
1/9

KrustyLoader - Rust malware linked to Ivanti
ConnectSecure compromises

synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

Rédigé par
Théo Letailleur
- 29/01/2024 - dans CSIRT
- Téléchargement
On 10th January 2024, Ivanti disclosed two zero-day critical vulnerabilities affecting Connect
Secure VPN product: CVE-2024-21887 and CVE-2023-46805 allowing unauthenticated
remote code execution. Volexity and Mandiant published articles reporting how these
vulnerabilities were actively exploited by a threat actor. On 18th January, Volexity published
new observations including hashes of Rust payloads downloaded on compromised Ivanti
Connect Secure instances. This article presents a malware analysis of these unidentified
Rust payloads that I labelled as KrustyLoader.

Introduction

On 10th January 2024, Ivanti disclosed two zero-day critical vulnerabilities affecting Connect
Secure VPN product: CVE-2024-21887 and CVE-2023-468051 allowing unauthenticated
remote code execution. Volexity2 and Mandiant3 published several articles showing how
these vulnerabilities were actively exploited by a threat actor, tracked by Volexity as
UTA0178 and by Mandiant as UNC5221.

On 18th January, Volexity published new indicators of compromise4 including Rust payloads
downloaded on compromised Ivanti Connect Secure appliances. Then on 21st and 24th of
January, I published two posts on X5 6 summarizing the behaviour of those 12 Rust
payloads. They share almost 100% code similarity and their main purpose is to download
and execute a Sliver backdoor. I personally labelled this piece of malware as KrustyLoader.

Therefore, the purpose of this article is to provide more insights on this malware, reversing
tips, as well as a script that automatically extracts the encrypted URL from any similar
sample.

Basic information

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote1_6ybwyt7
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote2_a27twtm
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote3_9k2ixp6
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote4_xb3fzkk
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote5_0g2565f
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote6_hsynuwx

2/9

KrustyLoader basic information

SHA256 47ff0ae9220a09bfad2a2fb1e2fa2c8ffe5e9cb0466646e2a940ac2e0cf55d04

816754f6eaf72d2e9c69fe09dcbe50576f7a052a1a450c2a19f01f57a6e13c17

c26da19e17423ce4cb4c8c47ebc61d009e77fc1ac4e87ce548cf25b8e4f4dc28

c7ddd58dcb7d9e752157302d516de5492a70be30099c2f806cb15db49d466026

d14122fa7883b89747f273c44b1f71b81669a088764e97256f97b4b20d945ed0

6f684f3a8841d5665d083dcf62e67b19e141d845f6c13ee8ba0b6ccdec591a01

a4e1b07bb8d6685755feca89899d9ead490efa9a6b6ccc00af6aaea071549960

ef792687b8bcd3c03bed4b09c4722bba921536802afe01f7cdb01cc7c3c60815

76902d101997df43cd6d3ac10470314a82cb73fa91d212b97c8f210d1fa8271f

e47b86b8df43c8c1898abef15b8b7feffe533ae4e1a09e7294dd95f752b0fbb2

73657c062a7cc50a3d51853ec4df904bcb291fdc9cdd08eecaecb78826eb49b6

030eb56e155fb01d7b190866aaa8b3128f935afd0b7a7b2178dc8e2eb84228b0

File type ELF 64-bit LSB pie executable x86_64 stripped, static-pie linked

File size 878824 bytes

Threat Linux Rust downloader

Screenshots and extracts on this article are based on sample 030eb56e1[...]84228b0 (the
highlighted hash above), but – as they are similar – the logic is the same for the other
payloads.

Code analysis approach

You will not find a deep analysis into assembly code with tons of IDA screenshots, because it
does not bring much value in this context. However, I find more interesting to explain what is
my approach to quickly spot the useful parts of the code and get a general idea of its
behaviour.

