Enter The Gates: An Analysis of the DarkGate Autolt
Loader

@ splunk.com/en_us/blog/security/enter-the-gates-an-analysis-of-the-darkgate-autoit-loader.html

Autolt is a scripting language designed for automating the Windows GUI and general
scripting. Over the years, it has been utilized for malicious purposes, including Autolt-
compiled malware, which dates back to as early as 2008.

Malware creators have exploited the versatility of AutolT in a variety of ways, such as using
obfuscated scripts for payload decryption, utilizing legitimate tools like BaSupportVNC, and
even creating worms capable of spreading through removable media and Windows shares.

DarkGate is one of the malware that uses Auto-It compiled loaders that poses a significant
threat due to its sophisticated evasion techniques and persistence within compromised
systems. The malware employs multi-stage payloads and leverages obfuscated Autolt
scripting, complicating its identification through traditional signature-based methods. Its
ability to exfiltrate sensitive data and establish command and control communications
demands vigilant detection and analysis.

In this blog, the Splunk Threat Research Team (STRT) provides a deep dive analysis of
DarkGate malware and its use of Autolt. Below, we’ll cover:

o The DarkGate loader and campaign flow

o DarkGate Tactics, Techniques, and Procedures

o Atomic Test for Autolt malware

o DarkGate detections from the Splunk Threat Research Team

Loader/Campaign Flow

The Splunk Threat Research Team has identified multiple campaigns deploying a loader
designed to initiate DarkGate on compromised hosts. One such instance involves the
discovery of malicious PDF files, detected and submitted to Splunk Attack Analyzer. The
PDF file acts as a carrier, triggering a sequence where a malicious CAB file is downloaded.
This CAB file, in turn, fetches a .MSl file, which contains and loads the DarkGate malware
payload.

This chain of events showcases a method employed by threat actors, utilizing seemingly
maliciously crafted PDF files as a gateway to execute a sequence resulting in the installation
of the DarkGate malware. The multi-stage nature of this attack demonstrates the intricacy
and stealth employed by adversaries to infiltrate and compromise targeted systems.

1/21

https://www.splunk.com/en_us/blog/security/enter-the-gates-an-analysis-of-the-darkgate-autoit-loader.html
https://www.splunk.com/en_us/surge/threat-research.html
https://www.splunk.com/en_us/surge/threat-research.html
https://www.splunk.com/en_us/products/attack-analyzer.html

JE41200-0CT26.pdf

Score

Verdict Malware

Malware Family DarkGate

Submitted 26/10/2023,18:30:07

SHA256: 7257b4ccecOceb27b6fb141cel2c8dfbBad01d3edfaecal2699561eccdabaz3e
MD5: 22aeT2dd478b95daf3aBacBcb216ceac

File Type: PDF document, version 1.7

File Size 365 KB

Resources Analyzed
= JE41200-0CT26.pdf
https://adclick.g.doubleclick.net/pes/click?fjUnpaid-Oct-2023-26_refWIGIWS615251 18kd&&adurl=//pintaaron.com/
— https://pintaaron.com/
https://pintaaron.com/imagen/banners/{unpack)BAH752C891ISL-OCT26.cab
B (unpack)BAH752C891ISL-0CT26.cab

c— http://5.252.177.104/Downloads/hyreszxc.zip/hyreszxc.msi
— https://5.2562.177.104:80/Downloads/hyreszxc.zip/hyreszxc.msi
http://5.252.177.104:80/Downloads/hyreszxc.zip/hyreszxc.msi

[146129.msi
[) data2.bin

[dbgeng.dll

[windbg.exe
[data.bin

Figure 1: Analysis of malicious PDF infection chain in Splunk Attack Analyzer

In Figure 1, a detailed diagram showcases the .MSl file's functionality, executing its role in
the orchestration of DarkGate's deployment. This file manifests a sequence where it loads
multiple components, including the legitimate wndbg.exe, a DLL module, and two .BIN files,
all instrumental in the execution of DarkGate.

