
1/26

Evolution of UNC4990: Uncovering USB Malware's Hidden
Depths

mandiant.com/resources/blog/unc4990-evolution-usb-malware

Mandiant Managed Defense has been tracking UNC4990, an actor who heavily uses USB devices for
initial infection. UNC4990 primarily targets users based in Italy and is likely motivated by financial gain.
Our research shows this campaign has been ongoing since at least 2020.

Despite relying on the age-old tactic of weaponizing USB drives, UNC4990 continues to evolve their tools,
tactics and procedures (TTPs). The actor has moved from using seemingly benign encoded text files to
hosting payloads on popular websites such as Ars Technica, GitHub, GitLab, and Vimeo.

The legitimate services abused by UNC4990 (including Ars Technica, GitHub, GitLab, and Vimeo) didn’t
involve exploiting any known or unknown vulnerabilities in these sites, nor did any of these organizations
have anything misconfigured to allow for this abuse. Additionally, the content hosted on these services
posed no direct risk for the everyday users of these services, as the content hosted in isolation was
completely benign. Anyone who may have inadvertently clicked or viewed this content in the past was not
at risk of being compromised.

Mandiant has observed UNC4990 leverage EMPTYSPACE (also known as VETTA Loader and
BrokerLoader), a downloader that can execute any payload served by the command and control (C2)
server, and QUIETBOARD, which is a backdoor that was delivered using EMPTYSPACE.

Infection Lifecycle

https://www.mandiant.com/resources/blog/unc4990-evolution-usb-malware
https://cloud.google.com/security/products/managed-defense
https://yoroi.company/wp-content/uploads/2023/12/202311-Vetta-Loader_Def-min.pdf
https://fortgale.com/blog/featured/nebula-broker-offensive-operations-italy/

2/26

Figure 1: Infection chain

Initial Compromise: USB LNK

In all instances of the infection which Mandiant Managed Defense responded to, the infection began with
the victim double-clicking a malicious LNK shortcut file on a removable USB device. The naming
convention for the LNK file typically consisted of the vendor of the USB device and the storage size in
brackets, for example: KINGSTON (32GB).lnk. Mandiant also observed instances where, instead of the
vendor name, the drive label was used, for example: D (32GB).lnk.

In addition to this, the icon of the LNK file was set to the Microsoft Windows default icon for drives. This
was likely done to entice unsuspecting users to double click the file, ultimately triggering the functionality
embedded in the LNK file.

https://cloud.google.com/security/products/managed-defense

3/26

Figure 2: Malicious LNK file

Upon double clicking, the PowerShell script explorer.ps1 is executed via the following LNK shortcut
target:

C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe -windowstyle hidden -
NoProfile -nologo -ExecutionPolicy ByPass -File explorer.ps1

Explorer.ps1

From the investigations conducted by Mandiant Managed Defense, Mandiant identified multiple iterations
of a malicious PowerShell script called explorer.ps1. This is an encoded PowerShell script that
ultimately downloads and decodes an additional payload, which, in the cases investigated by Mandiant,
has been the EMPTYSPACE downloader.

Mandiant suspects the earlier versions of explorer.ps1 were not encoded; however, more recent
variants were loaded into memory as a reverse Base64 encoded string, similar to the one shown in Figure
3.

Figure 3: explorer.ps1 (SHA256: 6fb4945bb73ac3f447fb7af6bd2937395a067a6e0c0900886095436114a17443)

The earliest version of explorer.ps1 which we identified (SHA256:
72f1ba6309c98cd52ffc99dd15c45698dfca2d6ce1ef0bf262433b5dfff084be) checks whether a Hangul
Filler Unicode character (E3 85 A4 in UTF-8) labeled directory exists at the current path and only
continues with the execution of the following sequence in the case the condition is true (Hangul Filler is a
special Unicode character (U+3164) used in the Korean writing system, Hangul. It is typically not possible
to use a whitespace as a file or directory name in Windows. However, using the Hangul Filler character,
which is rendered as a whitespace, this restriction can be bypassed):

Triggers the default action associated with the item pointed to by Hangul Filler named directory.

https://cloud.google.com/security/products/managed-defense

4/26

Some newer instances of the script contain a unique UUID value, different for each infection. The
identifier is saved to a file named from_machine_uuid.dat in the APPDATA directory. Mandiant
determined that this UUID variable was not present in the script from the beginning of the campaign
and only added later on as a new capability to track infected hosts.
The script fetches a resource from a URL stored in the
script, hxxps://lucaespo.altervista[.]org/updater.php?from=USB1, and saves it as Runtime
Broker.exe a.k.a. EMPTYSPACE in the TEMP directory.
In later versions (such as SHA256:
99d9dfd8f1c11d055e515a02c1476bd9036c788493063f08b82bb5f34e19dfd6), the script was
updated with an intermediary stage hosted at the URL: hxxps://eldi8.github[.]io/src.txt.
The src.txt (SHA256:
b38dbaea648ef7da1c639f4fdaac0d88f03306ea42f0edc9af512c613dbdb7e1) file contains a pattern
of three characters: TAB: 09, Space: 02 and Line Feed: 0A. In a traditional text editor, src.txt would
appear as a blank file. Mandiant observed the same src.txt had been previously hosted on
GitLab: hxxps://evh001.gitlab[.]io/src.txt.