Usually we would start from the entry point and determine the flow of execution, symbols,
and API functions. However, there are several difficulties to consider when reversing a Rust-
based executable:

3/9

The executable is statically linked, meaning that libraries are embedded into the
executable, including Rust crates and the libc: it adds lots of functions that are not
important to spend time during malware analysis.
Since Rust is a high-level programming language, its abstractions tend to bring a
“natural” obfuscation to the program code with lots of additional checks, temporary
variables and built-in structures.
Moreover, this sample is stripped, meaning that symbols and debug information are
removed from the executable. In practice, it means that the disassembler will not be
able to retrieve functions names of the program – and of the libraries – as well as
structures, variable and constant names, etc.

As a result, with more than 2000 unnamed functions, it becomes quite tedious to determine
what is the actual code of the developer, and what is not.

Therefore, I first executed the sample in a controlled environment (a Linux Debian-based
virtual machine), to monitor any system and network activity.

$ strace ./030eb56e155fb01._bad_elf

execve("./030eb56e155fb01._bad_elf", ["./030eb56e155fb01._bad_elf"], 0x7ffc20b137a0
/* 50 vars */) = 0

[...]

readlink("/proc/self/exe", "/home/user/iv/030eb56/030eb56e"..., 256) = 48

open("/home/user/iv/030eb56/030eb56e155fb01._bad_elf",
O_RDONLY|O_NONBLOCK|O_CLOEXEC|O_PATH) = 6

readlink("/proc/self/fd/6", "/home/user/iv/030eb56/030eb56e"..., 4095) = 48

fstat(6, {st_mode=S_IFREG|0755, st_size=878824, ...}) = 0

stat("/home/user/iv/030eb56/030eb56e155fb01._bad_elf", {st_mode=S_IFREG|0755,
st_size=878824, ...}) = 0

close(6) = 0

unlink("/home/user/iv/030eb56/030eb56e155fb01._bad_elf") = 0

getppid() = 3033

readlink("/proc/self/exe", "/home/user/iv/030eb56/030eb56e"..., 256) = 58

readlink("/proc/self/exe", "/home/user/iv/030eb56/030eb56e"..., 256) = 58

stat("/tmp/0", 0x7fffe54a8700) = -1 ENOENT (No such file or directory)

[...]

exit_group(0) = ?

I was first disappointed because the process exited instantaneously with no network activity
and no impact on the filesystem. But there was a few interesting system calls executed:

readlink("/proc/self/exe"...): reads the value (the path) pointed by the symbolic
link /proc/self/exe, meaning its executable (here
/home/user/iv/030eb56/030eb56e155fb01._bad_elf);
Then it opens its executable with open syscall, checks its file status with fstats (not
sure why) and closes it;
unlink("/home/user/iv/030eb56/030eb56e155fb01._bad_elf"): deletes itself;

4/9

stat("/tmp/0", ...): tests the existence of /tmp/0 file, in this running context you
can see the error explaining that it does not exist;
Exits.

We can use this information to find the beginning of the main useful function by searching
any references to readlink and unlink system calls, as well as /proc/self/exe and
/tmp/0 strings. However, those two strings did not bring interesting results (as I discovered
later, they are stack strings so no reference!). But /tmp/ and the two mentioned system calls
were directly referenced from a big function that I determined as the main routine.

The main routine is called by another big function that I identified as a Tokio worker thread,
responsible for running asynchronous tasks. Tokio7 is a famous Rust crate, very handy when
building asynchronous network applications. I quickly identified the purpose of this function
thanks to a reference to TOKIO_WORKER_THREADS string, which allowed me to completely skip
its code flow and go straight to the main routine.

KrustyLoader main routine

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote7_u9r8q00

5/9

Once we identify the exception/error handling code inside the function, the execution flow
becomes more obvious. To help with the reverse engineering, I debugged the program
alongside with GDB. Since it is a stripped PIE (Position Independent Executable) binary –
simply put, code segment base address is randomized – we can neither break on function
names nor predictable addresses. The start GDB command is not able to break on the
main function in this configuration. Thankfully, GDB has another command called starti8
that sets a temporary breakpoint at the very first instruction of a program’s execution and
then invokes the ‘run’ command. This command allows us to start the process, break
instantaneously, and get the base address of the code segment loaded in memory.

