
1/9

Donato Onofri - Emanuele Calvelli February 7, 2024

HijackLoader Expands Techniques to Improve Defense
Evasion

crowdstrike.com/blog/hijackloader-expands-techniques/

HijackLoader continues to become increasingly popular among adversaries for deploying
additional payloads and tooling
A recent HijackLoader variant employs sophisticated techniques to enhance its complexity and
defense evasion
CrowdStrike detects this new HijackLoader variant using machine learning and behavior-based
detection capabilities 

CrowdStrike researchers have identified a HijackLoader (aka IDAT Loader) sample that employs
sophisticated evasion techniques to enhance the complexity of the threat. HijackLoader, an
increasingly popular tool among adversaries for deploying additional payloads and tooling, continues
to evolve as its developers experiment and enhance its capabilities. 

In their analysis of a recent HijackLoader sample, CrowdStrike researchers discovered new
techniques designed to increase the defense evasion capabilities of the loader. The malware
developer used a standard process hollowing technique coupled with an additional trigger that was
activated by the parent process writing to a pipe. This new approach has the potential to make
defense evasion stealthier. 

https://www.crowdstrike.com/blog/hijackloader-expands-techniques/


2/9

The second technique variation involved an uncommon combination of process doppelgänging and
process hollowing techniques. This variation increases the complexity of analysis and the defense
evasion capabilities of HijackLoader. Researchers also observed additional unhooking techniques
used to hide malicious activity.

This blog focuses on the various evasion techniques employed by HijackLoader at multiple stages of
the malware.

HijackLoader Analysis

Infection Chain Overview

The HijackLoader sample CrowdStrike analyzed implements complex multi-stage behavior in which
the first-stage executable (streaming_client.exe) deobfuscates an embedded configuration
partially used for dynamic API resolution (using PEB_LDR_DATA structure without other API usage) to
harden against static analysis.

Afterward, the malware uses WinHTTP APIs to check if the system has an active internet connection
by connecting to https[:]//nginx[.]org. If the initial connectivity check succeeds, then execution
continues, and it connects to a remote address to download the second-stage configuration blob. If
the first URL indicated below fails, the malware iterates through the following list:

https[:]//gcdnb[.]pbrd[.]co/images/62DGoPumeB5P.png?o=1

https[:]//i[.]imgur[.]com/gyMFSuy.png;

https[:]//bitbucket[.]org/bugga-oma1/sispa/downloads/574327927.png

Upon successfully retrieving the second-stage configuration, the malware iterates over the
downloaded buffer, checking for the initial bytes of a PNG header. It then proceeds to search for the
magic value  C6 A5 79 EA, which precedes the XOR key (32 B3 21 A5 in this sample) used to decrypt
the rest of the configuration blob.

Figure 1. HijackLoader key retrieving and decrypting (click to enlarge)

https://www.crowdstrike.com/wp-content/uploads/2024/02/Figure1-2.png


3/9

Following XOR decryption, the configuration undergoes decompression using the
RtlDecompressBuffer API with COMPRESSION_FORMAT_LZNT1. After decompressing the configuration,
the malware loads a legitimate Windows DLL specified in the configuration blob (in this sample,
C:\Windows\SysWOW64\mshtml.dll).

The second-stage, position-independent shellcode retrieved from the configuration blob is written to
the .text section of the newly loaded DLL before being executed. The HijackLoader second-stage,
position-independent shellcode then performs some evasion activities (further detailed below) to
bypass user mode hooks using Heaven’s Gate and injects subsequent shellcode into cmd.exe.The
injection of the third-stage shellcode is accomplished via a variation of process hollowing that results
in an injected hollowed mshtml.dll into the newly spawned cmd.exe child process.

The third-stage shellcode implements a user mode hook bypass before injecting the final payload (a
Cobalt Strike beacon for this sample) into the child process logagent.exe. The injection mechanism
used by the third-stage shellcode leverages the following techniques:

Process Doppelgänging Primitives: This technique is used to hollow a Transacted Section
(mshtml.dll) in the remote process to contain the final payload.
Process/DLL Hollowing: This technique is used to inject the fourth-stage shellcode that is
responsible for performing evasion prior to passing execution to the final payload within the
transacted section from the previous step.

Figure 2 details the attack path exhibited by this HijackLoader variant.

Figure 2. HijackLoader — infection chain (click to enlarge)

Main Evasion Techniques Used by HijackLoader and Shellcode

The primary evasion techniques employed by HijackLoader include hook bypass methods such as
Heaven’s Gate and unhooking by remapping system DLLs monitored by security products.
Additionally, the malware implements variations of process hollowing and an injection technique that
leverages transacted hollowing, which combines the transacted section and process doppelgänging
techniques with DLL hollowing.