Figure 4: src.txt as viewed in a HEX editor

5/26

A custom decoding scheme is then applied to the src.txt file, consisting of the following sequence
of operations:

Character replacement
1. Spaces are replaced with 1s
2. Tab characters are replaced with 0s
3. New line characters are replaced with spaces

This transformation changes the original string into a new format that resembles a binary string
(composed of 1s and 0s).
The transformed string is then split into an array of substrings. Each substring represents a
sequence of 1s and 0s.
Each substring is converted from a binary representation to its corresponding character.
The resulting characters are joined back together into a single string.

The newly constructed string is the final URL from where the executable Runtime Broker.exe is
downloaded: hxxps://wjecpujpanmwm[.]tk/updater.php?from=USB1. This URL was serving
EMPTYSPACE from at least early 2022 through to July 2023, as Mandiant has also observed it in
updated versions of explorer.ps1.

Once EMPTYSPACE has been downloaded, the script continuously checks for the existence of the
file pythonw.exe, under the directory %ProgramFiles%\Winsoft Update Service\and will proceed
to execute the newly downloaded malware every second only if the pythonw.exe file is not present
at the specified path.

Use of Third-Party Websites for Payload Hosting

Starting in 2023, the use of GitHub was replaced by a new payload hosted on Vimeo, a video sharing
website, with the new URL being also hard-coded in explorer.ps1 as
hxxps://vimeo[.]com/api/v2/video/804838895.json. The encoded payload was inserted into the
description of a Pink Floyd-related video uploaded to Vimeo on March 5, 2023. At the time of publishing
this post, the video was removed from Vimeo.

6/26

Figure 5: Vimeo video description

Figure 6: JSON object pulled from the hard-coded Vimeo URL

This change from the previously discussed version has been coupled with an upgrade from the custom
decoding scheme to the use of AES in CBC mode and Base64 encoding.

The script fetches the Vimeo JSON blob which contains the attacker payload between the delimiter
characters ::?? and ?:?:. The payload is then Base64 decoded and decrypted with a hard-coded AES-
256-CBC key shown as follows:

92 f7 6b 7d 6a e7 3f 41 b5 8f 41 e5 14 fb 68 de c8 e8 4a 2d c1 6f a2 71 f3 f3 1d 9f 3c
99 b7 4d

7/26

From November 27, 2023, Mandiant Managed Defense observed yet another shift in TTPs with regard to
third-party websites used as C2. As the Vimeo video was taken down, the threat actor switched to using a
well-known news forum, Ars Technica. In the updated instances of explorer.ps1, Mandiant observed the
following hard-coded URL: hxxps://arstechnica[.]com/civis/members/frncbf22.1062014/about/.

As with the previous payload hosted on Vimeo, the Ars Technica URL employs the exact same technique
down to even the same delimiter characters and encryption key, so there would be no other changes
required in the explorer.ps1 script besides the URL. However, now the encoded blob was appended to
the image URL contained in the About section of the user frncbf2. This user became a member on the
Ars Technica forum on November 23, 2023.

https://cloud.google.com/security/products/managed-defense

8/26

Figure 7: User profile of frncbf2 on the Ars Technica forum

Figure 8: Payload appended to image URL

9/26

As of mid December 2023, the photo hosted on Ars Technica was removed together with the intermediary
payload.

From mid-2023, the threat actor also updated the URL serving EMPTYSPACE. Recent infections
revealed the new URL to be hxxps://evinfeoptasw.dedyn[.]io/updater.php?from=USB1. The final
URL is formed by appending the string "&user=<uuid>", UUID being the unique identifier mentioned
previously.

The different versions of explorer.ps1 that Mandiant encountered during the research process showed
how the script was incrementally changed. Initially, the script only focused on downloading
EMPTYSPACE from an encoded URL. It then added an intermediary stage for constructing the final URL
using payloads hosted on third party websites. Later on, the capability to track infections was added.
Mandiant observed the presence of a variable storing a unique identifier (UUID) which is appended to the
URL from where EMPTYSPACE is downloaded. Figure 9 shows the major changes undergone by the
script.