Moreover, the Splunk Threat Research Team found another variant of this malicious .MSI.
This variant extends its infection strategy by introducing an additional .CAB installer into the
installation process on the targeted host. This augmented approach further amplifies the
complexity and sophistication of the infection methodology adopted by threat actors,
emphasizing their persistent efforts to evade detections.

Upon analysis and reverse engineering of the .MSI file, our investigation unveiled a loader
execution flow with a series of file executions, as visualized in Figure 2.

2/21

msi installation files content

dropped files
-png -png
- N
|
00004-40011 000085-35463 d £i1 I
32497.png 15628.png Uy, “ang 13les e °
execute compiled .au3 scrint%
|
.png .png |
file L e S ——)
0010
08006-35463 00007-35463 Gior
15629.png 15030.png . read portion of .au3 to
scrinlt-alﬁ decrypt the actual darkgate
| 0010 payload
= o l
(1 e |
ke o :
v
Binary.bz.WrappedSetupProgram windbg. exe @
dl1 side loading technique El
_ou] h i
s decryptor of darkgate payload
P gate pay’
dbgeng.d11 M

decoder another .exe T

decode data2.bin

DATA.BIN

nnnnn

darkgate payload

°i§§§3ela <—J b

Figure 2: Malicious MSI Infection Flow (For a larger resolution of this diagram visit this link)
We've segmented the loader execution flow into four distinct phases:

e Phase 1: .MSI executes .CAB
e Phase 2: Exploiting DLL side-loading through Wndbg.exe
e Phase 3: The Autolt loader

e Phase 4: The final loader

Below, we’ll dive into each of these phases to elaborate on the specific files and processes
initiated by the .MSI file, which ultimately lead to the decryption of the actual DarkGate
malware.

Phase 1: .MSI Executes .CAB

The initial phase of the execution flow involves the .MSI file attempting to launch its primary
component, an embedded .CAB file labeled "Binary.bz.WrappedSetupProgram." This
component serves as a pivotal element within the MSI's operational sequence, marking the
outset of its intended execution src.

3/21

https://imgur.com/a/D9L8zNc

,eax
; "bz .WrappedSetupProgram’ --15
; "SELECT °

; 'Query: °

Figure 3: Binary.bz.WrappedSetupProgram Query for Execution

Within the .CAB file, a collection of files has been identified, as depicted in Figure 4. Among
these files, the pivotal components driving the initiation of DarkGate malware include
windbg.exe, dbgeng.dll, data.bin, and data2.bin.

However, it's important to note that the four .png files are utilized solely as decoys or
dummies in this specific scenario, designed to obfuscate or mislead the observer from the
critical components of the DarkGate execution.

00004-400113249 00005-354631502 00006-354631502 00007-354631503

T.png g.png S.png O.png
data.bin datal.bin dbgeng.dll windbg.exe

Figure 4: .CAB Extracted Files

Phase 2: Exploiting DLL Side-Loading Through Wndbg.exe

The next phase in installing this malicious .CAB file involves the execution of a specially
crafted dbgeng.dll using DLL side-loading techniques via windbg.exe. This process
essentially entails windbg.exe automatically loading the dbgeng.dll, facilitating the
progression of the malicious code.

The dbgeng.dll module functions to read and decode the contents of the base64 encoded
data.bin file, utilizing customized base64 character sets for decoding purposes. The decoded
data.bin is actually an executable that will process the data2.bin.

4/21

start: 1568

Recipe S] Input end: 2546 leneth: sa.es 4+ 1 5]
i - %
Name: data.bin
From Base64 I
Size: 94,208 bytes
Alphabet : = T
289qG4nANCAM7wKFh6bZRHoTavlL Xu... Type: application/octet-stream
Loaded: 100%
Remove non-alphabet chars stare; 1170 JWnel s F re
end: 1983 length: 7@656
Output length: 739 lines: 123 B D m “
MIERE....X.2 P..... N o ...

7 e i e e e e R e ke ke ke A e e e b e R
STEP FEF 4l Bl o PE..L...."
Auto Bake B* -

Figure 5: data.bin decoded

Phase 3: The Autolt Loader

In this phase, the decrypted .exe from the data.bin file proceeds to decode the data2.bin file.
Unlike its predecessor, data2.bin holds two encoded files, separated by the 'splitres’' string.

