NoaBot Botnet - Sandboxing with ELFEN and Analysis

mikhilh-20.github.io/blog/noabot_botnet/

Metadata

SHA256: b5e4c78705d602c8423b05d8cd758147fa5bcd2ac9a4fe7eb16a07ab46c82f07 VT link

Table of Contents

Family Introduction

NoaBot is a Mirai-based botnet and possesses most of the original Mirai botnet's capabilities. Its source code contains noticeable differences like the spreader is based in SSH and not Telnet. Akamai detected the **NoaBot** campaign in early 2023.

The sample analyzed in this post is an ELF executable targeted towards the MIPS 32-bit, little-endian architecture.

Sandboxing with ELFEN

Generally, a malware analyst performs sandboxing early in their workflow. The purpose of sandboxing is to quickly get a general idea of the malware sample's capabilities - does it communicate over the network or encrypt files or establish persistence, etc. This information is useful in determining the next steps in the analysis workflow. I built the <u>ELFEN</u> sandbox to analyze Linux malware (file type: ELF) and provide this information. It is open-source and easy to set up.

Detonation

Unless it is known, a sample is usually submitted to a sandbox without any command-line arguments.

	Upload Sample
Browse	b5e4c78705d602c8423b05d8cd758147fa5bcd2ac9a4fe7eb16a07ab46c82f07
	The main ELF binary to analyze
	Upload Dependencies
Browse	No files selected.
	Dependencies will be placed in the same directory as the main sample
	Machine
Auto Select	
	Select the machine image to use for dynamic analysis
	Execution Time
60s	
	Number of seconds for which to perform dynamic analysis
_	Execution Arguments
Execution /	
Command	d-line arguments (max length: 512) that will be provided to the main sample. ESXi-related files exist in /vmfs/volumes
	Userland Trace? 🛛 🖉 Perform userland tracing
	Enable Internet Access? 🛛 🖉 Enable internet access in sandbox
	Submit

The analysis result summary is shown in the snap below:

Start Time	End Time	Task Status
2024-01-13 11:23:27 UTC	2024-01-13 11:26-31 UTC	
MD5	SHA1	SHA256
28e4fa55cbf05d88393c82ff8b9fb4f4	c0750416504a60075521742a3be829c3317b6db7	b5e4c78705d602c8423b05d8cd758147fa5bcd2ac9a4fe7eb16a07ab46c82f07
Architecture	Endian	Bitness
MIPS	Litte	
Command-line	Score	Family
./niWzzl0d	30: Suspicious	
Console Output	C2 Configuration	Notes
	105 154 55 161 2222, 123 187 184, 11 22, 165 181 38 123 2222, 41.170.239 7-2222, 115 78, 175 182.22, 17.43, 69, 6622, 145.8 3 197 239 2222, 87 21 130 020 2222, 110 171 248 6922, 65 187 44 22122, 213 164 128 13522, 42.117 147 5462, 201 141 07 27 27 27 27 14 19 16 27 27 27 27 27 16 17 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	

uClibc Compilation

The sample is compiled with <u>uClibc</u>, and more specifically, with a version between v0.9.21-v0.9.33.2 as evidenced by the string, npxXoudifFeEgGaACSncs[. ELFEN detects this open-source library usage.

Brute-Forcing Credentials

<u>ELFEN</u> generates process memory dumps during detonation. Besides extracting printable strings from the dumps, <u>ELFEN</u> also applies Yara rules on them. Some in-memory strings in the analysis hint at credentials brute-forcing

danielle	
rodney	
vutsr&%\$#2	
admin!@#123	
qj o	
nsBaseUrl	
gretchen	
vd{x&%\$	
gdf{	
admin@321	

ELFEN detects the presence of well-known password patterns through a Yara rule.

