
1/14

January 21, 2024

A Look into PlugX Kernel driver
mahmoudzohdy.github.io/posts/re/plugx/

Security Blog

Security Research, Windows Internal, Reverse Engineering, Windows Kernel/System
Developer

 Jan 21, 2024

 6 min read
 Windows_Internal Kernel Driver ReverseEngineering malwareanalysis PlugX

In this blog I will talk about the Signed kernel driver that is used in a recent PlugX attack, the
signed kernel drivers that were found on Virus Total are signed through Windows Hardware
compatibility program (WHCP) and Sharp Brilliance Communication Technology Co.,
Ltd..

https://mahmoudzohdy.github.io/posts/re/plugx/
https://mahmoudzohdy.github.io/
https://mahmoudzohdy.github.io/tags/windows_internal/
https://mahmoudzohdy.github.io/tags/kernel/
https://mahmoudzohdy.github.io/tags/driver/
https://mahmoudzohdy.github.io/tags/reverseengineering/
https://mahmoudzohdy.github.io/tags/malwareanalysis/
https://mahmoudzohdy.github.io/tags/plugx/

2/14

In summary the kernel driver act as user-mode loader which decrypt a 32-bit user-mode PE
file and inject it inside Svchost.exe as child process for services.exe.

in this blog i focused my analysis on the sample
“ab7ebc82930e69621d9bccb6698928f4a3719d29”

Driver Analysis:

the driver first registers a mini-filter callback functions and create a communication port with
the name “\DtSfProtect{A71A0369-D7CA-4d4f-9EEE-01F8FE53C0D3}” to be able to
communicate with the user-mode agent, the driver allows only for one user-agent to connect
and accept connection from any process, and the port communication was not used by the
user-client.

Figure 1: Register Mini-Filter Driver and create Port Communication.

Figure 2: Port Connection CallBack function.

Also, the registered filesystem callback pre-operation and post-operation does not do any
monitor/protection and just return.

3/14

Figure 3: FileSystem Pre-Operation.

Then it creates Process Object Notifications for protection it monitors any attempt to open
the user-mode process and forbids any attempt to access it from kernel drivers and user
mode process, so the user-mode component can not be terminated either from user-mode
and from kernel mode.

Figure 4: Register Process object Callback.

Figure 5: Pre-Process Callback Function.

After those initializations it creates a thread that will be responsible for resolving all the
needed functions address and starting the main user-mode component.

4/14

It first tries to check if services.exe process started or not, it do that by using the
NtQuerySystemInformation API to get information about the running process, and if
services.exe still not running it will go in infinite loop until it starts before continue its
operation.

Figure 6: Check if Services.exe process running.

Figure 7: Loop untill Services.exe start.

Then it reads configuration from the registry key “\Registry\Machine\SOFTWARE\DtSft\d1”
and subkeys “M1” and the data is compared to the current system time, and based on the
data in that registry “76 da 34 01” if the current time is after “Wednesday, March 9, 2033
8:07:29 PM” the driver will not continue operation and return and will not start the user-mode
component

5/14

Figure 8: Read Attack time from registry.

Figure 9: check if current time before configured time.

Then the driver will read the decryption key from the registry subkeys “M3” under the key
“\Registry\Machine\SOFTWARE\DtSft\d1*, the decryption key will be used to decrypt the PE
module from the registry

Decryption_Key= “ec,a4,00,c4”

6/14

Figure 10: Read Decryption Key from Registry.

After that the driver will resolve the needed API functions from the windows kernel and from
ntdll.dll and kernel32.dll the driver keeps the API information in the structure API_Info and it
will do the following steps to fill in the structure fields:

For ntdll.dll and kernel APIs
1. Locate the KeServiceDescriptorTable (SSDT Table)
2. Read ntdll.dll from hard disk.
3. Manually Map ntdll.dll DLL to kernel memory.
4. Search the export address table for the API it needs using the field

“API_Info.API_Name” from the API struct.
5. Extract the value that will be moved inside the EAX register before the sysenter

instruction. It will be used as index in the SSDT table to resolve the Kernel API.
6. Fill in the rest of the fields in the struct (kernel address, user-mode address, EAX

value)
For kernel32.dll APIs

1. Read kernel32.dll from hard disk.
2. Manually Map kernel32.dll DLL to kernel memory.
3. Search the export address table for the API it needs using the field

“API_Info.API_Name” from the API struct.
4. Fill in the user-mode address field in the struct (the rest of the fields will be null

values)

typedef Struct API_Info{
DWORD64 Kernel_API_Address; // will be null when used in resolving address in
kernel32.dll
DWORD64 User_API_Address;
DWORD64 EAX_Value; //index of the function in the SSDT table,
will be null in case kernel32.dll
char API_Name[80h];
}

7/14

Figure 11: Resolving API Address.

Locate the SSDT table:

To resolve the kernel API address the driver first locate the SSDT table, it does so by
scanning the nt!ZwClose Function for the byte “0xE9” which is a JUMP instruction to
“nt!KiServiceInternal”.

Figure 12: Locating the nt!KiServiceInternal function.

8/14

Figure 13: Locating the nt!KiServiceInternal function.