The first decoded file resulting from the base64 process is a valid Autoit3.exe, employed to
execute the second file: a compiled Autolt script named script.au3. Both files are dropped
within the 'c:\tmpa' directory and executed through the straightforward commandline
directive.

c:\tmpa\Autoit3.exe c:\tmpa\script.au3

) Autoit3.exel

B Hiew: script.au3.bin - O X

aq3.bin

Figure 6: Decoded files from data2.bin

5/21

loc_48921A:

t aCTmpafAutoit3Ex ; "c:\\tmpa

aCTmpaScriptAu3 ; "c:\\tmpal\\script.au3”
| file
aCTmpafutoit3Ex @ ; *

Figure 7: Command line for execution of compiled Autolt script

As part of our analysis, we decompiled the script.au3 file to unveil the underlying Autolt
script. This exploration was crucial to understand the full scope and behavior of this

malicious script, allowing us to gain insight into its complete functionality and operational
behavior.

Figure 8 presents a code snippet from the decompiled script.au3, revealing the initialization
phase along with numerous concatenations of hexadecimal strings stored within the
'oylnnnhx' variable. This concatenated content constitutes a shellcode encapsulated with an
.exe file, set to execute using the 'Execute’ command in Autolt. Additionally, we've included
the de-obfuscated version of all '‘BinaryToString' values in commented format. This provides
a comprehensive view of the entire process, including how it was executed by leveraging the
callback function of the EnumWindows() API.

6/21

;: D11Call ("kernel32.dll", "BCCL"™, "VirtualProtect™, "ptr", Dll5tructGetPtr($igwerf), "int", 48363, "dword", 0x40, "dwo
Execute (BinaryToString ("0x446C6C43616CEC28226B65T726E656C33322E646C6C222C2022424F4F4C222C20225669T72T4T5616C50T26FT465637
Local Sycxzljdw

EndIf

Local Struv

;:Dll5tructSetData ($igwerf, 1,

Execute(BinaryIoString ("0x446C6C53T4727563 745365744461 746128246971 7T6572662C20312C2042696E61T2T9546F5374T2696E6T28223078222
Local Svwkfje

; D11Call ("user32.dll", "int", "EnumWindows", "ptr"™, DllStructGetPtr ($igwerf), "lparam”™, 0)

Execute (BinaryToString ("0x446C6C4361l6CE6C2E822T5T7365T233322E646C6C222C2022696ET4222C2022456ET56D5TE96E646FTTT3222C20227074722

Figure 8: Decompiled script.au3

Phase 4: The Final Loader

The final loader encompasses both shellcode and an .exe file designed to decrypt the
DarkGate malware. Notably, the shellcode employs an intriguing technique utilizing the ‘MZ'
or DOS header bytes from the embedded win32 PE within its code as part of its shellcode to
initiate execution at the win32 PE file entry point. This methodology mirrors a technique
employed by the Cobalt Strike beacon, as documented in tccontre’s blog.

Figure 9: MZ header as shellcode

The embedded win32 PE file, triggered by the shellcode execution, will read the compiled
Autolt script script.au3. Its primary objective is to search for a specific string recognized as
the Autolt script compiled bytes header, denoted by 'AU3!EAOQ6." This string search operation
holds significance, as it aims to pinpoint an essential 8-byte decryption key instrumental in
decrypting the DarkGate malware. The 8-byte decryption key is placed right after the
'AU3!EAOQ6' string.

7/21

https://tccontre.blogspot.com/2019/11/cobaltstrike-beacondll-your-not.html

el =

loc_48381E:

MoV e

mov ad6 ;

call rch_au3_script_header
test eax

jnz : t found_string

el = el =

push a 3 uTyp

push offset Caption ; lpCaption found_string:

call ommandLines @ lea ecx, [ebptvar

mow dx, mow et afu

lea % var_2 mov G word 485684

call sub_48 call s 4

mow ¥, [e . mow ¥, [ebptvar_38]

lea LD [:

Mo \uded ; "au 484 " mov

call s 3 call

mow ax, 2 push

call sub 481B7@ mow

push ax ; lpTex Mo

push @ 3 hknc Mo

call MessageBoxh call sub_

jmp _483128 mov X set dword 485654
Mo &

Figure 10: Search for AU3/EA06 bytes header

Figure 11 illustrates the decryption process of the encrypted DarkGate malware employing
an 8-byte decryption key through a straightforward XOR operation.