	MemYara:generic:Generic_BruteForceCredentials	30	Detects presence of well-known password patterns	T1110.001: Brute Force: Password Guessing	Nikhil Hegde <ka1do9></ka1do9>
--	---	----	--	---	-----------------------------------

Persistence through Cron

The sample establishes persistence through a cron job that runs the sample every time the system reboots. The crontab file per user is located under the directory,

/var/spool/cron/crontabs. <u>ELFEN</u> detects it as a dropped file and makes it available to the user for downloading. In this case, the sample also sets up command-line parameters when it runs through the cron job.

```
$ cat root
@reboot ./8zpeVaQk "$mimic|fuck" noa
```

ELFEN traces the crontab invocation and detects it:

14:38:20.962005 UTC	:38:20.962005 UTC 161 b'8zpeVaQk' execve		exec_path: b" arg1: b" arg2: b'(crontab -l; printf \'@reboot ./8zpeVaQk "\$mimic fuck" noa\\n\') cront						
Process:CrontabExecve	30		Detects usage of crontab	T1053.003: Scheduled Task/Job: Cron	Nikhil Hegde <ka1do9></ka1do9>				

Accessing Secrets

The sample looks for a variety of secret information such as bash history, SSH private keys and user accounts information. Curiously, the sample does not seem to do anything (read/write) with the found files. *A gap in tracing?* Nevertheless, an analyst can likely make the assumption that the secret information is leveraged in some manner.

ELFEN detects this behavior:

FileOps:BashHistoryAccess	30	Detects access to .bash_history file that contains Bash shell commands history	T1552.003: Unsecured Credentials: Bash History	Nikhil Hegde <ka1do9></ka1do9>
FileOps:SSHPrivateKeysAccess	30	Detects access to SSH private keys	T1552.004: Unsecured Credentials: Private Keys	Nikhil Hegde <ka1do9></ka1do9>
FileOps:UserAccountsInfoAccess	10	Detects access to /etc/passwd file that contains user accounts information	T1003.008: OS Credential Dumping: /etc/passwd and /etc/shadow	Nikhil Hegde <ka1do9></ka1do9>

Accessing Bash History

The sample looks for .bash_history files at various locations. This file records a history of the commands that a user has entered in the Bash shell. ELFEN traces this behavior.

16:33:55.654521 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.656703 UTC	165	b'nginx'	open	file_path: b'/root/.ssh/id_rsa' flags: 0	4101
16:33:55.669735 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.673843 UTC	165	b'nginx'	open	file_path: b'/root/.ssh/id_ed25519' flags: 0	4101
16:33:55.674727 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.674915 UTC	165	b'nginx'	open	file_path: b'/root/.ssh/id_dsa' flags: 0	4101
16:33:55.676199 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.676387 UTC	165	b'nginx'	open	File_path: b'/usr/sbin/.bash_history' flags: 0	-2
16:33:55.676480 UTC	165	b'nginx'	open	file_path: b'/bin/.bash_history' flags: 0	-2
16:33:55.676524 UTC	165	b'nginx'	open	file_path: b'/dev/.bash_history' flags: 0	-2
16:33:55.676547 UTC	165	b'nginx'	open	file_path: b'/bin/.bash_history' flags: 0	-2
16:33:55.676583 UTC	165	b'nginx'	open	file_path: b'/var/spool/mail/.bash_history' flags: 0	-2
16:33:55.677391 UTC	165	b'nginx'	open	file_path: b'/var/www/.bash_history' flags: 0	-2
16:33:55.677547 UTC	165	b'nginx'	open	File_path: b'/var/.bash_history' flags: 0	-2
16:33:55.683532 UTC	158	b'nginx'	fcntl	fd: 3 cmd: 4102 arg: 0	
16:33:55.683547 UTC	158	b'nginx'	fcntl	fd: 4 cmd: 4102 arg: 4294967295	
16:33:55.687050 UTC	165	b'nginx'	open	File_path: b'/home/.bash_history' flags: 0	-2

Accessing SSH Private Keys

The sample looks for user SSH private keys for multiple algorithms: RSA, DSA and Ed25519. These keys are used for authenticating the user over SSH. ELFEN traces this behavior.

16:33:55.653685 UTC	165	b'nginx'	readlink	file_path: b'/proc/168/exe' buffer: b'/root/guild/tHGhQIHC'	20
16:33:55.654072 UTC	165	b'nginx'	open	File_path: b'/etc/passwd' Flags: 0	4101
16:33:55.654521 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.656703 UTC	165	b'nginx'	open	file_path: b'/root/.ssh/id_rsa' flags: 0	4101
16:33:55.669735 UTC	165	b'nginx'	open	file_path: b'/root/.bash_history' flags: 0	4101
16:33:55.673843 UTC	165	b'nginx'	open	file_path: b'/root/.ssh/id_ed25519' flags: 0	4101
16:33:55.674727 UTC	165	b'nginx'	open	file_path: b/root/.bash_history' flags: 0	4101
16:33:55.674915 UTC	165	b'nginx'	open	file_path: b/root/.ssh/id_dsa' flags: 0	4101

Accessing User Accounts Information

The sample looks for the /etc/passwd file. This contains information about user accounts on the system. Note that benign executables access this file as well during runtime. However, context is important. The sample also accesses other secrets, so access to /etc/passwd should not be ignored. ELFEN traces this behavior.

