NoaBot Botnet - Sandboxing with ELFEN and Analysis

@ nikhilh-20.github.io/blog/noabot_botnet/

Metadata

SHA256: b5e4c78705d602c8423b05d8cd758147fa5hcd2ac9asfereb16a07ab46c82F07
VT link

Table of Contents

Family Introduction

NoaBot is a Mirai-based botnet and possesses most of the original Mirai botnet’s capabilities.

Its source code contains noticeable differences like the spreader is based in SSH and not
Telnet. Akamai detected the NoaBot campaign in early 2023.

The sample analyzed in this post is an ELF executable targeted towards the MIPS 32-bit,
little-endian architecture.

Sandboxing with ELFEN

Generally, a malware analyst performs sandboxing early in their workflow. The purpose of
sandboxing is to quickly get a general idea of the malware sample’s capabilities - does it
communicate over the network or encrypt files or establish persistence, etc. This information
is useful in determining the next steps in the analysis workflow. | built the ELFEN sandbox to
analyze Linux malware (file type: ELF) and provide this information. It is open-source and
easy to set up.

Detonation

Unless it is known, a sample is usually submitted to a sandbox without any command-line
arguments.

1/8

https://nikhilh-20.github.io/blog/noabot_botnet/
https://www.virustotal.com/gui/file/b5e4c78705d602c8423b05d8cd758147fa5bcd2ac9a4fe7eb16a07ab46c82f07/detection
https://github.com/nikhilh-20/ELFEN

Upload Sample

Browse...

Upload Dependencies

Browse... No files selected.

Machine

Execution Time

Execution Arguments

Execution Arguments

Userland Trace? =

Enable Internet Access? =

Submit

The analysis result summary is shown in the snap below:

Start Time End Time

2024-01-13 11:23:27 UTC 2024-01-13 11:26:31 UTC

MD5 SHA1

2Be4fas5chf05dB8393c82Ffaborbafe €0750416504260075521742a3be829¢3317b6db7

Architecture Endian

MIPS Little

Command-line Score

Jniwzziod 30: Suspicious

Console Output €2 Configuration

uClibc Compilation

Task Status

SHA256

bSe4c78705d602c8423b05d8cd 758147 Fasbcd2ac9adfeTeb16a07aba6cB2FOT

Bitness

32

Family

The sample is compiled with uClibc, and more specifically, with a version between vo.9.21-
v0.9.33.2 as evidenced by the string, npxxoudifFeEgGaAcSncs[. ELFEN detects this open-

source library usage.

https://github.com/kraj/uClibc

Yara:open_source_libs:Linux_OpenSource_uClibc_1 Detects possible usage of code from uClibc between v 332 2: Obtain Capabilities: Tool Nikhil Hegde <kaldo9>

Brute-Forcing Credentials

ELFEN generates process memory dumps during detonation. Besides extracting printable
strings from the dumps, ELFEN also applies Yara rules on them. Some in-memory strings in
the analysis hint at credentials brute-forcing

danielle
rodney
vubsr&esH#2

admin!@#123

nsBaselrl

ELFEN detects the presence of well-known password patterns through a Yara rule.

MemYara: cGeneric_BruteFo 30 Detecks presence of well-known password patterns T1110.001: Brute Force: Password Guessing Mikhil Hegde

<kaldo9>

Persistence through Cron

The sample establishes persistence through a cron job that runs the sample every time the
system reboots. The crontab file per user is located under the directory,
/var/spool/cron/crontabs. ELFEN detects it as a dropped file and makes it available to
the user for downloading. In this case, the sample also sets up command-line parameters
when it runs through the cron job.

$ cat root
@reboot ./8zpevaQk "$mimic|fuck" noa

ELFEN traces the crontab invocation and detects it:

161 b'BzpeVaQk'

Detects usage of crontab heduled Task/Job: Cron

Accessing Secrets

3/8

https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN

The sample looks for a variety of secret information such as bash history, SSH private keys
and user accounts information. Curiously, the sample does not seem to do anything
(read/write) with the found files. A gap in tracing? Nevertheless, an analyst can likely make
the assumption that the secret information is leveraged in some manner.