Hook Bypass: Heaven’s Gate and Unhooking

https://www.crowdstrike.com/wp-content/uploads/2024/02/Figure2a.png


4/9

Like other variants of HijackLoader, this sample implements a user mode hook bypass using
Heaven’s Gate (when run in SysWOW64) — this is similar to existing (x64_Syscall function)
implementations.

This implementation of Heaven’s Gate is a powerful technique that leads to evading user mode
hooks placed in SysWOW64 ntdll.dll by directly calling the syscall instruction in the x64 version of
ntdll.

Each call to Heaven’s Gate uses the following as arguments: 

The syscall number
The number of parameters of the syscall
The parameters (according to the syscall)

This variation of the shellcode incorporates an additional hook bypass mechanism to elude any user
mode hooks that security products may have placed in the x64 ntdll. These hooks are typically
used for monitoring both the x32 and x64 ntdll.

During this stage, the malware remaps the .text section of x64 ntdll by using Heaven’s Gate to
call NtWriteVirtualMemory and NtProtectVirtualMemory to replace the in-memory mapped ntdll
with the .text from a fresh ntdll read from the file C:\windows\system32\ntdll.dll. This
unhooking technique is also used on the process hosting the final Cobalt Strike payload
(logagent.exe) in a final attempt to evade detection.

Process Hollowing Variation

To inject the subsequent shellcode into the child process cmd.exe, the malware utilizes common
process hollowing techniques. This involves mapping the legitimate Windows DLL mshtml.dll into
the target process and then replacing its .text section with shellcode. An additional step necessary
to trigger the execution of the remote shellcode is detailed in a later section.   

To set up the hollowing, the sample creates two pipes that are used to redirect the Standard Input
and the Standard Output of the child process (specified in the aforementioned configuration blob,
C:\windows\syswow64\cmd.exe) by placing the pipes’ handles in a STARTUPINFOW structure spawned
with CreateProcessW API. 

One key distinction between this implementation and the typical “standard” process hollowing can be
observed here: In standard process hollowing, the child process is usually created in a suspended
state. In this case, the child is not explicitly created in a suspended state, making it appear less
suspicious. Since the child process is waiting for an input from the pipe created previously, its
execution is hanging on receiving data from it. Essentially, we can call this an interactive process
hollowing variation. 

As a result, the newly spawned cmd.exe will read input from the STDIN pipe, effectively waiting for
new commands. At this point, its EIP (Extended Instruction Pointer) is directed toward the return
from the NtReadFile syscall. 

https://gist.github.com/Cr4sh/76b66b612a5d1dc2c614#file-wow64_call-cpp-L61


5/9

The following section details the steps taken by the second-stage shellcode to set up the child
process cmd.exe ultimately used to perform the subsequent injections used to execute the final
payload.

The parent process streaming_client.exe initiates an NtDelayExecution to sleep, waiting for
cmd.exe to finish loading. Afterward, it reads the legitimate Windows DLL mshtml.dll from the file
system and proceeds to load this library into cmd.exe as a shared section. This is accomplished
using the Heaven’s Gate technique for: 

Creating a shared section object using NtCreateSection  
Mapping that section in the remote cmd.exe using NtMapViewOfSection  

It then replaces the .text section of the mshtml DLL with malicious shellcode by using:

Heaven’s Gate to call NtProtectVirtualMemory on cmd.exe to set RWX permissions on the .text
section of the previously mapped section mshtml.dll
Heaven’s Gate to call NtWriteVirtualMemory on the DLL’s .text section to stomp the module
and write the third-stage shellcode 

Finally, to trigger the execution of the remote injected shellcode, the malware uses:

Heaven’s Gate to suspend (NtSuspendThread) the remote main thread 
A new CONTEXT (by using NtGetContextThread and NtSetContextThread) to modify the EIP to
point to the previously written shellcode
Heaven’s Gate to resume (NtResumeThread) the remote main thread of cmd.exe

However, because cmd.exe is waiting for user input from the STDINPUT pipe, the injected shellcode in
the new process isn’t actually executed upon the resumption of the thread. The loader must take an
additional step: 

The parent process streaming_client.exe needs to write (WriteFile) \r\n string to the
STDINPUT pipe created previously to send an input to cmd.exe after calling NtResumeThread.
This effectively resumes execution of the primary thread at the shellcode’s entry point in the
child process cmd.exe.

