Zloader Analysis | ThreatLabz

Scaler.com/blogs/security-research/zloader-no-longer-silent-night

Santiago Vicente, Ismael Garcia Perez

Concerned about VPN vulnerabilities? Learn how you can benefit from our VPN migration offer including 60 days free service.

Talk to an expert

Zscaler: A Leader in the 2023 Gartner® Magic Quadrant™ for Security Service Edge (SSE)

Get the full report

Zero Trust Exchange Platform

Learn how Zscaler delivers zero trust with a cloud native platform that is the world's largest security cloud

Propel your transformation journey Secure Your Business Goals

Achieve your business and IT initiatives

Learn, connect, and get support.

Explore tools and resources to accelerate your transformation and secure your world

Amplifying the voices of real-world digital and zero trust pioneers

Stay up to date on best practices

Events & Trainings

Find programs, certifications, and events

Security Research & Services

Get research and insights at your fingertips

Tools

Tools designed for you

Community & Support

Connect and find support

Industry & Market Solutions

See solutions for your industry and country

Resource Center

Stay up to date on best practices

Events & Trainings

Find programs, certifications, and events

Security Research & Services

Get research and insights at your fingertips

Tools

Tools designed for you

Community & Support

Industry & Market Solutions

<u>About Zscaler</u> Discover how it began and where it's going

Partners Meet our partners and explore system integrators and technology alliances

News & Announcements

Stay up to date with the latest news

Leadership Team Meet our management team

Partner Integrations Explore best-in-class partner integrations to help you accelerate digital transformation

Investor Relations See news, stock information, and quarterly reports

Environmental, Social & Governance Learn about our ESG approach

<u>Careers</u> Join our mission

Press Center Find everything you need to cover Zscaler

Compliance Understand our adherence to rigorous standards

Zenith Ventures Understand our adherence to rigorous standards

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Introduction

Zloader (aka Terdot, DELoader, or Silent Night), is a modular trojan born from the leaked Zeus source code. It surfaced publicly in 2016 during a targeted campaign against German banks¹, but its malicious activity traces back to at least August 2015. Zloader's first run persisted until the beginning of 2018 when its activities abruptly ceased. Its resurgence at the end of 2019, marketed in underground forums as "Silent Night", came with substantial alterations. The evolution of Zloader progressed steadily, leading to the development of version 2.0.0.0 around September 2021. Similar to Qakbot, the threat actors using Zloader also pivoted from conducting banking fraud to ransomware. In April 2022, security researchers executed a takedown operation² to dismantle the botnet leading to an extended period of inactivity.

After an almost two-year hiatus, Zloader reemerged with a new iteration that appears to have started development in September 2023. These new changes include new obfuscation techniques, an updated domain generation algorithm (DGA), RSA encryption for network communications, and the loader now has native support for 64-bit versions of Windows. Initially, this new version was labeled with the old version number 2.0.0.0. However, over the past several months, they released version 2.1.6.0 and 2.1.7.0. In this blog, we will explore these new updates to Zloader.

Key Takeaways

- Zloader dates back to 2015 and has been advertised in underground cybercriminal forums under the name "Silent Night" since the end of 2019.
- Zloader has returned after an almost two-year hiatus after being taken down in April 2022 by security researchers.
- The new version of Zloader made significant changes to the loader module, which added RSA encryption, updated the domain generation algorithm, and is now compiled for 64-bit Windows operating systems for the first time.
- Zloader continues to use junk code for obfuscation, as well as API import hashing and string encryption in an attempt to hinder malware analysis.

Technical Analysis

In the following sections, we dive into the technical details surrounding Zloader's new updates to their anti-analysis techniques, embedded configuration, DGA, and network encryption.

Anti-analysis techniques

Zloader uses a combination of API import hashing, junk code, a filename check, and string obfuscation. The following sections analyze each technique.

Imports and API resolution

The newest Zloader samples only import a few functions from the kernel32 library. The remaining imports are resolved at runtime using checksums to obfuscate the functions that are used. This technique, already present in older versions, changes its implementation, adding an XOR constant which changes between samples. Python code that replicates the API hashing algorithm is shown below.

1	\sim	<pre>def calculate_checksum(func_name, xor_constant):</pre>
2		checksum = 0
3		<pre>for element in func_name.upper():</pre>
4		checksum = 16*checksum - (0 - (ord(element)+1))
5		if checksum & 0×f0000000 != 0:
6		checksum = ((((checksum & 0xf000000) >> 24) ^ checksum) & 0xfffffff)
7		return checksum ^ xor_constant © 2024 ThreatLabz

Code sample available on GitHub.

