
1/18

January 22, 2024

Cactus Ransomware
shadowstackre.com/analysis/cactus

Jan. 22
Written By ShadowStackRe SSR

A prickly situation for the victims

Threat Landscape

On January 20th the Cactus ransomware group attacked a number of victims across varying industries.
The attacks were disclosed on their leak site with the accompanying victim data. The ransomware group
has routinely put pressure on victims by releasing personal information about employees of the victim

https://www.shadowstackre.com/analysis/cactus
https://storage.googleapis.com/?author=649f15c662b98b6c769cf0c1

2/18

organization; this has included drivers licenses, passports, pictures and other personal identification.

In October of 2023 only 5 disclosures were posted on the leak site, but in November a steady increase of
10 victims were posted and a drastic increase in December of 30+ victims. This steady increase over a
three month period has shown that Cactus has been busy deploying their ransomware encryptor.

IPs

The samples have related IPs that are indexed on VirusTotal and also alienvault OTX. The IPs listed have
a number of varying hashes from other malware associated to them and the IDS detections on AlienVault
clearly indicates malicious activity.

3/18

104.86.182.8 - https://otx.alienvault.com/indicator/ip/104.86.182.8

23.216.147.64 - https://otx.alienvault.com/indicator/ip/23.216.147.64

23.216.147.76 - https://otx.alienvault.com/indicator/ip/23.216.147.76

Keypoints

Encoded public key to hinder static analysis
Uses standard C++ constructs; including atomics for synchronisation and lambda's to
compartmentalise functionality

https://otx.alienvault.com/indicator/ip/104.86.182.8
https://otx.alienvault.com/indicator/ip/23.216.147.64
https://otx.alienvault.com/indicator/ip/23.216.147.76

4/18

Uses Windows scheduled tasks for persistence
Perfecting their source code between May 2023 and December 2023

Build information

Hashes

The sample sizes are typically seen between 8.0MB - 8.9MB and in the PE format.

Hash:

9ec6d3bc07743d96b723174379620dd56c167c58a1e04dbfb7a392319647441a (VirusTotal)
first seen on 2023-05-05 in VirusTotal.

Hash:

c49b4faa6ac7b5c207410ed1e86d0f21c00f47a78c531a0a736266c436cc1c0a (VirusTotal)
first seen on 2023-12-18 in VirusTotal.

Compiler

VirusTotal identified the build tooling (TrID) as Microsoft Visual C++ compiled at 41%, notably the build
strings in the compiled binary trace to mingw build paths.

The build for 9ec6d3bc07743d96b723174379620dd56c167c58a1e04dbfb7a392319647441a contains
unique strings for the cactus builder, d:/_locker/cactusbuilder/buildcactuscrypt. This string is reflected in
the Yara rule below, and can be used to quickly identify other builds with the same code line.

Tactics and Techniques

A forward on the differences

The samples are very close in source code structure, overall functionality and implementation of tactics
and techniques. There are some differences in inhibiting system recovery, scheduled task names and
process / folder black and white listing. However, the source code is so similar there is no doubt that they
are from the same code line.

Program flow

The main function facilitates much of the overall structure of the encryptor. All of the major techniques
branch off from the main function in the form of lambda's, with atomics to control the status and updates of
the varying techniques.

https://www.virustotal.com/gui/file/9ec6d3bc07743d96b723174379620dd56c167c58a1e04dbfb7a392319647441a/
https://www.virustotal.com/gui/file/c49b4faa6ac7b5c207410ed1e86d0f21c00f47a78c531a0a736266c436cc1c0a/

5/18

Below is an overall graph of that flow and its general complexity.

6/18

7/18

The setup

The sample starts up with the option of a number of program arguments, but before it processes each
argument; the sample will first generate a random text file name to use for the readme and attempt to get
the number of concurrent threads supported for the encryption thread pool. To reduce the chances of the
process from being discovered, the sample will set the console window property to hide via the
ShowWindow function and setting the second argument to 0.

A randomized name for the readme file is determined during the setup. With that said, the constructor for
the readme text still has the original static string containing the original name and can be used for
identification or potential threat hunting purposes.

Options

The sample takes a number of arguments to control the encryptor. The common enablement of logging,
changing the percentage of file to encrypt and specific file path are included; but most notable is the
control of the system start up persistence and the ability to kill processes and system shadow copies prior
to encrypting the system.

-s, system start persistence
-kd, kill processes and shadow copy if admin

Process, files and folder list

The black and white list contains a fairly standard set of executables, file names, services and extensions.
Most notable is the extension for cactus cts0-7. The string searching is based on an array of string values
which are iterated upon during the file searching and preparation for encryption.