10/26

Figure 9: Evolution of explorer.ps1

EMPTYSPACE

EMPTYSPACE is a downloader that communicates with its C2 server over HTTP. It downloads and
executes an executable payload served by the C2 server. The EMPTYSPACE beacon response is parsed
as JSON containing a list of tasks, each of which specify a file to download to disk and execute.

Mandiant has identified multiple variants of EMPTYSPACE, typically named Runtime Broker. These
variants have been written in Node.js, .NET and Python. Yoroi noted an additional Go variant in their
research.

https://yoroi.company/wp-content/uploads/2023/12/202311-Vetta-Loader_Def-min.pdf

11/26

NODE.JS version

This version of Runtime Broker.exe (SHA256:
a4f20b60a50345ddf3ac71b6e8c5ebcb9d069721b0b0edc822ed2e7569a0bb40) is a downloader compiled
with nexe, a utility that bundles a Node.js app into a single executable. The executable consists of Node.js
runtime executable version 12.9.1 and the following items in the file overlay section:

SHA256 4814393285c2afcd671dbdd53b3b2021963c32a09745f83ed894e5ae4e2764b8 at file
offset 0x16B6E00: JavaScript, the initialization component of nexe.
SHA256: 461d580a16cf1fa67b4ac751dfe9d36b2de3f13c97670b3b12641f20246ce4b3 at file
offset 0x16BAC3A: DLL referred to as drivelist.node. Its sole purpose appears to be to produce a
drive listing for use in the JavaScript payload.
SHA256 fae6192a0648a892c845d9498002ca79497ea58e5315d277f65f7b243f7110e4 at file
offset 0x171683A: Main JavaScript payload referred to as index.js; bundled by webpack.

Runtime Broker.exe will execute "net session" to determine whether the current process has elevated
permissions. If running as an elevated process, the sample uses the named pipe \\?
\pipe\installSrvUniqID to ensure that only a single instance of the executable is running.

The sample extracts and drops the overlay DLL (SHA256:
461d580a16cf1fa67b4ac751dfe9d36b2de3f13c97670b3b12641f20246ce4b3) to

<current_directory>/build/Release/drivelist.node. The sample invokes
the drivelist.node module to produce a drive listing. The sample iterates this listing to search for a
removable and readable/writeable drive whose mount point path contains the Hangul
Filler character (E3 85 A4 in UTF-8). This is possibly to determine whether the instance of the malware
is the initial infection from a USB. The sample only proceeds with the remaining functionality if such a path
is found.

If not running as an elevated process, the sample sets the registry
value HKCU\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\Node_Run to the executable
path and attempts to run as an elevated process. If already running as an elevated process, the sample
deletes the aforementioned registry value and sends an HTTP POST request
to hxxps[:]//bobsmith[.]apiworld[.]cf/license.php with a Base64-encoded beacon containing
basic host information such as hostname, username, and localtime. The sample refers to itself
as CINSTALLER1 in this beacon. The beacon response is parsed as JSON containing a list of tasks, each
of which specify a file to download to disk and execute.

The malware may additionally drop two batch files, execute.bat and command.bat, to %TEMP% during the
process of attempting to run the sample as an elevated process.

.NET version

This variant (SHA256: 8a492973b12f84f49c52216d8c29755597f0b92a02311286b1f75ef5c265c30d) is an
obfuscated .NET based downloader. The malware can download and execute payloads from the C2
server, restart itself with elevated privileges, delete downloaded payloads, and communicate system
information to the C2 server. The malware, when executed, optionally expects the following command line
argument:

elevated_true

https://github.com/nexe/nexe

12/26

If the argument is provided, the malware will attempt to restart itself with elevated privileges. Otherwise,
the malware creates and checks for the following mutex to prevent multiple executions:

cinstaller_2022

The malware then checks if a removable drive is mounted, and proceeds to find a directory labeled with
the Hangul Filler character (E3 85 A4). At this point, the execution only proceeds if the directory exists.
The next step is a download loop for which a JSON object with the following structure is generated:

{

 "from": "CINSTALLER1",

 "path": "Malware path",

 "username": "<current user's Windows username>",

 "cwd": "<current working directory>",

 "time": "<number of seconds since Unix epoch (January 1, 1970)>",

 "temp": "Temporary path",

 "programs": "Program Files path"

}

The malware will then base64 encode the generated JSON and send it in a POST request to the C2
server. The configured C2 server for this sample is as follows:

hxxps://bobsmith.apiworld[.]cf/license.php

The base64 string is prepended with "AA" such that the POST data looks as follows:

"AA"<base64 encoded JSON>"=="

The malware expects the C2 server to return a collection of objects. For each object in the collection, it
extracts specific data: a link, a path, a command (cmd), arguments for the command, and a deletion flag
(delete).