16:33:55.654072 UTC	165	b'nginx'	open	file_path: b'/etc/passwd'	4101
				flags: 0	

Process Name Change

The sample changes its process name to masquerade as a benign process. Specifically, the new process name can be one of many popular utilities such as mongod, nginx, smbd, sshd, etc. ELFEN traces and detects this behavior.

			arg2: b'smbd' arg3: None arg4: None arg5: None
Process:NameChange	Detects process name	change through prctl()	T1036: Masquerading Nikhil He <ka1< td=""></ka1<>

Network Communications

Scanning through SSH

The sample scans ports 22 and 2222 (popular alternate port for SSH) for over 4000 IPv4 addresses. <u>ELFEN</u> traces this behavior. The original Mirai botnet spread through Telnet. Researchers at Akamai reported that NoaBot uses SSH.

18:27:38.649658 UTC	168 b'smbd'	connect	fd: 599 family: 0 ip: 140.69.21.212 port: 22	-149
18:27:38.652998 UTC	168 b'smbd'	connect	Fd: 600 family: 0 jp: 10.2.3.1.149.177 port: 22	-149
18:27:38.654992 UTC	168 b'smbd'	connect	fd: 601 family: 0 ip: 1802(51:19:8 port: 22	-149
18:27:38.656706 UTC	168 b'smbd'	connect	Fd: 602 Family: 0 ip: 158:4671.32 port: 22	-149
18:27:38.658983 UTC	168 b'smbd'	connect	Fd: 603 Family: 0 ip: 63: 238: 0.94 port: 22	-149
18:27:38.659993 UTC	158 b'smbd'	socket	domain: 2 type: 1 protocol: 0	4102
18:27:38.664741 UTC	158 b'smbd'	connect	Fd: 4102 Family: 0 ip: 8.8.8 port: 53	0
18:27:38.671217 UTC	168 b'smbd'	connect	fd: 604 family: 0 ip: 182.19.71 port: 22	-149
18:27:38.672426 UTC	168 b'smbd'	connect	fd: 605 family: 0 ip: 148.102.115.241 port: 22	-149
18:27:38.675391 UTC	168 b'smbd'	connect	fd: 606 family: 0 ip: 34.141.159.238 port: 22	-149

<u>ELFEN</u> also captures network traffic into a PCAP and makes it available to the user for downloading. If the remote port is accepting connections, the sample sends a malformed SSH packet early in the SSH handshake. It contains the string, hi.

679 0.463945	10.0.2.15	149.162.20.22	TCP	50816 → 22 [[SYN] S	Seq=0	Win=64240	Len=0 M	ISS=1460	SACK_	_PERM	TSval=	31111790	3 TSecr=0	WS=
1152 0.749972	149.162.20.22	10.0.2.15	TCP	22 → 50816 [SYN, A	ACK] S	Seq=0 Ack=	1 Win=65	535 Lei	n=0 MSS	5=1460				_
1153 0.750105	10.0.2.15	149.162.20.22	TCP	50816 → 22 [[ACK] S	Seq=1	Ack=1 Win	=64240 l	en=0						
1549 1.028154	149.162.20.22	10.0.2.15	SSH	Server: Prot	locol ((SSH-2	2.0-OpenSS	H_5.3)							
1550 1.028244	10.0.2.15	149.162.20.22	TCP	50816 → 22 [[ACK] S	Seq=1	Ack=22 Wi	n=64219	Len=0						
11563 6.682330	10.0.2.15	149.162.20.22	SSH	Client: Encr	ypted	packe	et (len=3)								
11564 6.682940	149.162.20.22	10.0.2.15	TCP	22 → 50816 [
16592 13.449190	10.0.2.15	149.162.20.22	TCP	50816 → 22 [[FIN, A	ACK] S	Seq=4 Ack=	22 Win=0	64219 Le	en=0					
16593 13.449718	149.162.20.22	10.0.2.15	TCP	22 → 5 0816	[ACK] S	Seq=22	2 Ack=5 Wi	n=65535	Len=0						
															- F
Frame 11563: 57 by	ytes on wire (456 k	oits), 57 bytes ca	ptured (456	bits)	00	000	52 55 0a (0 02 02	52 54	00 12	34 56	6 08 00	45 00	RU····RT	· · 4V · ·
Ethernet II, Src:	RealtekU_12:34:56	(52:54:00:12:34:5	6), Dst: 52	:55:0a:00:02:0	92 (00	010	00 2b dd 1	f 40 00	40 06	a7 06	0a 00) 02 Of	95 a2	·+··@·@·	
Internet Protocol	Version 4, Src: 10	0.0.2.15, Dst: 149	.162.20.22		00	020	14 16 C6 8	80 00 16	a8 9f	8b 92	00 1a	a 5e 17	50 18		٨ .
Transmission Conti	rol Protocol, Src F	Port: 50816, Dst P	ort: 22, Se	q: 1, Ack: 22,	, LE 00	030	fa db 3d d	3 00 00	68 69	00				··=··hi	
SSH Protocol															
[Malformed Packet:	: SSH]														
 [Expert Info (Er 	ror/Malformed): Ma	lformed Packet (E)	ception oc	curred)]											
[Malformed Pac	ket (Exception occ	urred)]													
Severity leve															
Group: Malfor	med]														