8/18

Victim ID

The victims ID is stored in the binary statically as a std::string and initialize during the constructor for the
configuration object. The format of the ID is four groups of four characters separated by dash. This format
can be used for threat hunting and easily found in standard string analysis from tooling such as FLOSS or
within IDA Pro.

Inhibit system recovery

The sample will check for processes and if the user is currently the admin, attempt to close black listed
processes. Although the sample will later use the Windows restart manager API to ensure file handles are
not locked; the process takes extra measures to ensure a successful encryption by iterating through each
running process.

The CreateToolhelp32Snapshot function used to get a handle to a list of all running processes. Once
obtained a simple while loop is used to iterate through all the processes and get the general PE
information, this is done via the Process32NextW API. The comparison of the process szExeFile string
and the blacklist is performed for each blacklisted process. If found, the process is closed.

If the sample has determined that the process is running with admin privileges, it will attempt to delete the
system shadow copies via the vssadmin.exe, and the WMIC.exe executables. These standard
executables are available on all versions of Windows. Passing in the command vssadmin delete shadows
/all /quiet for vssadmin, and WMIC shadowcopy delete for WMIC will immediately hamper the system
recovery process. Both services will communicate via the VSS Provider API, which is a Windows
component that maintains the shadow copies. The provider API will access the volumes for the system
and hardware providers on behalf of the API.

After updating the system shadow copy, the sample will attempt to update the bootstatuspolicy via bcdedit
by setting the ignoreallfailures. This will ensure no errors such as failed boot, shutdown or failed
checkpoint will interfere with the next boot cycle.

9/18

Lastly, the recoveryenabled is turned off, to ensure that the Windows repair tool does not fire, if an error is
found.

Restoring the public key

The public key is encoded in the samples, but will be decoded during runtime prior to loading it into
memory. The sample will pull the encoded string from the static string initialized during the constructor of
the configuration object.

10/18

To decode the key, the static string for the public keys salt is also stored in a static string.

Decoding the string is done using a set of AES functions to decrypt the key and load the RSA Key into
memory once the plain text is decoded. The mechanism is used to hinder static analysis and require
dynamic execution. This process can be automated provided the encoded string and the salt is located at
the correct offset address.

Persistence

The ntuser.dat located in the users c:\ProgramData\ is deleted, and then recreated with junk the threat
actor added to the sample. This file was found to contain garbage data when testing, but it could be
expanded upon to added stealth or evasion. Since there is a read/write operation to that specific file, rule
based detections could pick up the sequence and potentially alert on it.

Note: other samples had a similarly named file ntuser.log

11/18

Persistence was added through the -s program argument, and will cause the sample to add Windows
scheduled task with the name Updated Check Task or Google Service Update. The intention is to blend
into a legitimate system service, but instead execute the sample again upon login.

Windows restart manager

The restart manager is used to clear any handles to a file used by a running process. The threat actor
starts off by first getting a new restart manager session via the RmStartSession API. Once obtained the
session can be used to enumerate resources allocated to a file path via the RmRegisterResources call.
The session information is then linked to all processes that are listed as a resource, this can be retrieved

12/18

using the session handle and a call to the RmGetList function. Once obtained, the sample can iterate on
any process by the handle. Lastly, removing the resource by opening the process via OpenProcess,
K32GetProcessImageFileNameW and shutting down the application via RmShutdown.

The result will leave the file without any resource locks, allowing the encryptor to modify the file without
error.

13/18

Directory and file discovery

The file discovery starts off in a new thread setup in a lamdba function. The thread is responsible for
traversing directories, finding files to encrypt and skipping files or extensions which would be problematic
to the systems uptime.

The file discovery implementation makes use of all the common Windows APIs. The FindFirstFileW and
the FindNextFileW calls are used to iterate through the file system pointers. Before it can determine if the
file is legit; it must determine if its a directory. Upon iterating over each file handle, the structures
dwFileAttributes member has a bit wise & operations performed against it using the constant value
FILE_ATTRIBUTE_DIRECTORY which resolves to 0x10 in the Windows API. If the file handle is found to
be a directory, it is checked for the relative paths . and ... The function is recursively called for files that are
directories.

Note: no tail recursion is done, so this can expand the stack when encountering nested file systems and
lead to a crash.