Interactive Process Hollowing Variation: Tradecraft Analysis

We have successfully replicated the threadless process hollowing technique to understand how the
pipes trigger it. Once the shellcode has been written as described, it needs to be activated. This
activation is based on the concept that when a program makes a syscall, the thread waits for the
kernel to return a value. 

In essence, the interactive process hollowing technique involves the following steps:



6/9

CreateProcess: This step involves spawning the cmd.exe process to inject the malicious code
by redirecting STDIN and STDOUT to pipes. Notably, this process isn’t suspended, making it
appear less suspicious. Waiting to read input from the pipe, the NtReadFile syscall sets its
main thread’s state to Waiting and _KWAIT_REASON to Executive, signifying that it’s awaiting
the execution of kernel code operations and their return.   
WriteProcessMemory: This is where the shellcode is written into the cmd.exe child process.
SetThreadContext: In this phase, the parent sets the conditions to redirect the execution flow
of the cmd.exe child process to the previously written shellcode’s address by modifying the
EIP/RIP in the remote thread CONTEXT.
WriteFile: Here, data is written to the STDIN pipe, sending an input to the cmd.exe process.
This action resumes the execution of the child process from the NtReadFile operation, thus
triggering the execution of the shellcode. Before returning to user space, the kernel is reading
and restoring the values saved in the _KTRAP_FRAME structure (containing the EIP/RIP register
value) to resume from where the syscall was called. By modifying the CONTEXT in the previous
step, the loader hijacks the resuming of the execution toward the shellcode address without the
need to suspend and resume the thread, which this technique usually requires.

Transacted Hollowing² (Transacted Section/Doppelgänger + Hollowing)

The malware writes the final payload in the child process logagent.exe spawned by the third-stage
shellcode in cmd.exe by creating a transacted section to be mapped in the remote process.
Subsequently, the malware injects fourth-stage shellcode into logagent.exe by loading and
hollowing another instance of mshtml.dll into the target process. The injected fourth-stage shellcode
performs the aforementioned hook bypass technique before executing the final payload previously
allocated by the transacted section.

Transacted Section Hollowing

Similarly to process doppelgänging, the goal of a transacted section is to create a stealthy malicious
section inside a remote process by overwriting the memory of the legitimate process with a
transaction.

In this sample, the third-stage shellcode executed inside cmd.exe places a malicious transacted
section used to host the final payload in the target child process logagent.exe. The shellcode uses
the following:

NtCreateTransaction to create a transaction
RtlSetCurrentTransaction and CreateFileW with a dummy file name to replace the
documented  CreateFileTransactedW
Heaven’s Gate to call NtWriteFile in a loop, writing the final shellcode to the file in 1,024-byte
chunks
Creation of a section backed by that file (Heaven’s Gate call NtCreateSection)
A rollback of the previously created section by using Heaven’s Gate to call 
NtRollbackTransaction

Existing similar implementations have publicly been observed in this project that implements
transaction hollowing.

https://github.com/hasherezade/transacted_hollowing/blob/main/transacted_file.cpp#L13C29


7/9

Once the transacted section has been created, the shellcode generates a function stub at runtime to
hide from static analysis. This stub contains a call to the CreateProcessW API to spawn a suspended
child process logagent.exe
(c50bffbef786eb689358c63fc0585792d174c5e281499f12035afa1ce2ce19c8) that was previously
dropped by cmd.exe  under the %TEMP% folder.

After the target process has been created, the sample uses Heaven’s Gate to:

Read its PEB by calling NtReadVirtualMemory to retrieve its base address (0x400000) 
Unmap the logagent.exe image in the logagent.exe process by using
NtUnMapViewofSection 
Hollow the previously created transacted section inside the remote process by remapping the
section at the same base address (0x400000) with NtMapViewofSection 

Process Hollowing

After the third-stage shellcode within cmd.exe injects the final Cobalt Strike payload inside the
transacted section of the logagent.exe process, it continues by process hollowing the target process
to write the fourth shellcode stage ultimately used to execute the final payload (loaded in the
transacted section) in the remote process. The third-stage shellcode maps the legitimate Windows
DLL C:\Windows\SysWOW64\mshtml.dll in the target process prior to replacing its .text with the
fourth-stage shellcode and executing it via NtResumeThread. 

This additional fourth-stage shellcode written to logagent.exe performs similar evasion activities to
the third-stage shellcode executed in cmd.exe (as indicated in the hook bypass section) before
passing execution to the final payload.