For each object in the received collection, if a URL and path are provided, the program attempts to
download a file from the URL to the specified path. This download is retried indefinitely every 5 seconds
in case of failure. If a command (cmd) is specified, the program attempts to execute it with the provided
arguments, running it in a hidden window and without creating a new window. If the deletion flag (delete)
is set and both the URL and path are provided, the program attempts to delete the downloaded file after
execution.

In at least one investigation, Mandiant has observed this version of EMPTYSPACE relaying on additional
resources on the host, most likely dropped during the initial infection. These are bootstrap.pyc, which is
a Python compiled version of EMPTYSPACE with a similar capability of communicating with a list of
embedded C2 domains and the QUIETBOARD backdoor. EMPTYSPACE interacts with these files via an
intermediary executable, a Python wrapper named "RuntimeBroker .exe" (vs "Runtime Broker.exe")
located in C:\Windows.

13/26

Python Version (Bootstrap.pyc)

One of the versions analyzed by Mandiant Managed Defense for bootstrap.pyc is shown in Figure 10
(decompiled code). The BOOTSTRAP_VERSION is set to ‘PYBOOTSTRAP4’, suggesting the existence
of other versions. With this in mind, more open source research revealed three other versions, each
containing essentially the same code but with different domains.

Figure 10: bootstrap.pyc V4

The code continuously attempts to reach a specific URL (hxxp://google[.]com/generate_204) with a
30-second timeout. If unsuccessful, it retries after 2 seconds. This check likely verifies internet
connectivity before proceeding.

Next, it creates a variable request_data containing encoded information:

Encodes a JSON dictionary with user details, including username and path of the executable file.
Adds "AA" and "==" at the beginning and end of the encoded data, exactly the same way the .NET
version of EMPTYSPACE is formatting the data before sending it to the C2 server.

Once data is prepared, the code iterates over a list of URLs, attempting to send POST requests
containing the request_data.

Upon successful communication, it attempts to decode the server's response using Base64 and then
deserialize it using the marshal.loads function. It executes the deserialized data using the exec function.

Version 1

hxxp[://]google[.]com/generate_204
hxxps[://]lucaespo[.]altervista[.]org/updater[.]php
hxxp[://]studiofotografico35mm[.]altervista[.]org/updater[.]php
hxxp[://]wjecpujpanmwm[.]tk/updater[.]php

https://cloud.google.com/security/products/managed-defense

14/26

Table 1: URLs contained in the bootstrap.pyc versions

Version 2

hxxp[://]google[.]com/generate_204
hxxps[://]captcha[.]grouphelp[.]top/updater[.]php
hxxps[://]captcha[.]tgbot[.]it/updater[.]php
hxxps[://]wjecpujpanmwm[.]tk/updater[.]php
hxxp[://]studiofotografico35mm[.]altervista[.]org/updater[.]php
hxxp[://]ncnskjhrbefwifjhww[.]tk/updater[.]php
hxxp[://]geraldonsboutique[.]altervista[.]org/updater[.]php

Version 3

hxxp[://]google[.]com/generate_204
hxxps[://]monumental[.]ga/wp-admin[.]php
hxxp[://]studiofotografico35mm[.]altervista[.]org/updater[.]php
hxxp[://]ncnskjhrbefwifjhww[.]tk/updater[.]php
hxxp[://]geraldonsboutique[.]altervista[.]org/updater[.]php

Version 4

hxxp[://]google[.]com/generate_204
hxxps[://]luke[.]compeyson[.]eu[.]org/wp-admin[.]php
hxxp[://]studiofotografico35mm[.]altervista[.]org/updater[.]php
hxxps[://]davebeerblog[.]eu[.]org/wp-admin[.]php
hxxp[://]geraldonsboutique[.]altervista[.]org/updater[.]php

QUIETBOARD (Program.pyz)

QUIETBOARD is a Python based pre-compiled multi-component backdoor capable of arbitrary command
execution, clipboard content manipulation for crypto currency theft, USB/removable drive infection,
screenshotting, system information gathering, and communication with the C2 server. Additionally, the
backdoor has the capability of modular expansion and running independent Python based code/modules.
All these capabilities are provided and managed via its various
components: start, coronausb, cboard, runservice, executer, info and connection.

The aforementioned modules are initiated via the primary component start, which creates multiple
threads to manage each of these components in parallel. Following is a breakdown of what each
component entails.

start

The start module in the malware framework serves as an orchestrator or initializer for the other
components. During its execution, the module:

1. Checks for the existence of a lock file (program.lock) in the current directory. If this lock file exists,
it's deleted. If it cannot be deleted, the script exits immediately, which is likely a mechanism to
prevent multiple instances of the malware from running simultaneously.