Before the file handle is selected and added to a common list of paths, it must first check if the folder
extension matched any of the white listed data (See: Process, file and folders list above)

14/18

Before the file can be added to the list, the restart manager is called to ensure the file is opened by
another service/application. (See: Windows restart manager above)

Lastly, the readme file is prepared to be dropped in the directory.

15/18

Encryption

Once the thread pool is created using the maximum number of concurrent threads obtained by the
system, and file discovery is well underway; the encryption routine is started via lamdba function. This
function runs in a new thread, and can handle the off loaded work from the file discovery process.

The encryptor uses OpenSSL and will first setup an AES 256 CBC structure as the context across the
entire encryption process. The extension of .cts* is setup to handle the file naming process, and a
standard std::ostream object to handle the writing of contents.

16/18

As the thread prepares the file for encryption, it first must determine if it is going to partially or fully encrypt
the file. This is done by analyzing the file size and using the configuration object or program argument to
control the percentage of the file encryption. If the size of greater than 8MB the file is partially encrypted. If
the file is not, then a full file encryption takes place.

Once the file is processed, a std::atomic used to control the thread busy loop, is updated with a value of 0
clearing the bit and indicating the work is complete. The Memory order used is the default one, and will
ensure no other observation or worker thread mis-reads the status.

17/18

Readme

Your corporate network was compromised and encrypted by Cactus.
Do not interrupt the encryption
process, don't stop or reboot your machines until the encryption is complete. Otherwise the data may be
corrupted.
In addition to the encrypted infrastructure, we have downloaded a lot of confidential information
from your systems. The publication of these documents may cause the termination of your commercial
activities, contracts with your clients and partners, and multiple lawsuits.
If you ignore this warning and do
not contact us, your sensitive data will be posted on our blog:
https[:]//cactusbloguuodvqjmnzlwetjlpj6aggc6iocwhuupb47laukux7ckid.onion/
In your best interest
is to avoid contacting law enforcement and data recovery companies. They can't help you with the
recovery, will cause more problems and expenses, and delay the return to normal work significantly.
Besides, if you contact the police we will immediately publish your data.
We offer the best solution to the
problem, to receive our decryption software and prevent disclosure of your sensitive information contact us
directly.
A quick recovery is very important to keep your business running at full capacity and minimize
losses. This is why you need to begin negotiations as soon as possible. By the way, if you don't contact us
within 5 days, we will start publishing your data.
Download TOR Browser
(https[:]//www[.]torproject.org/download) and follow the link:
Your username: Your password: Reply to the
welcome email and we will get your message.
Backup contact is TOX (https[:]//tox.chat):
dcac7us[@]gmx.com
http[:]//sonarmsng5vzwqezlvtu2iiwwdn3dxkhotftikhowpfjuzg7p3ca5eid.onion/contact/Cactus_Support
7367B422CD7498D5F2AAF33F58F67A332F8520CF0279A5FBB4611E0121AE421AE1D49ACEABB2
http[:]//webmail.cactus47hhktlaclasue3rnkchcy6rgvitxmllv2l6m25gzkgbeyfyad.onion
cts0100[@]cactus47hhktlaclasue3rnkchcy6rgvitxmllv2l6m25gzkgbeyfyad.onion

18/18

YARA

/*
MIT License

Copyright 2023 ShadowStackRe.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

*/
rule CactusRansomware {

meta:

 description = "rule to detect Cactus Ransomware"

 author = "ShadowStackRe.com"

 date = "2024-01-18"

 Rule_Version = "v1"

 malware_type = "ransomware"

 malware_family = "Cactus"

 License = "MIT License, https://opensource.org/license/mit/"

 Hash =
"9ec6d3bc07743d96b723174379620dd56c167c58a1e04dbfb7a392319647441a,c49b4faa6ac7b5c207410ed1e86d0f21
c00f47a78c531a0a736266c436cc1c0a"

strings:

 $strReadMe = "cAcTuS.readme.txt" wide

 $strLockExt = ".cts" wide

 $strTskName = "Updates Check Task" wide

 $strTskName2 = "Google Service Update"

 $strNTUSer = "ntuser.dat" wide

 $strNTUSer2 = "ntuser.log" wide

 $strBuilderName = "cactusbuilder"

condition:

 uint16(0) == 0x5A4D and ($strReadMe and $strLockExt) and

 (1 of ($strTskName*)) and (1 of ($strNTUSer*)) or ($strBuilderName)

}

ransomwarecactus

ShadowStackRe SSR

https://storage.googleapis.com/analysis/tag/ransomware
https://storage.googleapis.com/analysis/tag/cactus
https://storage.googleapis.com/?author=649f15c662b98b6c769cf0c1