After locating “nt!KiServiceInternal” code the driver will search in it for the pattern “0x8D4C”
which is “lea r11,[nt!KiSystemServiceStart]” to locate the address of the function
“nt!KiSystemServiceStart”

Figure 14: Locating the nt!KiSystemServiceStart function.

Then search for the pattern “0x4c8d15” to locate the address of “lea r10,
[nt!KeServiceDescriptorTable]” and from there it will have the address of
KeServiceDescriptorTable to continue the operation to resolve Kernel API address.

Figure 15: Locating the KeServiceDescriptorTable Address.

After locating the SSDT table it will read the DLLs from disk and map it to memory to fill in the
API_Info structure.

9/14

Figure 16: Reading and mapping ntdll.dll to kernel memory.

Figure 17: Filling the API_Info structure.

also the driver will resolve the functions address twice once to get the kernel API, and the
second time to get the user-mode API from ntdll.dll and kernel32.dll, and the reason for that is
because the services.exe process might not be fully initialized and the ntdll.dll and
kernel32.dll DLLs might not be fully loaded yet.

Figure 18: Get Kernel API Address.

Figure 19: Get User API Address.

10/14

Then the driver will read the User-Mode component from registry subkeys “M2” under registry
key “\Registry\Machine\SOFTWARE\DtSft\d1” and then XOR decrypt it.

Figure 20: Read User-mode component and decrypt it.

Then it confirms that the user-mode component is a 32-bit file and if not it will not start it, after
that it will allocate memory and copy a ShellCode function which will be injected in
services.exe to start the main user-component after that it will do a sequence of
NtWriteVirtualMemory calls to write the ShellCode, path to Svchost.exe file and the User-
mode component to the services.exe process.

Figure 21: Allocate Memory for the shellcode.

11/14

Figure 22: write the shellcode and svchost path to services.exe process.

Figure 23: change permission of memory to be able to write to it.

And to make the ShellCode gets executed it will hook the Ntdll!NtClose to make it jump to
the ShellCode after the ShellCode gets execute it will restore the Ntdll!NtClose Function to
its original state and make the process continue operation and normal

Figure 24: Hook Ntdll!NtClose to make the shellcode execute.

12/14

Figure 25: Hook Ntdll!NtClose to make the shellcode execute.

User-Mode Component

User-mode component is a simple code that injects another 32-bit PE module in svchost.exe
process and monitors it if it gets terminated it will start it again.

Figure 26: User-Mode Component.

Yare Rule:

13/14

rule PlugX{
 meta:
author = "Mahmoud Zohdy"
date_created = "2024-01-20"
description = "Kernel driver used in recent PlugX attack"

strings:
$string0 = "\\SystemRoot\\system32\\drivers\\DtSfProtect" wide ascii
$string1 = "\\DtSfProtect{A71A0369-D7CA-4d4f-9EEE-01F8FE53C0D3}" wide ascii

condition:
uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and any of ($string*)
}

IOC:

SHA-1 Hash Signer
Signing
Date

Program
Name

4307c1e76e66fb09e52c44b83f12374c320cea0d Microsoft
Windows
Hardware
Compatibility
Publisher

2023-
03-23

淮南锋川网
络科技有限
责任公司
(Huainan
Fengchuan
Network
Technology
Co., Ltd.)

b421c7fb5a041b9225e96f9c82b418b5637dd763 Sharp
Brilliance
Communication
Technology
Co., Ltd.

2023-
08-27

43e00adbbc09e4b65f09e81e5bd2b716579a6a61 Microsoft
Windows
Hardware
Compatibility
Publisher

2022-
09-14

大连纵梦网
络科技有限
公司
(Dalian
Zongmeng
Network
Technology
Co., Ltd.)

14/14

SHA-1 Hash Signer
Signing
Date

Program
Name

ab7ebc82930e69621d9bccb6698928f4a3719d29 Microsoft
Windows
Hardware
Compatibility
Publisher

2022-
09-14

大连纵梦网
络科技有限
公司
(Dalian
Zongmeng
Network
Technology
Co., Ltd.)

7e836dadc2e149a0b758c7e22c989cbfcce18684 Microsoft
Windows
Hardware
Compatibility
Publisher

2022-
08-17

大连纵梦网
络科技有限
公司
(Dalian
Zongmeng
Network
Technology
Co., Ltd.)

0dd72b3b0b4e9f419d62a4cc7fa0a7d161468a5e Microsoft
Windows
Hardware
Compatibility
Publisher

2023-
03-22

淮南锋川网
络科技有限
责任公司
(Huainan
Fengchuan
Network
Technology
Co., Ltd.)

097e32d2d6f27a643281bf98875d15974b1f6d85 N/A N/A

2084dd19a5403a4245f8bad30b55681d373ef638 N/A N/A

c4d4489ee16ee537661760879bd36e0d4ab35d61 N/A N/A

c98b3ce984b81086cea7b406eb3857fd6e724bc8 N/A N/A

7079c000d9d25c02d89f0bae5abfe54136daf912 N/A N/A

c4aa3e66331b96b81bd8758e5abcba121a398886 Sharp
Brilliance
Communication
Technology
Co., Ltd.

2023-
08-23

9883593910917239fc8ff8399e133c8c73b214bc N/A N/A

501114B39A3A6FB40FB5067E3711DC9389F5A802 N/A N/A