2. Checks if a file named overload exists in the current directory. If it does, the script reads the content
of this file, decodes it from Base64, unmarshals it, and executes it using the executer module.

15/26

3. Checks if a directory named runs exists; if not, it creates one. If it exists, the script iterates through
all files contained in this directory. Each file is treated as a script: it's read, decoded, unmarshalled,
and executed similarly to the overload file. This directory could be used for executing multiple
scripts, possibly allowing for modular expansion of the malware’s capabilities.

Starts the coronausb, cboard, and runservice modules in separate threads and begins the operation of
the connection module synchronously.

coronausb

This component monitors and infects removable drives. It creates a hidden folder in the attached
removable drives, moves existing data into the newly created folder, and creates a deceptive LNK
shortcut that is made to look like the default Microsoft Windows drive icon. The name of the shortcut can
be either of two patterns depending on whether a volume label is present or not:

<volume_label> (<total_size_in_gb>GB).lnk

<drive_letter> (<total_size_in_gb>GB).lnk

This shortcut is linked to a PowerShell script that is written inside the USB drive and is
named explorer.ps1.

The hidden folder is created as follows:

Python

empty_character = 'ㅤ'

hidden_folder = drive + '\\' + empty_character

This empty_character mechanism results in the generation of the Hangul Filler character (E3 85 A4)
which visually shows up as a whitespace making the directory path appear as "D:\" (assuming D to be
the removable drive).

There is also a mechanism which checks if an older version of explorer.ps1 already exists on any of
detected USB drives and removes it, replacing it with a new version. This ensures the “update” of older
infected removable drives.

cboard

This component acts as a crypto stealer by continuously monitoring and altering the clipboard content. It
tries to detect known patterns for crypto wallet addresses and replace them with its own wallet addresses
with the intention of stealing crypto from any transaction the victim might conduct.

The following table lists a general breakdown of the patterns matched, and the replaced wallet addresses:

Targeted
Cryptocurrency
(likely)

Matching Pattern Replacement Wallet Address Total asset
value ($)
as of
January
29th, 2023

16/26

Table 2: Wallet addresses embedded in the cboard module

Monero [48][1-9A-HJ-NP-Za-km-
z]{93}

49FEMQZdLSJXtv6EoRPRhzjHfcih

JKDy9bLBv8dvF5HPdyKSimV9MpfgU8A3

5ornNF87NGgVHTsYTBmsMXN8XFT7Fg

hFy3F

N/A

Ethereum 0x[a-fA-F0-9]{40} 0xeA1b0564456cdA8fE1D17306D7D5

a59Ca1fC83E6

$5,571.20

Dogecoin D{1}[5-9A-HJ-NP-U]{1}
[1-9A-HJ-NP-Za-km-z]
{32}

DHhrFwsiHhm4GWN9Fn4tkGXiJUmfig

so7Q

$224.09

Bitcoin (bc1\|[13])[a-zA-HJ-NP-
Z0-9]{25,39}

bc1qk55vk7wjgzg3pmxlh59rv5dlge

wd9jem5nrt4w

$50,042.15.

Additionally, Mandiant has observed the Bitcoin
address bc1qk55vk7wjgzg3pmxlh59rv5dlgewd9jem5nrt4w being injected in the HTML code of multiple
Italian websites, mainly connected to Italian universities, substantiating the financial motives behind the
threat actors’ actions.

The Ethereum and Doge addresses had their first transaction on the same date, within one hour of each
other, on January 10, 2022. The Bitcoin address was first used towards the end of 2022, on December 11.

runservice

This component is primarily meant to dynamically fetch and execute additional Python code from the C2
server. The malware generates the following JSON based on information gathered by the info module:

json

{

 "uuid": <unique_computer_id>,

 "username": <username>,

 "install_date": <install_data>,

 "start_time": <infection_time>,

 "installed_from": <source-machine-uuid>,

 "specs": <hardware_specs>,

 "wifi": <wifi_ssid>,

 "coronausb": <coronausb_boolean_flag> # set to True by default

}

The JSON is Base64 encoded and AES encrypted with the following key in CBC mode:

17/26

Key: 4lZYQ/POapYTZka0gVM/rg==

The malware then proceeds to send the encrypted JSON in a POST request to the following C2 server.

hxxps://luke.compeyson.eu[.]org/runservice/api/public.php

The malware expects to receive Python code in response, which it executes and communicates back the
result of to the following URL in a post request.

hxxps://luke.compeyson.eu[.]org/runservice/api/public_result.php

This fetch and execute operation continues indefinitely until the server responds with data containing a
"continue" flag set to False.

executer

This component contains the functionality to dynamically execute Python code and is used by
the runservice module to execute the received Python payloads.

info

The info component of the malware is designed to gather and assemble various pieces of information
about the infected computer. It then structures this information into a JSON object, which is later used in
the runservice component, and is also communicated back to the C2 server by the connection
component.