ELFEN detects this behavior:

FileOps:BashHisto: =13 30 Detects access to .bash_history File tha! i 552.00 1secured Credentials: Bash History

FileOps:55HPrivatek: 55 30 et C ek 5 : Unsecured Credentials:

Detects access to /et conkains user
s information

Accessing Bash History

The sample looks for .bash_history files at various locations. This file records a history of
the commands that a user has entered in the Bash shell. ELFEN traces this behavior.

b'nginx
b'nginx' open File_path: b'/root/
Flags: 0
b'nginx’
b'nginx
b'nginx’
b'nginx"
b'nginx’
b'nginx"
b'nginx’
b'nginx"
b'nginx'
b'nginx

b'nginx'

b'nginx

b'nginx" Fd:3
cmd: 4102
arg: 0

Fd:4

b'nginx’

Accessing SSH Private Keys

The sample looks for user SSH private keys for multiple algorithms: RSA, DSA and Ed25519.
These keys are used for authenticating the user over SSH. ELFEN traces this behavior.

4/8

https://github.com/nikhilh-20/ELFEN

b'nginx’ readlink

b'nginx’

b'nginx’

b'nginx’

Accessing User Accounts Information

The sample looks for the /etc/passwd file. This contains information about user accounts on
the system. Note that benign executables access this file as well during runtime. However,
context is important. The sample also accesses other secrets, so access to /etc/passwd
should not be ignored. ELFEN traces this behavior.

16:33:55.654072 UTC 65 open File_path: b'/etc/passwd’
flags: 0

Process Name Change

The sample changes its process name to masquerade as a benign process. Specifically, the
new process name can be one of many popular utilities such as mongod, nginx, smbd, sshd,
etc. ELFEN traces and detects this behavior.

18:27:30.741831 UTC 158 b"HVpZ9arv'
: b'smbd

: Mone

4: Mone

: Mone

Process:NameChange 30 Detects process name change through pretl()

Network Communications

Scanning through SSH

The sample scans ports 22 and 2222 (popular alternate port for SSH) for over 4000 IPv4
addresses. ELFEN traces this behavior. The original Mirai botnet spread through Telnet.
Researchers at Akamai reported that NoaBot uses SSH.

5/8

https://github.com/nikhilh-20/ELFEN

connect

connect

connect

connect

connect

connect

ip:8.888

connect
Family: 0
ip: 182.164.119.71

connect

connect

ELFEN also captures network traffic into a PCAP and makes it available to the user for
downloading. If the remote port is accepting connections, the sample sends a malformed
SSH packet early in the SSH handshake. It contains the string, hi.

679 0.463945 10.0.2.15 149.162.20.22 TCP 50816 — 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=311117903 TSecr=0 WS=

1152 0.749972 149.162.20.22 10.0.2.15 TCP 22 - 50816 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 —
1153 0.750105 10.0.2.15 149.162.20.22 TCP 50816 — 22 [ACK] Seq=1 Ack=1 Win=64240 Len=0
1549 1.028154 149.162.20.22 10.0.2.15 SSH server: Protocol (SSH-2.0-0penSSH_5.3)
1550 1.028244 10.0.2.15 149.162.20.22 TCP 50816 — 22 [ACK] Seq=1 Ack=22 Win=64219 Len=0
11563 6.682330 10.0.2.15 149.162.20.22 client: Encrypted packet (len=3)
11564 6.682940 149.162.20.22 10.0.2.15 TCP 22 - 50816 [ACK] Seq=22 Ack=4 Win=65535 Len=0
16592 13.449190 10.0.2.15 149.162.20.22 TCcP 50816 - 22 [FIN, ACK] Seq=4 Ack=22 Win=64219 Len=0
16593 13.449718 149.162.20.22 10.0.2.15 TCP 22 - 50816 [ACK] seq=22 Ack=5 Win=65535 Len=0
] 3
» Frame 11563: 57 bytes on wire (456 bits), 57 bytes captured (456 bits) 52 55 Ga 00 02 02 52 54 00 12 34 56 08 00 45 00 RU RT --4V--E
» Ethernet II, Src: RealtekU_12:34:56 (52:54:00:12:34:56), Dst: 52:55:0a:00:02:02 (00 2b dd ff 40 00 40 06 a7 06 Ga 00 02 of 95 a2 +-0-@
» Internet Protocol Version 4, Src: 10.0.2.15, Dst: 149.162.20.22 14 16 c6 80 00 16 a8 9f 8b 92 00 la 5e 17 50 18 AP
» Transmission Control Protocol, Src Port: 50816, Dst Port: 22, Seq: 1, Ack: 22, Le 0030 fa db 3d c3 00 00 =