Junk code

Similar to previous versions, Zloader uses custom obfuscation. The new version of Zloader adds junk code that consists of various arithmetic operations, as shown in Figure 1 below.

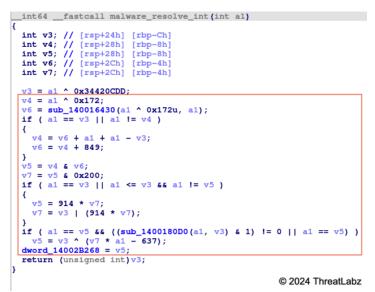


Figure 1. Example Zloader 2.1 junk code

In Figure 1, the instructions inside the red box are the junk code.

Anti-sandbox

Each Zloader sample expects to be executed with a specific filename. If the filename does not match what the sample expects, it will not execute further. This could evade malware sandboxes that rename sample files. Figure 2 shows an example of a Zloader sample that expects its filename to be **CodeForge.exe**.

Figure 2. Example of Zloader's anti-analysis filename check

ThreatLabz has observed Zloader use the following filenames:

- CodeForge.exe
- CyberMesh.exe
- EpsilonApp.exe
- FusionBeacon.exe
- FusionEcho.exe
- IonBeacon.dll
- IonPulse.exe

- KineticaSurge.dll
- QuantumDraw.exe
- SpectraKinetic.exe
- UltraApp.exe

String obfuscation

Similar to prior versions, Zloader implements a string obfuscation algorithm for some of the malware's important strings such as registry paths, DLL names, and the DGA's top-level domain (TLD) using XOR with a hardcoded key. Python code that replicates the string obfuscation algorithm is shown below:

```
1 \langle def str_deobfuscate(enc_bin, enc_key):
2 res = ''
3 for i, element in enumerate(enc_bin):
4 res += chr( ((element ^ 0xff) & (enc_key[i % len(enc_key)])) | (~(enc_key[i % len(enc_key)]) & element))
5 return res © 2024 ThreatLabz
```

Code sample available on GitHub.

The encryption key differs between samples and is also hardcoded in the .rdata section as shown in Figure 3 below.

Figure 3. Example string obfuscation key used by Zloader

A list of Zloader's obfuscated strings is shown in the Appendix.

Static configuration encryption and structure

The Zloader static configuration is still encrypted using RC4 with a hardcoded alphanumeric key, but the structure is slightly different. The botnet ID, campaign name, and command-and-control servers (C2s) are set at fixed offsets, in addition to an RSA public key that replaces the old RC4 key that was used for network encryption. ThreatLabz has observed 15 unique new Zloader samples and all of them have the same RSA public key, likely indicating there is currently only a single threat actor using the malware.

An example Zloader static configuration is shown below.

00000000	00	00	00	00	42	69	6e	67	5f	4d	6f	64	35	00	00	00	Bing_Mod5
00000010	00	00	00	00	00	00	00	00	00	4d	31	00	00	00	00	00	
00000020	00	00	00	00	00	00	00	00	00	00	00	00	00	00	68	74	ht
00000030	74	70	73	3a	2f	2f	61	64	73	6c	73	74	69	63	6b	65	tps://adslsticke
00000040	72	68	69	2e	77	6f	72	6c	64	00	00	00	00	00	00	00	rhi.world
00000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
*																	
000002b0	00	00	00	00	00	00	00	00	02	00	00	00	01	00	00	00	
000002c0	2d	2d	2d	2d	2d	42	45	47	49	4e	20	50	55	42	4c	49	BEGIN PUBLI
000002d0	43	20	4b	45	59	2d	2d	2d	2d	2d	0a	4d	49	47	66	4d	C KEYMIGfM
000002e0	41	30	47	43	53	71	47	53	49	62	33	44	51	45	42	41	A0GCSqGSIb3DQEBA
000002f0	51	55	41	41	34	47	4e	41	44	43	42	69	51	4b	42	67	QUAA4GNADCBiQKBg
00000300	51	44	4b	47	41	4f	57	56	6b	69	6b	71	45	37	54	79	QDKGAOWVkikqE7Ty
00000310	4b	49	4d	74	57	49	38	64	46	73	61	0a	6c	65	54	61	KIMtWI8dFsa.leTa
00000320	4a	4e	58	4d	4a	4e	49	50	6e	52	45	2f	66	47	43	7a	JNXMJNIPnRE/fGCz
00000330	71	72	56	2b	72	74	59	33	2b	65	78	34	4d	43	48	45	qrV+rtY3+ex4MCHE
00000340	74	71	32	56	77	70	70	74	68	66	30	52	67	6c	76	38	tq2Vwppthf0Rglv8
00000350	4f	69	57	67	4b	6c	65	72	49	4e	35	50	0a	36	4e	45	OiWgKlerIN5P.6NE
00000360	79	43	66	49	73	46	59	55	4d	44	66	6c	64	51	54	46	yCfIsFYUMDfldQTF
00000370	30	33	56	45	53	38	47	42	49	76	48	71	35	53	6a	6c	03VES8GBI∨Hq5Sjl
00000380	49	7a	37	6c	61	77	75	77	66	64	6a	64	45	6b	61	48	Iz7lawuwfdjdEkaH
00000390	66	4f	6d	6d	75	39	73	72	72	61	66	74	6b	0a	49	39	fOmmu9srraftk.I9
000003a0	67	5a	4f	38	57	52	51	67	59	31	75	4e	64	73	58	77	gZO8WRQgY1uNdsXw
000003b0	49	44	41	51	41	42	0a	2d	2d	2d	2d	2d	45	4e	44	20	IDAQABEND
000003c0	50	55	42	4c	49	43	20	4b	45	59	2d	2d	2d	2d	2d	0a	PUBLIC KEY
000003d0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