8/21

|» Av{o=158L=!EE
This program mus
t be run under W

in32) =37

I ¢

e

SRR
h
iy}

R}
v]
(s

ea e ea
ea ea ea

mom
mm

Figure 11: Decrypting Darkgate malware

DarkGate Tactics, Techniques, and Procedures

There are a number of Tactics, Techniques, and Procedures (TTPs) related to DarkGate —
too many for us to cover a single blog post. Other blogs have covered some of these, such
as:

Information theft through key logging
Leveraging remote connections

Establishing persistence via registry run keys
Browser Information Stealer

C2 communication

Therefore, in this post we’re going to highlight four TTPs we haven’t seen covered as much:

 Lateral movement via PSEXEC

» Malicious download and execution (CryptoMiner)
e Proxy Setup

» RDP Configuration

Lateral Movement via PSEXEC

DarkGate leverages PSEXEC for its privilege escalation capabilities and potentially for lateral
movement within compromised networks, enabling the exfiltration or collection of sensitive
information

9/21

https://malpedia.caad.fkie.fraunhofer.de/details/win.darkgate

Ffset aAccepteulaDl ; "-accepteula -d -u
eax, [ebptvar_ 18]
sub 443EAC
[ebp+var 18]
Ffset aSafemodePDarkg ; "\\SafeMode -p darkgatepassword@
offset al2 ;" -i2"
[ebp+var_4]
eax, [ebp+var 14]
edx, 5
sub_484758
edx, [ebp+var_14]
eCcx, BCx
eax, offse ; "cii\\temp\\PsExec.exe"
sub_ 442624

Figure 12: Psexec Execution

Malicious Download and Execution (CryptoMiner)

DarkGate possesses the capability to download and install a malicious CryptoMiner malware
on the compromised host, constituting a part of its malicious behavior and exploitation of the
compromised system.

sub_445998();

Sysutils: :IntToStr(+dword 457DE4);

System::_ linkproc__ LStrCat3(v23, "Stub: Corrupted miner MZ, will redownload miner soon | Retry ");
sub_43CAE4(v24, (int)&dword 457DEC);

ExitThread_@e(8);

sub_4399EC();
System:: linkproc__ LStrlmp(v48, dword 43A518);
if { !'v2 &% unknown_libname_55(wl17, w18, wv19) > 666)

vls = dword_457DF@;
sub_439CAB();
System:: linkproc__ LStrCatN(v4®, " --threads=", v34[1], " --cpu-priority=", vl15);
sub_443AFB(v36, (int)dword 43A558, (int)dword 43A51C, (int)&dword 457DEC, al, v34);
System::_ linkproc__ LStrlLAsg(v3, v34[8], v17, v13, v19);
sub_4423E@(v33, v39);
System:: linkproc_ LStrCat3(v33[@], v39);
sub_4458AC((int)"C:\\temp\lomr.txt™, v33[1], (int)&dword 457DEC);
if { !(unsigned _ int8)sub 444FBC({(int)"C:\\temp\'smr"}))
1
sub 43CE64();
System::_ linkproc__ LStrCat3(v31[2], v42[2]);
sub 4423EB(v32, v30);
System::_ linkproc__ LStrCat3(v32[e], v39);
sub_ 4458AC((int)"C:\\temp\oar”, v32[1], (int)&dword 457DEC);

if (!(unsigned _ int8)sub_444FBC((int)"C:\\temp\\tr"))
1
sub_43CEG4();
System::_ linkproc__ LStrCat3(v3e[1l], *w42);
sub_4423E@(v31, v39);
System::__ linkproc__ LStrCat3(v31[e], v39);
sub ASBAC((int)}"C:\\tempi\\tr"™, v31[1], (int)&dword_ 457DEC);