I observed that the sample does not send its SSH identification string first, as is usual in a normal SSH handshake. Instead, it waits for the server to send its identification string. It then replies with the malformed SSH packet.

My hypothesis is that the sample is trying to capture the server SSH identification string. Perhaps, to check if it's vulnerable to a known exploit. It then sends the malformed SSH packet (the specific string, hi is irrelevant) to possibly avoid triggering any timeouts or RST packets from the server which may draw suspicion on server-side defenses. As seen in the snap above, the connection gracefully terminates with a FIN-ACK-ACK packet sequence.

C2 Domain

The sample reaches out to its C2, mimicmaster[.]online, which is currently unavailable.

From its Whois records, it can be seen that the domain is currently suspended.

mimicmaster.online whois information							
Whois DNS Records Diagnostics							
cache expires in 23 hours, 59 minutes and 13 seconds							
Registrar Info							
Name	Hostinger Operations, UAB						
Whois Server	whois.hostinger.com						
Referral URL	https://www.hostinger.com						
Status	clientTransferProhibited https://icann.org/epp#clientTransferProhibited						
Important Dates							
Expires On	2024-04-02						
Registered On	2023-04-02						
Updated On	2023-06-02						
Name Servers							
ns1.verification-hold.suspended-doma	ain.com 127.0.0.1						
ns2.verification-hold.suspended-doma	ain.com 127.0.0.1						

The last known IPv4 address for the domain was 185[.]193.126.118 as seen on VT.

Las	Last DNS records ①								
	Record type	TTL	Value						
	A	14400	185.193.126.118						
+	CAA	14400	letsencrypt.org						
+	CAA	14400	comodoca.com						
+	CAA	14400	letsencrypt.org						
+	CAA	14400	digicert.com						
+	CAA	14400	globalsign.com						
+	CAA	14400	digicert.com						
+	CAA	14400	comodoca.com						
+	CAA	14400	globalsign.com						
	NS	21600	ns1.dns-parking.com						
	NS	21600	ns2.dns-parking.com						
+	SOA	3600	ns1.dns-parking.com						

<u>ELFEN</u> performs protocol analysis on the captured network traffic. At this point, only DNS protocol analysis is supported.

Timestamp	Query domain	Query Type	Query Class	Response Type	Response Class	Response TTL (in seconds)	Response Data
08:54:47.637825	mimicmaster.online	А	IN	None	None	None	None

Summary

The NoaBot is yet another Mirai-based botnet, except it has notable differences in its capabilities like the SSH spreader. The main goal of this analysis was to demonstrate the usage of the <u>ELFEN</u> sandbox to quickly get insights into a given malware sample.

ELFEN supports features such as:

- Analysis and detection of Linux malware targeting x86-64, ARMv5, MIPS and PowerPC architectures.
- Tracing files, processes, network-related syscalls and <u>libc</u> string-related functions.
- PCAP capture and protocol analysis.
- Memory dumps and capturing dropped files
- and more!

If you've not already, give ELFEN a try!

References