$ gdb 030eb56e155fb01._bad_elf

[...]

Reading symbols from 030eb56e155fb01._bad_elf...

(No debugging symbols found in 030eb56e155fb01._bad_elf)

gef➤ starti

Starting program: /home/user/iv/030eb56/030eb56e155fb01._bad_elf

[*] Failed to find objfile or not a valid file format: [Errno 2] No such file or
directory: 'system-supplied DSO at 0x7ffff7fde000'

Program stopped.

0x00007ffff7d364db in ?? ()

[...]

───
───
──────────────────────── code:x86:64 ────

 0x7ffff7d364cd call 0x7ffff7dc9bc4

 0x7ffff7d364d2 mov edi, DWORD PTR [rsp+0xc]

 0x7ffff7d364d6 call 0x7ffff7dc742e

→ 0x7ffff7d364db xor rbp, rbp

 0x7ffff7d364de mov rdi, rsp

 0x7ffff7d364e1 lea rsi, [rip+0x2c6570] # 0x7ffff7ffca58

 0x7ffff7d364e8 and rsp, 0xfffffffffffffff0

 0x7ffff7d364ec call 0x7ffff7d364f1

 0x7ffff7d364f1 sub rsp, 0x190

───
───
──────────────────────────── threads ────

[#0] Id 1, Name: "030eb56e155fb01", stopped 0x7ffff7d364db in ?? (), reason: STOPPED

───
───
────────────────────────────── trace ────

[#0] 0x7ffff7d364db → xor rbp, rbp

───
───
───

gef➤

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote8_trn0zro

6/9

IDA disassembly view - KrustytLoader's first instruction

GDB breaks at the first instruction at address 0x7ffff7d364db in our example. IDA
disassembly view shows that the first instruction of the program (pointed by start symbol) is
at 0xF4DB. Then, using a subtle mathematical operation, we can retrieve the base address
and determine the address of the main routine: 0x7ffff7d364db - 0xF4DB + 2E70B
(offset of the main routine) = 0x7ffff7d5570b. We can now break
at 0x7ffff7d5570b and finally start debugging the main routine normally.

The next section describes the results of my analysis based on this approach. I also used
Sysdig9 to monitor the system calls and general activity on the virtual machine. This is a
great system monitoring tool that would deserve its own article!

KrustyLoader Behaviour

Based on reverse engineering and dynamic analysis, the behaviour of KrustyLoader can be
summarized in the following main points:

The malware reads /proc/self/exe to gets its path (readlink) and deletes itself
(unlink)

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote9_l5wu6w7

7/9

Then the following checks must be validated else the program exits:
It gets the process parent ID (PPID) using getppid syscall and exits if PPID is 1.
Anti-debug checks: it reads /proc/self/exe again (now the value suffixed with "
(deleted)") and exits if it contains gdb or lldb (both debuggers) strings.
It checks the existence of /tmp/0 and exits if it does not.
It checks if its executable (pointed by /proc/self/exe) is located in /tmp/
directory. If it's not in /tmp/ directory, it exits.

Once all the checks successfully passed, the malware starts doing interesting stuff:
It creates in /tmp directory a new file with a filename made of 10 random
alphanumeric characters.
It decrypts a hardcoded URL, and sends a GET HTTP request to that URL.
In result, it receives an encrypted response from the remote server.
The content is decrypted and written to the random file.
It makes the random file executable using system command chmod +x
/tmp/randomfile.
Finally, it tries to execute the newly created executable and exits.

As a general point, there is a bit of obfuscation: most symbols are XOR-encrypted stack
strings.