if (byte 457DD5)
sub_4458AC((int)}"C:\\tempi\testdec.txt™, v36, (int)&dword 457DEC);
if { unknown_libname 55(v17, v18, v19) > BGG6)

sub 443AF@(dword 457DF@, (int)dword 43A5CC, (int)dword 43A5C8, (int)&dword 457DEC, al, v38);
sub_443aF@(v3s[@], (int)":3348 ", (int)":908@ -u @xDark ", (int)&dword 457DEC, al, w3@);

Figure 13: Installation of CryptoMiner

Proxy Setup

This malware will also try to enable proxy and set up a proxy server in the compromised host
to anonymize its communications. It can route its traffic through the proxy, obscuring the
actual source of the communication, which can make it harder to trace back to the attacker.

ptionList;

Figure 14: Proxy Setup

RDP Configuration

DarkGate also manipulates multiple registry settings related to Remote Desktop Protocol
(RDP) configurations on the compromised host. These alterations grant DarkGate control
over the system through this protocol, allowing the malware to potentially modify RDP
settings to suit its operational needs or facilitate remote access and control.

11/21

MACHINE i U Terminal Servic

Terminal

Terminal

Terminal

Terminal

Figure 15: RDP Settings

Atomic Testing

DisableR™

DisableR™

Disabl

For testing purposes, we wanted to create a new Atomic Test that folks may load up and
begin utilizing right away. This Atomic test is centered around the Autolt3 execution.

12/21

attack_technique: T1059
display_name: Command and Scripting Interpreter
atomic_tests:
- name: AutoIt Message Box Test with Download and Extract
description: |
Downloads AutoIt to the temporary directory, extracts it, and executes an AutoIt
script that shows a message box.
supported_platforms:
- windows
input_arguments:
autoit_script_src:
description: The local src to the AutoIt script to execute

type: Path
default: "PathToAtomicsFolder\\T1059\\src\\automsgbox.au3"
executor:

name: powershell
elevation_required: false
command: |
$ErrorActionPreference = 'Stop';
$autoitExePath = "$env:TEMP\\autoit-v3\\install\\autoit3.exe";
if (-not (Test-Path -Path $autoitExePath)) {
iwr 'https://www.autoitscript.com/cgi-bin/getfile.pl?autoit3/autoit-v3.zip' -
OutFile "$env:TEMP\\autoit-v3.zip";
Expand-Archive -LiteralPath "$env:TEMP\\autoit-v3.zip" -DestinationPath
"$env:TEMP\\autoit-v3";
}
Start-Process -FilePath $autoitExePath -ArgumentList (Resolve-Path "#
{autoit_script_src}").Path;

Save this to where Autoit3.exe can access:

Automsgbox.au3

MsgBox(©, "Atomic Message", "hello from Atomic Red Team")
The Atomic test will download AutolT3.exe, and run the automsgbox.au3 file.

A successful run will have a message box popup:

Atormnic Message

ting test: T1859-1 Autolt Me ox Test with Download and Extract
Exit code

hello from Atomic Red Team

Test with Download and Extract
ministra

Figure 16: Autolt Atomic Test

The telemetry traces will now be left correlating with the security content that has been
generated.

13/21

Security Content

The Splunk Threat Research Team has curated relevant detections and tagged them to the
DarkGate Analytic Story to help security analysts detect adversaries leveraging the
malware.

This release used and considered relevant data endpoint telemetry sources such as:

e Process Execution & Command Line Logging

e Windows Security SACL Event ID, Sysmon, or any Common Information Model-
compliant EDR technology

o Windows Security Event Log

e Windows System Event Log

o Windows PowerShell Script Block Logging

Below are some of the analytic SPL searches that the Splunk Threat Research Team
developed for DarkGate malware.