The module compiles the following host information:

Generates a unique id for the system and stores it in a file named "cUuid.dat" (if one already does
not exist).
Attempts to read the installation date from a file named "instDate.dat", and creates and writes to it
if one is not already available.
Retrieves system specifications by executing the following WMI queries:

1. Select * from Win32_OperatingSystem
2. Select * from Win32_ComputerSystem
3. Select * from Win32_Processor
4. Select * from Win32_VideoController

Retrieves WIFI SSIDs by running the command "netsh wlan show interfaces"
Retrieves BSSID information by running the command "netsh wlan show networks mode=bssid"
Attempts to geo locate the infected computer by querying the URL:
hxxps://www.googleapis[.]com/geolocation/v1/geolocate?key=AIzaSyBOti4mM-

6x9WDnZIjIeyEU21OpBXqWBgw

Attempts to read a UUID from a file named "from_machine_uuid.dat" which from context might
contain the UUID of the source infection machine.

connection

The connection component communicates back all the gathered information from the victim system
(generated by the info module) to the C2 server, optionally including a screenshot of the system. It can
further keep operating in a loop with a sleep time specified by the C2 server, and which is by default set to
0.1s. Moreover, the connection module can execute arbitrary Python code received from the C2 server in

18/26

the same loop using the executer module, similar to runservice. However, this module has the added
functionality of either executing the received code synchronously or asynchronously, in a newly generated
thread, based on the setting received from the configured C2 server:

hxxps://eu1.microtunnel[.]it/c0s1ta/index.php

Mandiant identified multiple versions of QUIETBOARD as well. One earlier version contained only
the coronausb module, while another had all the modules previously described except
for runservice. This might suggest the order in which the threat actor has developed each module,
starting with the capability of infecting USB drives and adding more functionality on top of it. Having
the runservice module as a last addition is telling of how the threat actor evolved, gained confidence and
updated the code with a C2 capability.

In one particular infection, after months of just beaconing activity, QUIETBOARD dropped an open-source
coinminer, further supporting the financial gain angle for the threat actor.

Threat Actor Spotlight: UNC4990

Mandiant has collected intelligence surrounding a campaign and additional likely related activity
conducted by UNC4990 targeting organizations located in Italy, but based in Europe and the U.S,. across
multiple industries, including health, transportation, construction, and logistics. Italian organizations
appear to be primarily impacted by this activity.

Mandiant assesses with medium confidence that UNC4990 is a financially motivated threat actor
operational since at least 2020. Based on the extensive use of Italian infrastructure throughout UNC4990
operations, including using Italian blogging platforms for C2, we believe this actor to be operating out of
Italy.

Though the group’s TTPs have evolved over time, UNC4990 operations generally involve widespread
USB infection followed by the deployment of the EMPTYSPACE downloader. During these operations, the
cluster relies on third-party websites such as GitHub, Vimeo, and Ars Technica to host encoded additional
stages, which it downloads and decodes via PowerShell early in the execution chain.

It is unclear whether UNC4990 is responsible only for initial access and foothold. In at least one
investigation, Mandiant has observed the deployment of a Coinminer following months of inactivity,
leaving the end goal for UNC4990 operations open.

Conclusion

Mandiant observed a clear evolution of the TTPs from the early stages of the campaign to its current form.

Starting off with the initial payload served in explorer.ps1, where a custom decoding scheme was
developed to the point where it got replaced with asymmetric encryption and the addition of the capability
to track infected devices.

Furthermore, the analysis of both EMPTYSPACE and QUIETBOARD suggests how the threat actors took
a modular approach in developing their toolset. QUIETBOARD started by only having one module and
then more functionality was incrementally added. Similarly, the Python variant of EMPTYSPACE shows

19/26

clear signs of versioning. The use of multiple programming languages to create different versions of the
EMPTYSPACE downloader and the URL change when the Vimeo video was taken down show a
predisposition for experimentation and adaptability on the threat actors’ side.