The process of decryption used by the malware to retrieve the URL has three steps:

1. It hex-decodes (the equivalent of bytes.fromhex() in Python) the encrypted URL;
2. XOR each byte with a 1-byte key;
3. And uses AES-128 CFB-1 mode10 with hardcoded key and initialization vector to

decrypt and get the URL.

AES-128 CFB is also used to decrypt the payload sent by the remote HTTP server.

What about the executed payloads? Based on my observations, all the samples download a
Sliver (Golang) backdoor, though from different URLs. The Sliver backdoors contact their C2
server using HTTP/HTTPS communication. Sliver11 is an open-source adversary simulation
tool that is gaining popularity amongst threat actors, since it provides a practical command
and control framework.

The list of domains and URLs can be found in this GitHub repository:
https://github.com/synacktiv/krustyloader-analysis.

Extraction and detection

Extraction of the URL

https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote10_bfsu2wp
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises#footnote11_ol1zu7y
https://github.com/synacktiv/krustyloader-analysis

8/9

I developed a simple script to statically retrieve and decrypt the URL used by KrustyLoader
to get the Sliver backdoor. It allows extracting the pieces of information we only need without
executing the malware. The script is available here:
https://github.com/synacktiv/krustyloader-analysis/blob/main/krusty_extractor.py. It requires
pycryptodome Python package and a decent Python version to run. It automatically extracts
the XOR key, the AES key, the AES initialization vector and the encrypted URL.

$ python krusty_extractor.py 030eb56/030eb56e155fb01._bad_elf

Sample SHA256sum: 030eb56e155fb01d7b190866aaa8b3128f935afd0b7a7b2178dc8e2eb84228b0

XOR KEY: 0x81

AES-128 CFB KEY: b1e228b4b5723d41a575d993b70c906b

AES-128 CFB IV: 27bb7db8021cd9ade3520a6e67f43ac5

Decrypted Stage Hoster URL: http://bringthenoiseappnew.s3.amazonaws.com/iEgJ4J7Uc9YgC

$ python krusty_extractor.py a4e1b07/a4e1b0._bad_elf

Sample SHA256sum: a4e1b07bb8d6685755feca89899d9ead490efa9a6b6ccc00af6aaea071549960

XOR KEY: 0x81

AES-128 CFB KEY: b1e228b4b5723d41a575d993b70c906b

AES-128 CFB IV: 27bb7db8021cd9ade3520a6e67f43ac5

Decrypted Stage Hoster URL: http://bbr-promo.s3.amazonaws.com/NWEUW983Ve4g1

As you can observe in the extract above, it successfully decrypts the URL of both samples
(and it works for all 12 samples). When I first ran the script on all samples, I was quite
disappointed to notice that they also share the exact same cryptographic parameters. 😄 At
least it sped up my analysis, and it could still be handy in case there are new variants with
different XOR key or AES parameters.

Detection

You can find a Yara rule here to detect similar KrustyLoader samples:
https://github.com/synacktiv/krustyloader-analysis/blob/main/KrustyLoader.yar. It searches
specific strings I mentioned and some AES routines.

Conclusion

Rust payloads detected by Volexity team turn out to be pretty interesting Sliver downloaders
as they were executed on Ivanti Connect Secure VPN after the exploitation of CVE-2024-
21887 and CVE-2023-46805. KrustyLoader – as I dubbed it – performs specific checks in
order to run only if conditions are met. The fact that KrustyLoader was developed in Rust
brings additional difficulties to obtain a good overview of its behaviour. A script as well as a
Yara rule are publicly available to help detection and extraction of indicators.

If any organization needs assistance in doubt removal or responding to a compromise,
please feel free to contact Synacktiv.

Partagez cet article

https://github.com/synacktiv/krustyloader-analysis/blob/main/krusty_extractor.py
https://github.com/synacktiv/krustyloader-analysis/blob/main/KrustyLoader.yar

9/9

Copyright © Synacktiv 2024