Windows Credentials from Password Stores Creation

This analytic identifies a process execution of Windows OS’s cmdkey.exe tool. This tool is
being abused or used by several post exploitation tools and malware such as Darkgate to
create stored user names, passwords or credentials in the targeted Windows OS host.

| tstats “security_content_summariesonly ™ count min(_time) as firstTime max(_time) as
lastTime from datamodel=Endpoint.Processes

where Processes.process_name="cmdkey.exe" OR Processes.original_file_name =
"cmdkey.exe" AND Processes.process = "*/generic*" Processes.process IN ("*/user*",
"*/password*")

by Processes.process_name Processes.original_file_name Processes.process
Processes.process_id

Processes.process_guid Processes.parent_process_name Processes.parent_process
Processes.parent_process_guid Processes.dest Processes.user

| “drop_dm_object_name(Processes)"

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

| “windows_credentials_from_password_stores_creation_filter"

14/21

https://www.splunk.com/en_us/surge/threat-research.html
https://research.splunk.com/stories/darkgate_malware/

New Search Save As ¥

| tstats "security_content_summariesonly’ count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Processes
where Processes.process_name="cmdkey.exe" OR Processes.original_file_name = "cmdkey.exe" AND Processes.process = "*/generict" Processes.process TN "a/usern", "x/passwords")|
by Processes.process_name Processes.original_file_name Processes.process Processes.process_id
Processes.process_guid Processes.parent_process_name Processes.parent_process Processes.parent_process_guid Processes.dest Processes.user
| *drop_dn_object_name(Processes)"
| 'security_content_ctime(firstTime)"
| “security_content_ctime(lastTime)

+ 2 events (22/11/2023 08:00:00.000 to 23/11/2023 08:48:03.000) No Event Sampling » Job ¥ s &
Events Patterns Statistics (2) Visualization
20 PerPage~ . Format Preview +
4 4 s 4 4 4 s
process_name original_file_name process_id process_guid parent_process_name: parent_process_guid count
s 4 process & s s & 4 parent_process & 7N e dest & 7/ users /s ¢
cmdkey . exe cmdkey . exe cmdkey /generic:"127.0.0.2" 3984 {BACA6B2Z- cmd. exe cnd.exe /c cmdkey {BBACA6B2-106C- ar-win- Administrator 1
fuser: "SafeMode” 186C-655F- /generic:"127.0.0.2" 655F-DCO1- 2.attackrange. local
/pass: "darkgatepassworda” DD81- fuser: "SafeMode” 000000002503}
009000002903} /pass: "darkgatepassworda”
cmdkey . exe unknown C:\Windows\System32\cmdkey . exe oxf9e null cmd. exe C:\Windows\System32\cmd.exe null ar-win- administrator 1
/generic:"127.0.8.2" 2.attackrange.local

fuser: "SafeMode”
/pass: "darkgatepassword@”

Figure 17: Detection Test 1

Windows Modify Registry DisableRemoteDesktopAntiAlias

This analytic identifies a modification in the Windows registry to
DisableRemoteDesktopAntiAlias. This registry setting might be intended to manage or
control anti-aliasing behavior (smoothing of edges and fonts) within Remote Desktop
sessions.

| tstats “security_content_summariesonly ™ count min(_time) as firstTime max(_time) as
lastTime from datamodel=Endpoint.Registry

where Registry.registry_src = "*\\Terminal
Services\\DisableRemoteDesktopAntiAlias" Registry.registry_value_data = 0x00000001

by Registry.registry_src Registry.registry_value_name Registry.registry_value_data
Registry.process_guid Registry.action Registry.user Registry.dest

| “drop_dm_object_name(Registry)"

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

| “windows_modify_registry_disableremotedesktopantialias_filter"

New Search Sava /s

| tstats ‘security_content_summariesonly’ count min{_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Registry
where Registry.registry_path = "s\\Terminal Services\‘\DisableRemoteDesktopAntiAlias" Registry.registry_value_data = @x00000001
by Registry.registry_path Registry.registry_value_name Registry.registry_value_data Registry.process_guid Registry.action Registry.user Registry.dest
| “drop_dm_object_name(Registry)
| “security_content_ctime(firstTime)"
| 'security_content_ctime(lastTime)"