SSH Protocol

~ [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
[Malformed Packet (Exception occurred)]
[severity level: Error]
[Group: Malformed]

| observed that the sample does not send its SSH identification string first, as is usual in a
normal SSH handshake. Instead, it waits for the server to send its identification string. It then
replies with the malformed SSH packet.

My hypothesis is that the sample is trying to capture the server SSH identification string.
Perhaps, to check if it's vulnerable to a known exploit. It then sends the malformed SSH
packet (the specific string, hi is irrelevant) to possibly avoid triggering any timeouts or RST
packets from the server which may draw suspicion on server-side defenses. As seen in the
snap above, the connection gracefully terminates with a FIN-ACK-ACK packet sequence.

C2 Domain

The sample reaches out to its C2, mimicmaster[.]Jonline, which is currently unavailable.

6/8

https://github.com/nikhilh-20/ELFEN

10.000000 10.0.2.15 8.8.8.8 DNS 78 Standard query 0xf2b@ A mimicmaster.online
55 0.055191 8.8.8.8 10.0.2.15 DNS 78 Standard query response 0xf2b@ Refused A mimicmaster.online

From its Whois records, it can be seen that the domain is currently suspended.

mimicmaster.online

whois information
DNS Records Diagnostics

cache expires in 23 hours, 59 minutes and 13 seconds

Registrar Info

MName Hostinger Operations, UAB

Whois Server whois.hostinger.com

Referral URL hitps://www.hostinger.com

Status clientTransferProhibited https://icann.org/epp#clientTransferProhibited

Important Dates

Expires On 2024-04-02
Registered On 2023-04-02
Updated On 2023-06-02

Name Servers

ns1.verification-hold.suspended-domain.com 127.0.0.1

ns2.verification-hold.suspended-domain.com 127.0.0.1

The last known IPv4 address for the domain was 185[.]193.126.118 as seen on VT.

7/8

Last DNS records (@

Record type TTL Value
[~ 14400 185.193.126.118 |
+ CAA 14400 letsencrypt.org
+ CAA 14400 COModoca.com
+ CAA 14400 letsencrypt.org
+ CAA 14400 digicert.com
+ CAA 14400 globalsign.com
+ CAA 14400 digicert.com
+ CAA 14400 comodoca.com
+ CAA 14400 globalsign.com
M5 214600 nsl.dns-parking.com
MS 21600 ns2.dns-parking.com
+ S04 35600 nsl.dns-parking.com

ELFEN performs protocol analysis on the captured network traffic. At this point, only DNS
protocol analysis is supported.

Timestamp Query domain Query Type Query Class Response Type Response Class Response TTL (in seconds) Response Data

mimicmaster.online

Summary

The NoaBot is yet another Mirai-based botnet, except it has notable differences in its
capabilities like the SSH spreader. The main goal of this analysis was to demonstrate the
usage of the ELFEN sandbox to quickly get insights into a given malware sample.

ELFEN supports features such as:

* Analysis and detection of Linux malware targeting x86-64, ARMv5, MIPS and PowerPC
architectures.

o Tracing files, processes, network-related syscalls and 1ibc string-related functions.

o PCAP capture and protocol analysis.

e Memory dumps and capturing dropped files

e and more!

If you've not already, give ELFEN a try!

References

8/8

https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN
https://github.com/nikhilh-20/ELFEN

