBRycxSAQN2m1KcnhrSZ

42UxohbdHGMYGPvW5Uep45Jt9Rj2WvTV958B5G5vHnawZhA4UwoD53Tafn6GRmcGdoSFUfCQN6Xm37LBZZ6qNBorFw3b6s2

0xa6360e294DfCe4fE4Edf61b170c76770691aA111

Configuration

The malware has several data tables in the .data section. These tables have either 10 or 16 values that point to the .rdata
section. That is the location of the actual data we have to decrypt to extract the configuration. The XOR operator is used for the
encryption procedure with the value 0x80.

Figure 7: XOR encryption of the malware's configuration

File Encryption

The ransomware uses the Salsa20 algorithm to encrypt files on the victim’s computer. After analyses, the file indicates that
OpenSSL was also used in the encryption process since it contains several related strings. There are a few file extensions that
the malware doesn’t encrypt, such as .sys, .ini, .DLL, .dll, .blf, .bat, .lnk, and .regtrans-ms.
This sample uses the .cdpo
file extension for the encrypted files, however the extension varies from executable to executable. The first 5 bytes are not
encrypted by the ransomware while at the end of each file, the ransomware appends a UUID (created with CreateUuid and
UuidToStringA functions) that is encrypted with the RSA 2048 Public Key, the PersonalID and the {36A698B9-D67C-4E07-BE82-
0EC5B14B4DF5} value:

Figure 8: Ending of an encrypted file in hex editor

The ransom note is placed in the _readme.txt file that specifies the ransom demand and presents additional information like
emails to contact, a WeTransfer link that supposedly demonstrates how to decrypt an encrypted file and the personal ID of the
user:

https://en.wikipedia.org/wiki/Salsa20
https://github.com/openssl/openssl

6/8

Figure 9: Ransom note in _readme.txt file

A PersonalID.txt file is also created and placed in the SystemID folder on the victim’s machine:

Figure 10: PersonalID.txt file on the victim's machine

Yara Rule

rule STOP_ransomware

{

 meta:

 description = "Detects Unpacked STOP Ransomware Samples"

 author = "Glyc3rius"

 date_created = "11/02/2024"

 sha256 =
"236259fb27568c5b6ba0ed090909d2f1aeb70258673f3b561514350a65eba77a"

 strings:

 $s_launch_arg1 = "--Admin" wide

 $s_launch_arg2 = "IsNotAutoStart" wide

 $s_launch_arg3 = "IsNotTask" wide

 $s_launch_arg4 = "--AutoStart" wide

 $s_launch_arg5 = "IsAutoStart" wide

 $s_launch_arg6 = "IsTask" wide

 $s_launch_arg7 = "--ForNetRes" wide

 $s_launch_arg8 = "--Task" wide

 $s_launch_arg9 = "--Service" wide

 $s_pdb = "encrypt_win_api.pdb"

 $s_jpg = "5d2860c89d774.jpg" wide

 $s_scheduled_task = "Time Trigger Task" wide

 $mutex_1 = "{1D6FC66E-D1F3-422C-8A53-C0BBCF3D900D}"

 $mutex_2 = "{FBB4BCC6-05C7-4ADD-B67B-A98A697323C1}"

 $m_end_of_encrypted_file = "{36A698B9-D67C-4E07-BE82-0EC5B14B4DF5}"

 condition:

 uint16(0) == 0x5a4d

 and all of ($s*)

 and (any of ($m*))

}

7/8

IOCs

Indicators of Compromise Description

5e19952acedb1da68215069d44ce1f3d48da10491151003148f1cceab03f1073 STOP Packed Sample

236259fb27568c5b6ba0ed090909d2f1aeb70258673f3b561514350a65eba77a STOP Unpacked Sample

e3d16f3f69fa0857f966022387ee6f9408385ddf389d09ffe7dc44acc8ac1ad5 Packed Vidar Infostealer (build2.exe)

0e5849b3c364687599909abee08ab6638521ea62b887dc365e40d2589959ac8b Unpacked Vidar Infostealer

fef2c8ca07c500e416fd7700a381c39899ee26ce1119f62e7c65cf922ce8b408 Packed Clipboard Hijacker (build3.exe)

8d7f0e6b6877bdfb9f4531afafd0451f7d17f0ac24e2f2427e9b4ecc5452b9f0 Unpacked Clipboard Hijacker

habrafa[.]com/test1/get.php Command and Control (C2)

http[:]//brusuax[.]com/dl/build2.exe Payload URL , drops Vidar

8/8

Indicators of Compromise Description

http[:]//habrafa[.]com/files/1/build3.exe Payload URL, drops Clipboard Hijacker

References