+ 1event (23/11/2023 08:09:00.000 to 23/11/2023 09:09:11.000) No Event Sampling * Job v
Events (1) Patterns Statistics (1) Visualization
20 Per Page > # Format Preview v

rd action # s
registry_path % # registry_value_name % # registry_value_data ¢+ process_guid = 7 = user & # dests # count$
HKLM\SOFTWARE\Policies\Microsoft\Windows NT\Terminal DisableRemoteDesktopAntiAlias @xeaeeesel {@BACABB2-186C-655F- modified inistrator ar-win- 1
services\DisableRemoteDesktopAntiAlias E301-000000002903) 2.attackrange.local

Figure 18: Detection Test 2

Windows Modify Registry DontShowUlI

15/21

This analytic identifies a modification in the Windows Error Reporting registry. This registry
value is present and set to a specific configuration that influences the behavior of error
reporting dialogs or prompts, suppressing them from being displayed to the user. For
instance, setting DontShowUl to a value of 1 often indicates that the Windows Error
Reporting Ul prompts will be suppressed, meaning users won't see error reporting pop-ups
when errors occur.

| tstats “security_content_summariesonly’ count min(_time) as firstTime max(_time) as
lastTime from datamodel=Endpoint.Registry

where Registry.registry_src = "*\\SOFTWARE\\Microsoft\\Windows\\Windows Error
Reporting\\DontShowUI" Registry.registry_value_data = 0x00000001

by Registry.registry_src Registry.registry_value_name Registry.registry_value_data
Registry.process_guid Registry.action Registry.user Registry.dest

| “drop_dm_object_name(Registry)"

| “security_content_ctime(firstTime)"

| “security_content_ctime(lastTime)"

| “windows_modify_registry_dontshowui_filter"

New Search SR
| tstats 'security_content_summariesonly’ count min(_time) as firstTime max(_time) as lastTime from datamodel=Endpoint.Registry

where Registry.registry_path = "#*\\SOFTWARE\\Microsoft\\Windows\\Windows Error Reporting\\DontShowUI" Registry.registry_value data = @x80000081

by Registry.registry_path Registry.registry_value_name Registry.registry_value_data Registry.process_guid Registry.action Registry.user Registry.dest

| “drop_dm_object_name(Registry)

| "security_content_ctime(firstTime)"

| ‘security_content_ctime(lastTime)
+ 1event (23/11/2023 08:26:00.000 to 23/11/2023 09:26:07.000) No Event Sampling * Job v
Events (1) Patterns Statistics (1) Visualization
20 Per Page v 7 Format Preview v

o e action ~ '

registry_path & # registry_value_name $ registry_value_data s process_guid & 7 - user / dests # count#
HKU\S-1-5-21-217062234-2484139415-3727922708- DentShowUT exoeeseeel {@BACABB2-1075-655F- medified Administrater ar-win- 1
500\SOFTWARE \Microsof t\Windows\Windows Error Reporting\DontShowUI EB@1-000002002903) 2.attackrange.local

Figure 18: Detection Test 3

Overall, the DarkGate Analytic Story introduces 41 detections across MITRE ATT&CK
techniques. The table below provides details on the indicators of compromise (IOCs) the
Splunk Threat Research Team analyzed to develop the analytic story, which were the
DarkGate phishing attachment and two loader hashes.

SHA256 Description

7257b4ccec0ceb27b6fb141ce12c8dfb8a401d3edfaeca12699561eccdaba23e JE41200-
OCT26.pdf

7a92489050089498d6ec05fb7bdfad37da13bb965023d126¢c41789c5756e4e02 | 146129.msi

16/21

https://research.splunk.com/stories/darkgate_malware/

8b6c6c007efa8e1a7da241564142f8a8a934dcced51c7e522cdd86292e81ead7 | Another
.msi
darkgate
loader

In Summary

By understanding DarkGate malware’s behaviors, the Splunk Threat Research Team was
able to generate telemetry and datasets to develop and test Splunk detections to help defend
against and respond to this threat. Security analysts, blue teamers and Splunk customers
can use the insights and detections described in this blog to discover DarkGate tactics,
techniques and procedures potentially being used by threat actors and adversaries in their
environments.