© 2024 ThreatLabz

Domain generation algorithm

When the primary C2 server is not available, Zloader reverts to a DGA. The DGA algorithm has changed in the latest version and no longer contains a different seed per botnet. Python code that replicates Zloader's new DGA algorithm is shown below.

```
import time
 1
 2
      from datetime import datetime, timedelta
 3
 4
      def uint32(val):
 5
           return val & 0xfffffff
 6
 7 ∨ def get_dga_time():
 8
          now = datetime.now()
9
           ts = time.time()
10
          utc_offset = (datetime.fromtimestamp(ts) - datetime.utcfromtimestamp(ts)).total_seconds() / 3600
          midnight = now.replace(hour=0, minute=0, second=0, microsecond=0)
11
12
          midnight = midnight + timedelta(hours=utc_offset)
           return int(midnight.timestamp())
13
14
15 ∨ def generate_zloader_dga_domains():
           domains = []
16
17
           t = get_dga_time()
18
           for i in range(32): # number of domains to generate
19
               domain = ""
20
               for j in range(20): # domain name length
                  v = uint32(ord('a') + (t % 25 ))
21
22
                   t = uint32(t + v)
                   t = (t >> 24) & ((t >> 24) ^ 0xFFFFF00) | uint32(t << 8)
23
24
                   domain += chr(v)
25
               domains.append(domain+".com")
26
           return domains
                                                                                                 © 2024 ThreatLabz
```

Code sample available on GitHub.

The code generates 32 domains per day by using the local system time at midnight (converted to UTC) as a seed. Each of the DGA domains have a length of 20 characters followed by the ".com" TLD.

Network communications

Zloader continues to use HTTP POST requests to communicate with its C2 server. However, the network encryption is now using 1,024-bit RSA with RC4 and the Zeus "visual encryption" algorithms. Zloader uses the custom Zeus BinStorage format where the first 128 bytes are the RSA encrypted RC4 key (32 random bytes) and, the remaining bytes are encrypted with the RC4 key and visual encryption as shown in Figure 4:

00211C32D3860	В4	С4	88	58	F2	59	CA	1D	C8	2A	30	73	9E	11	37	Α7	′Ä.XòYÊ.È*0s7§
00211C32D3870	6E	A1	6D	82	CE	F4	AE	8C	92	7A	81	8A	12	58	EF	11	n;m.Îô®zXï.
00211C32D3880	СВ	63	19	98	2C	8D	9C	98	07	14	81	1C	66	$\mathbf{F}\mathbf{F}$	94	AE	Ëc,fÿ.®
00211C32D3890	47	66	76	C8	F3	1F	EE	89	C3	7D	59	F4	56	DD	78	4E	GfvÈó.î.Ã}YôVÝxN
00211C32D38A0	A1	30	16	43	34	C2	BE	C6	1B	97	45	0 F	В2	42	7C	96	;0.C4¾ÆE.²B∣.
00211C32D38B0	67	48	E1	76	1A	D8	41	A8	66	2D	25	2C	06	1B	1A	ED	gHáv.ØA¨f−%,í
00211C32D38C0	5C	19	2D	77	89	79	13	СВ	В4	80	4B	6A	6A	1F	26	12	\w.y.Ë′.Kjj.&.
00211C32D38D0	43	E3	C1	35	6E	55	22	3B	В1	CF	C4	8E	29	98	42	BC	CāÁ5nU";±ÏÄ.).B¼
00211C32D38E0	DA	CE	5D	CA	20	39	В2	23	F6	69	\mathbf{FB}	76	9B	E3	CA	AD	ÚÎ]Ê 9²#öiûv.ãÊ.
00211C32D38F0	2C	16	47	14	В1	00	00	00	00	00	00	00	05	00	00	00	,.G.±
00211C32D3900	81	42	11	AE	E4	F6	1C	4E	D0	08	69	2F	7D	67	4E	D4	.B.®äö.NĐ.i/}gNÔ
00211C32D3910	12	27	00	00	00	00	00	00	09	00	00	00	09	00	00	00	. '
00211C32D3920	42	69	6E	67	5F	4D	6F	64	35	29	27	00	00	00	00	00	Bing_Mod5)'
00211C32D3930	00	02	00	00	00	02	00	00	00	4D	31	11	27	00	00	00	M1.'
00211C32D3940	00	00	00	1E	00	00	00	1E	00	00	00	44	45	53	4B	54	DESKT
00211C32D3950																	
00211C32D3960								32	45	13	27	00	00	00	00	00	
00211C32D3970	00	04	00	00	00	04	00	00	00	00	07	01	02	16	27	00	
00211C32D3980	00	00	00	00	00	04	00	00	00	04	00	00	00	01	00	00	
																	© 2024 ThreatLabz

Figure 4. Zloader BinStorage object for a hello message (prior to encryption)

The Zeus BinStorage structure uses an ID integer value to represent the information stored, followed by the length and data. The BinStorage ID values in this example are shown in Table 1.

Value (Decimal) Value (Hexadecimal) Description

Value (Decimal) Value (Hexadecimal) Description

10002	0x2712	Botnet ID
10025	0x2729	Campaign ID
10001	0x2711	Bot ID
10003	0x2713	Malware version
10006	0x2716	Unknown flag (set to 0x1)

Table 1. Zloader BinStorage hello message fields

ThreatLabz has observed samples containing the following botnet IDs:

- Bing_Mod2
- Bing_Mod3
- Bing_Mod4
- Bing_Mod5

All of the campaign IDs have been set to the value **M1**.

Conclusion

Zloader was a significant threat for many years and its comeback will likely result in new ransomware attacks. The operational takedown temporarily stopped the activity, but not the threat group behind it. Returning after almost two years, Zloader has brought notable improvements to the loader module such as RSA encryption, an updated DGA, and enhanced obfuscation techniques, with more junk code, API import hashing, and string encryption to thwart malware analysis.

Zscaler ThreatLabz continues to track this threat and add detections to protect our customers.

Zscaler Coverage

ZSCaler Cloud Sandbox

ANDBOX DETAIL REPORT eport ID (MD5): 12647F9694EB9D91A7C95238E8A4	High Risk Moderate Risk Low Risk Analysis Performed: 1/19/2024 1:47:49 PM	File Type: dll64		
CLASSIFICATION	MITRE ATT&CK	VIRUS AND MALWARE		
Class Type Threat Score Malicious 80 Category Malware & Botnet	This report contains 4 ATT&CK techniques mapped to 3 tactics	No known Malware found		
SECURITY BYPASS	NETWORKING	STEALTH 53		
 Sample Sleeps For A Long Time (Installer Files Shows These Property). Executes Massive Amount Of Sleeps In A Loop Contains Medium Sleeps (>= 30s) 	No suspicious activity detected	 Disables Application Error Messages 		
SPREADING	INFORMATION LEAKAGE	EXPLOITING		
No suspicious activity detected	No suspicious activity detected	 Known MD5 Runs A DLL By Calling Functions 		
PERSISTENCE	SYSTEM SUMMARY	DOWNLOAD SUMMARY		
No suspicious activity detected	 Program Does Not Show Much Activity PE File Has An Executable .Text Section And No Other Executable Section Reads Software Policies Sample File Is Different Than Original Filename Gathered From Version Info 	Original file165 KBDropped filesNo dropped filesPacket capture41 KB		