Detection Opportunities

Detection
Opportunity

MITRE
ATT&CK®
Technique

Event Details

LNK
shortcut file
spawning
PowerShell
script from
command
line

T1204

T1059.001

Parent Process: C:\Windows\explorer.exe

Process: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Command Line Examples:

"powershell.exe" -windowstyle hidden -NoProfile -nologo -
ExecutionPolicy ByPass -File explorer.ps1
powershell.exe -windowstyle hidden -NoProfile -nologo -
ExecutionPolicy ByPass -File explorer.ps1
"C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe"
-windowstyle hidden -NoProfile -nologo -ExecutionPolicy ByPass -
File explorer.ps1

Suspicious
PowerShell
network
connections

T1071

T1059.001

PowerShell connections to vimeo[.]com and arstechnica[.]com

Runtime
Broker.exe
binary file
writes with
whitespaces
within the
binary name
or before the
file
extension

T1036.005 File Write:

C:\Users\<user>\AppData\Local\Temp\Runtime Broker.exe
C:\Windows\RuntimeBroker .exe

YARA-L Rules

rule M_YARAL_UNC4990_NETWORK_INDICATORS

{

 meta:

 author = "Mandiant"

 description = "This rule is for hunting purposes only and has not been tested to
run in a production environment."

 severity = "Low"

20/26

 reference = " https://cloud.google.com/chronicle/docs/detection/yara-l-2-0-
overview"

 events:

 (

 $e.metadata.event_type = "NETWORK_CONNECTION" or

 $e.metadata.event_type = "NETWORK_DNS" or

 $e.metadata.event_type = "NETWORK_HTTP"

) and

 (

 (

 $e.target.hostname = `bobsmith.apiworld.cf` nocase and

 re.regex($e.target.url, `license\.php`) nocase and

 $e.network.http.method = `POST` nocase

) or

 (

 re.regex($e.target.url, `/updater\.php\?from=USB1`) nocase and

 (

 $e.target.hostname = `evinfeoptasw.dedyn.io` nocase or

 $e.target.hostname = `wjecpujpanmwm.tk` nocase

)

) or

 (

 re.regex($e.principal.process.file.full_path, `powershell\.exe$`) nocase
and

 (

 re.regex($e.target.hostname, `vimeo\.com`) nocase or

 re.regex($e.target.hostname, `arstechnica\.com`) nocase

)

) or

 (

 re.regex($e.principal.process.file.full_path, `powershell\.exe$`) nocase
and

 (

 $e.network.dns.questions.name = `vimeo.com` nocase or

 $e.network.dns.questions.name = `arstechnica.com` nocase

21/26

)

)

)

 condition:

 $e

}

22/26

rule M_YARAL_UNC4990_HOST_INDICATORS_1

{

 meta:

 author = "Mandiant"

 description = "This rule is for hunting purposes only

and has not been tested to run in a production environment."

 severity = "Low"

 reference = " https://cloud.google.com/chronicle/docs

/detection/yara-l-2-0-overview"

 events:

 (

 $e.metadata.event_type = "FILE_CREATION" or

 $e.metadata.event_type = "FILE_MODIFICATION" or

 $e.metadata.event_type = "REGISTRY_CREATION" or

 $e.metadata.event_type = "REGISTRY_DELETION" or

 $e.metadata.event_type = "REGISTRY_MODIFICATION"

) and

 (

 re.regex($e.target.file.full_path,

`RuntimeBroker\s\.exe`) nocase or

 re.regex($e.target.file.full_path,

`\\Windows\\RuntimeBroker \.exe`) nocase or

 re.regex($e.target.file.full_path,

`Temp\\Runtime Broker\.exe`) nocase or

 re.regex($e.target.file.full_path,

`WinSoft Update Service`) nocase or

 re.regex($e.target.registry.registry_key,

`HKCU\\SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run\\Node_Run`) nocase

)

 condition:

 $e

}

23/26

rule M_YARAL_UNC4990_HOST_INDICATORS_2

{

 meta:

 author = "Mandiant"

 description = "This rule is for hunting purposes only and has not been tested to
run in a production environment."

 severity = "Low"

 reference = " https://cloud.google.com/chronicle/docs/detection/yara-l-2-0-
overview"

 events:

 $e.metadata.event_type = "PROCESS_LAUNCH"

 re.regex($e.target.process.file.full_path, `powershell\.exe$`) nocase and

 re.regex($e.principal.process.file.full_path, `explorer\.exe$`) nocase and

 re.regex($e.target.process.command_line, `\-windowstyle hidden \-NoProfile \-nologo
\-ExecutionPolicy ByPass \-File explorer\.ps1`) nocase

 condition:

 $e

}

Indicators of Compromise

Host-Based IOCs

IOC SHA-256 Associated
Malware
Family

explorer.ps1 72f1ba6309c98cd52ffc99dd15c45698dfc

a2d6ce1ef0bf262433b5dfff084be

98594dfae6031c9bdf62a4fe2e2d282173

0115d46fca61da9a6cc225c6c4a750

d09d1a299c000de6b7986078518fa0defa

3278e318c7f69449c02f177d3228f0

7c793cc33721bae13e200f24e8d9f51251

dd017eb799d0172fd647acab039027

6fb4945bb73ac3f447fb7af6bd2937395a0

67a6e0c0900886095436114a17443

PowerShell
Script

24/26

%TEMP%\Runtime Broker.exe a4f20b60a50345ddf3ac71b6e8c5ebcb9d069721

b0b0edc822ed2e7569a0bb40

EMPTYSPACE
Downloader
(Node.JS
Variant)

Runtime Broker.exe 8a492973b12f84f49c52216d8c29755597f0b92a

02311286b1f75ef5c265c30d

EMPTYSPACE
Downloader
(.NET Variant)

C:\Program Files (x86)\WinSoft
Update Service\bootstrap.pyc

V1:
060882f97ace7cb6238e714fd48b344893

9699e9f085418af351c42b401a1227
V2:
8c25b73245ada24d2002936ea0f3bcc296

fdcc9071770d81800a2e76bfca3617
V3:
b9ffba378d4165f003f41a619692a8898ae
d2e819347b25994f7a5e771045217
V4:
84674ae8db63036d1178bb42fa5d1b506

c96b3b22ce22a261054ef4d021d2c69

EMPTYSPACE
Downloader
(Python
Variant)

C:\Program Files (x86)\WinSoft
Update Service\program.pyz

15d977dae1726c2944b0b4965980a92d8

e8616da20e4d47d74120073cbc701b3

26d93501cb9d85b34f2e14d7d2f3c94501

f0aaa518fed97ce2e8d9347990decf

26e943db620c024b5e87462c147514c99

0f380a4861d3025cf8fc1d80a74059a

QUIETBOARD
Backdoor

C:\windows\runtimebroker .exe 71c9ce52da89c32ee018722683c3ffbc90e4a44c
5fba2bd674d28b573fba1fdc

QUIETBOARD
associated file

C:\Program Files
(x86)\pyt37\python37.zip

539a79f716cf359dceaa290398bc629010b6e02e

47eaed2356074bffa072052f

QUIETBOARD
associated file

Network-Based IOCs

URL

hxxps://bobsmith.apiworld[.]cf/license.php

hxxps://arstechnica[.]com/civis/members/frncbf22.1062014/about/

hxxps://evinfeoptasw.dedyn[.]io/updater.php

hxxps://wjecpujpanmwm[.]tk/updater.php?from=USB1

25/26

hxxps://eldi8.github[.]io/src.txt

hxxps://evh001.gitlab[.]io/src.txt

hxxps://vimeo[.]com/api/v2/video/804838895.json

hxxps[://]monumental[.]ga/wp-admin[.]php

hxxp[://]studiofotografico35mm[.]altervista[.]org/updater[.]php

hxxp[://]ncnskjhrbefwifjhww[.]tk/updater[.]php

hxxp[://]geraldonsboutique[.]altervista[.]org/updater[.]php

hxxps[://]wjecpujpanmwm[.]tk/updater[.]php

hxxps[://]captcha[.]grouphelp[.]top/updater[.]php

hxxps[://]captcha[.]tgbot[.]it/updater[.]php

hxxps://luke.compeyson.eu[.]org/runservice/api/public.php

hxxps[://]luke[.]compeyson[.]eu[.]org/wp-admin[.]php

hxxps://luke.compeyson.eu[.]org/runservice/api/public_result.php

hxxps://eu1.microtunnel[.]it/c0s1ta/index.php

hxxps[://]davebeerblog[.]eu[.]org/wp-admin[.]php

hxxps://lucaespo.altervista[.]org/updater.php

hxxps://lucaesposito.herokuapp[.]com/c0s1ta/index.php

hxxps://euserv3.herokuapp[.]com/c0s1ta/index.php

Mandiant Security Validation Actions

Organizations can validate their security controls using the following actions with Mandiant Security
Validation.

VID Name

A106-893 Host CLI - UNC4990, EMPTYSPACE, Persistence via Registry

A106-896 Malicious File Transfer - UNC4990, EMPTYSPACE, Download, Variant #1

A106-898 Command and Control - UNC4990, EMPTYSPACE, DNS Query, Variant #1

A106-901 Command and Control - UNC4990, DNS Query, Variant #1

https://www.mandiant.com/advantage/security-validation

26/26

A106-905 Protected Theater - UNC4990, EMPTYSPACE, Execution

Acknowledgement

Blas Kojusner, Dimiter Andonov, Elvis Miezitis, Mike Hunhoff, Moritz Raabe, Mustafa Nasser, Nikolay
Marinov