Early detection of DarkGate activities enables prompt containment and remediation,
mitigating potential damage and preventing further propagation. Collaborative sharing of
threat intelligence across security communities is crucial to enhance collective defense
strategies. Continuous monitoring, alongside updated defense mechanisms, is essential to
keep pace with DarkGate's evolving tactics and ensure robust protection against its threats.

Learn More

You can find the latest Splunk content about security analytic stories on GitHub and in
Splunkbase. Splunk Security Essentials also has all these detections now available via push
update.

For a full list of security content, check out the release notes on Splunk Docs.

Feedback

Any feedback or requests? Feel free to put in an issue on Github and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions if you
need an invitation to our Splunk user groups on Slack.

Contributors

We would like to thank Teoderick Contreras and Michael Haag for authoring this post and the
entire Splunk Threat Research Team for their contributions, including Mauricio Velazco, Lou
Stella, Bhavin Patel, Rod Soto, Eric McGinnis, and Patrick Bareiss.

17/21

https://github.com/splunk/security-content/releases/tag/v3.12.0
https://splunkbase.splunk.com/app/3449/
https://splunkbase.splunk.com/app/3435/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC
https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
https://twitter.com/tccontre18
https://twitter.com/M_haggis
https://twitter.com/mvelazco
https://twitter.com/ljstella
https://twitter.com/hackpsy
https://twitter.com/rodsoto
https://twitter.com/SnekCharmerr
https://twitter.com/bareiss_patrick

Digital Resilience
Pays Off

Research reveals every organization suffers from disruption.
Investing in critical capabilities enables some to win.

‘ {h

Digital Resilience Pays Off
Download this e-book to learn about the role of Digital Resilience across enterprises.

Download Now

Splunk Threat Research Team

18/21

https://www.splunk.com/en_us/form/digital-resilience-pays-off.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html

The Splunk Threat Research Team is an active part of a customer’s overall defense strategy
by enhancing Splunk security offerings with verified research and security content such as
use cases, detection searches, and playbooks. We help security teams around the globe
strengthen operations by providing tactical guidance and insights to detect, investigate and
respond against the latest threats. The Splunk Threat Research Team focuses on
understanding how threats, actors, and vulnerabilities work, and the team replicates attacks
which are stored as datasets in the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by sharing
our work with the community via conference talks, open-sourcing projects, and writing white
papers or blogs. You will also find us presenting our research at conferences such as
Defcon, Blackhat, RSA, and many more.

Read more Splunk Security Content.

Related Articles

Security 6 Min Read

Listen To Those Pipes: Part 1

In this Hunting with Splunk episode (part 1 or 2), we focus on, you guessed it, pipes. Pipes
are a form of inter-process communication (IPC), which can be used for abuse just like
processes can.

Security 2 Min Read

Staff Picks for Splunk Security Reading July 2022

Welcome to the Splunk staff picks blog. Each month, Splunk security experts curate a list of
presentations, whitepapers, and customer case studies that we feel are worth a read.

About Splunk

The Splunk platform removes the barriers between data and action, empowering
observability, IT and security teams to ensure their organizations are secure, resilient and
innovative.

19/21

https://github.com/splunk/attack_data/
https://github.com/splunk/security_content
https://www.splunk.com/en_us/blog/security.html
https://www.splunk.com/en_us/blog/security/listen-to-those-pipes-part-1.html
https://www.splunk.com/en_us/blog/security.html
https://www.splunk.com/en_us/blog/security/staff-picks-for-splunk-security-reading-july-2022.html

Founded in 2003, Splunk is a global company — with over 7,500 employees, Splunkers
have received over 1,020 patents to date and availability in 21 regions around the world —
and offers an open, extensible data platform that supports shared data across any
environment so that all teams in an organization can get end-to-end visibility, with context, for
every interaction and business process. Build a strong data foundation with Splunk.

>

Learn more about Splunk

21/21

https://www.splunk.com/en_us/about-us/why-splunk.html