CrowdStrike Falcon Coverage

CrowdStrike employs a layered approach for malware detection using machine learning and
indicators of attack (IOAs). As shown in Figure 3, the CrowdStrike Falcon® sensor’s machine
learning capabilities can automatically detect and prevent HijackLoader in the initial stages of the
attack chain; i.e., as soon as the malware is downloaded onto the victim’s machine. Behavior-based
detection capabilities (IOAs) can recognize malicious behavior at various stages of the attack chain,
including when employing tactics like process injection attempts. 



8/9

Figure 3. CrowdStrike Falcon platform machine learning and IOA coverage for the HijackLoader sample (click
to enlarge)

Indicators of Compromise (IOCs)

File SHA256

streaming_client.exe 6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748

MITRE ATT&CK Framework

The following table maps reported HijackLoader tactics, techniques and procedures (TTPs) to the
MITRE ATT&CK® framework.

ID Technique Description

T1204.002 User Execution:
Malicious File

The sample is a backdoored version of
streaming_client.exe, with the Entry Point redirected to a
malicious stub.

T1027.007 Obfuscated Files or
Information:
Dynamic API
Resolution

HijackLoader and its stages hide some of the important
imports from the IAT by dynamically retrieving kernel32 and
ntdll API addresses. It does this by parsing PEB-
>PEB_LDR_DATA  and retrieving the function addresses.

https://www.crowdstrike.com/wp-content/uploads/2024/02/Figure3-1.png
https://www.hybrid-analysis.com/sample/6f345b9fda1ceb9fe4cf58b33337bb9f820550ba08ae07c782c2e142f7323748


9/9

T1016.001 System Network
Configuration
Discovery: Internet
Connection
Discovery

This variant of HijackLoader connects to a remote server to
check if the machine is connected to the internet by using
the WinHttp API (WinHttpOpenRequest and
WinHttpSendRequest).

T1140 Deobfuscate/Decode
Files or Information

HijackLoader utilizes XOR mechanisms to decrypt the
downloaded stage.

T1140 Deobfuscate/Decode
Files or Information

HijackLoader utilizes RtlDecompressBuffer to LZ
decompress the downloaded stage.

T1027 Obfuscated Files or
Information

HijackLoader drops XOR encrypted files to the %APPDATA%
subfolders to store the downloaded stages.

T1620 Reflective Code
Loading

HijackLoader reflectively loads the downloaded shellcode in
the running process by loading and stomping the mshtml.dll
module using the LoadLibraryW and VirtualProtect APIs.

T1106 Native API HijackLoader uses direct syscalls and the following APIs to
perform bypasses and injections: WriteFileW, ReadFile,
CreateFileW, LoadLibraryW, GetProcAddress,
NtDelayExecution, RtlDecompressBuffer, CreateProcessW,
GetModuleHandleW, CopyFileW, VirtualProtect,
NtProtectVirtualMemory, NtWriteVirtualMemory,
NtResumeThread, NtSuspendThread, NtGetContextThread,
NtSetContextThread, NtCreateTransaction,
RtlSetCurrentTransaction, NtRollbackTransaction,
NtCreateSection, NtMapViewOfSection,
NtUnMapViewOfSection, NtWriteFile, NtReadFile,
NtCreateFile and CreatePipe.

T1562.001 Impair Defenses:
Disable or Modify
Tools

HijackLoader and its stages use Heaven’s Gate and remap
x64 ntdll to bypass user space hooks.

T1055.012 Process Injection:
Process Hollowing

HijackLoader and its stages implement a process hollowing
technique variation to inject in cmd.exe and logagent.exe.

T1055.013 Process Injection:
Process
Doppelgänging

The HijackLoader shellcode implements a process
doppelgänging technique variation (transacted section
hollowing) to load the final stage in logagent.exe.

Additional Resources

The CrowdStrike Falcon® platform achieved 100% protection, 100% visibility and 100%
analytic detection across all steps in the MITRE Engenuity ATT&CK® Evaluations: Enterprise,
Round 5. Learn more in this blog post.
CrowdStrike was named a Leader in the 2023 Gartner® Magic Quadrant™ for Endpoint
Protection Platforms — furthest right in Vision and highest in Ability to Execute. Read about it
here. 
Find out how the Falcon platform stops breaches, saves time and saves money in this IDC
analysis: The Business Value of the CrowdStrike Falcon XDR Platform.
See the Falcon platform in action — sign up for a free demo today. 

https://www.crowdstrike.com/blog/crowdstrike-achieves-100-percent-mitre-engenuity-attack-enterprise-evaluation/
https://www.crowdstrike.com/blog/crowdstrike-named-leader-2023-gartner-magic-quadrant-for-epp/
https://www.crowdstrike.com/resources/white-papers/idc-security-consolidation-with-crowdstrike/
https://www.crowdstrike.com/products/demos/