In addition to sandbox detections, Zscaler's multilayered cloud security platform detects indicators related to Zloader at various levels with the following threat names:

Win64.Downloader.Zloader

Indicators Of Compromise (IOCs)

SHA256	Description
038487af6226adef21a29f3d31baf3c809140fcb408191da8bc457b6721e3a55	Zloader sample
16af920dd49010cf297b03a732749bb99cc34996f090cb1e4f16285f5b69ee7d	Zloader sample
25c8f98b79cf0bfc00221a33d714fac51490d840d13ab9ba4f6751a58d55c78d	Zloader sample
2cdb78330f90b9fb20b8fb1ef9179e2d9edfbbd144d522f541083b08f84cc456	Zloader sample
83deff18d50843ee70ca9bfa8d473521fd6af885a6c925b56f63391aad3ee0f3	Zloader sample
98dccaaa3d1efd240d201446373c6de09c06781c5c71d0f01f86b7192ec42eb2	Zloader sample
adbd0c7096a7373be82dd03df1aae61cb39e0a155c00bbb9c67abc01d48718aa	Zloader sample

SHA256	Description
b206695fb128857012fe280555a32bd389502a1b47c8974f4b405ab19921ac93	Zloader sample
b47e4b62b956730815518c691fcd16c48d352fca14c711a8403308de9b7c1378	Zloader sample
d92286543a9e04b70525b72885e2983381c6f3c68c5fc64ec1e9695567fb090d	Zloader sample
eb4b412b4fc58ce2f134cac7ec30bd5694a3093939d129935fe5c65f27ce9499	Zloader sample
f03b9dce7b701d874ba95293c9274782fceb85d55b276fd28a67b9e419114fdb	Zloader sample
f6d8306522f26544cd8f73c649e03cce0268466be27fe6cc45c67cc1a4bdc1b8	Zloader sample
fa4b2019d7bf5560b88ae9ab3b3deb96162037c2ed8b9e17ea008b0c97611616	Zloader sample
fbd60fffb5d161e051daa3e7d65c0ad5f589687e92e43329c5c4c950f58fbb75	Zloader sample

URL	Description
https://adslstickerhi[.]world	Zloader C2
https://adslstickerni[.]world	Zloader C2
https://dem.businessdeep[.]com	Zloader C2

Appendix

Tools

The code snippets in this blog have also been uploaded to our GitHub tools repository here.

Decoded strings

user32.dll	nbsp;
reg add HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /f /t REG_SZ /v %s /d "%s"	wininet.dll
tr	br
h3	Local\
POST	gdiplus.dll
https://	*
ntdll.dll	ws2_32.dll
NtProtectVirtualMemory	NtGetContextThread
%s %s	psapi.dll
S-1-15	ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,
\"%s\"	samlib.dll
NtCreateThreadEx	regsvr32.exe /s \"%s\"
bcrypt.dll	netapi32.dll

strtoul	winsta.dll
NtReadVirtualMemory	Basic
version.dll	h2
h5	NtAllocateVirtualMemory
cabinet.dll	S:(ML;;NRNWNX;;;LW)
kernel32.dll	%s\tmp_%08x
aeiouy	div
{%08X-%04X-%04X-%08X%08X}	iphlpapi.dll
C:\Windows\System32\ntdll.dll	Connection: close
C:\Windows\System32\msiexec.exe	
wtsapi32.dll	NtCreateUserProcess
RtlUserThreadStart	%s
HTTP/1.1	ncrypt.dll
_aulirem	Software\Microsoft\Windows\CurrentVersion\Run
ole32.dll	.dll
bcdfghklmnpqrstvwxz	ftllib.dll
ThreadStart	MSIMG32.dll
JKLMNOPQRSTUVW\$\$\$\$\$XYZ[\]^_`abcdefghijklmnopq	h1
/	GET
urlmon.dll	Software\Microsoft\Windows NT\CurrentVersion
dxgi.dll	NtOpenSection
/post.php	advapi32.dll
secur32.dll	imagehlp.dll
%s_%s_%X	winscard.dll

References

¹ The Curious Case of an Unknown Trojan Targeting German-Speaking Users

² Dismantling ZLoader: How malicious ads led to disabled security tools and ransomware | Microsoft Security Blog

Was this post useful?

Get the latest Zscaler blog updates in your inbox

....

By submitting the form, you are agreeing to our privacy policy.