
1/14

January 15, 2024

Hunting AsyncRAT & QuasarRAT
dfir.ch/posts/asyncrat_quasarrat/

15 Jan 2024

Introduction

Recorded Future writes in their Adversary Infrastructure Report 2023:

The top 5 malware families we detected this year are AsyncRAT, Quasar RAT, PlugX,
ShadowPad, and DarkComet. Interestingly, the top 2 detections are open-source, and the
last 3 are well-established tools, showing that our statement from last year’s report remains
true:

[The] high level of commodity tool use indicates that threat actors are more concerned with
blending in and being non-attributable rather than being undetectable, or have simply
determined that their targets are not likely to detect even these well-known tools.

Figure 1: Top 20 Remote Access Trojans (RATs) and backdoors, ranked according to the
number of unique Command and Control (C2) servers observed. (Source: Recorded Future)

https://dfir.ch/posts/asyncrat_quasarrat/
https://www.recordedfuture.com/
https://www.recordedfuture.com/2023-adversary-infrastructure-report


2/14

The final statement in the aforementioned quote is particularly interesting: […] have simply
determined that their targets are not likely to detect even these well-known tools. This post
combines and extends two longer threads previously shared on X (formerly Twitter) by me,
discussing AsyncRAT and QuasarRAT. It highlights techniques and indicators of compromise
(IOCs) that we, as defenders, can leverage to identify and hunt infections in our environment
caused by these two types of remote access trojans.

AsyncRAT

AsyncRAT is a prevalent Trojan executed at the end of a (potentially longer) infection chain
on target computers. HP Security and Trellix have recently reported that attackers have been
deploying AsyncRAT. Since the source code of AsyncRAT is publicly available, we obtained
a copy of the builder to scrutinize its features and build detection capabilities for this Remote
Access Trojan (RAT).

Several methods can be employed to identify endpoints infected with AsyncRAT:

Detection of standard Command and Control (C2) ports usage.
Search for persistence mechanisms.
Examination of Mutexes.
Last but not least, hunting for dropped DLL files.

Standard Command and Control (C2) Ports

The builder shows three default ports (6606, 7707, 8808) when assembling a new AsyncRAT
client. Within the same interface, users can input the C2 address, to which the AsyncRAT
client will establish a connection upon successful infection. Additionally, there is an option to
store the C2 address on Pastebin.

https://twitter.com/malmoeb/status/1555926311738171398
https://twitter.com/malmoeb/status/1559994785850658817
https://threatresearch.ext.hp.com/stealthy-opendocument-malware-targets-latin-american-hotels/#
https://trellix.com/en-us/about/newsroom/stories/threat-labs/targeted-attack-on-government-agencies.html
https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp


3/14

Figure 2: AsyncRat's default ports
Analysis of 1000 AsyncRAT samples from ThreatFox revealed that, as of January 2024, the
top three ports for the Command and Control (C2) address were consistently 6606, 7707,
and 8808. This indicates that many attackers did not take the effort to modify the default port
within the builder. Additionally, it was observed that all samples accessible on Bazaar utilized
a C2 port higher than 1024. This information might be helpful for hunts within the Firewall
logs (search especially for connections to IP-only domains connecting to a high-port - but
beware: this search might return many hits and, without the context of the process that
created the network connection, a daunting task).

To retrieve Indicators of Compromise (IOCs) from AsyncRAT samples on ThreatFox, we
used the following curl command:

curl -X POST https://threatfox-api.abuse.ch/api/v1/ -d '{ "query": "taginfo", "tag": 
"AsyncRAT", "limit": 1000 }'


Persistence

https://threatfox.abuse.ch/


4/14

In the builder, you can specify whether a persistence should be set up or not. When this
option is selected, you can define a filename and choose the directory where the payload will
be stored (per default, only two directories are available). However, as the source code is
available, expanding the selection to include additional paths should be a straightforward
task.

Figure 3: Installation directories

Mutex

AsyncRAT uses a mutex to detect an already infected system. The prefix of the mutex
“AsyncMutex_” was also mentioned in HP Security’s tweet, indicating that attackers use the
default settings in some cases (which is good for us defenders; read the section about Mutex
hunting below).

https://twitter.com/hpsecurity/status/1551918502528880644


5/14

Figure 4: Default Mutex

Assembly Information

Interestingly, we can “clone” the information about the binary from another binary for
blending in. In this example, I took the data from the legitimate PingCastleCloud binary - the
builder then used the same information for the malicious binary.



6/14

Figure 5: Tamper the assembly information
We can also force an obfuscation of the .NET code to slow down Reverse Engineering (I
haven’t looked into this feature).



7/14

Figure 6: Simple obfuscation mechanism
The sample generated through the outlined steps above comes straight to a VT score of 48
(as of the time when I initially posted the original tweets) - anything but unknown, also
detected by various YARA signatures.

Figure 7: VirusTotal results

Client information



8/14

After executing the AsyncRAT sample we built with the settings outlined above (in the
various reports and tweets referenced so far, AsyncRAT is run at the end of a longer
infection chain) on our lab machine, we see that our infected machine has reported back to
the controller.

Figure 8: Infected machines

Plugins

AsyncRAT now has various built-in functions that can further extend the initial access, such
as “Password Recovery”. If the function “Password Recovery” is selected, we see in the logs
that a DLL (Recovery.dll) was sent to the client.

Figure 9: Plugin recovery.dll sent to the client
Also, using other plugins, AsyncRAT sends specific files (dlls) to the client. I have yet to look
into how these plugins work under the hood, but that might be a topic for another blog post.



9/14

Figure 10: Sending other plugins to the client
Time for Velociraptor 😍 Utilisting the MTF-Hunt, we searched for the names of the plugins
transfered from the server to the infected machine and found the plugins placed directly
under the path C:\.

Figure 11: Velociraptors MFT Hunt
To get a list of all plugins available within AsyncRAT, browse to the public GitHub repo.

https://docs.velociraptor.app/
https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp


10/14

Figure 12: AsyncRAT's plugins
The LimeLogger plugin for recording keyboard strokes works fine, recording all keystrokes
on our test machine.



11/14

Figure 13: Logfile of the keylogger

Mutex Hunting

Using Velociraptor’s Mutants-Hunt and the string “AsyncMutex_” (the prefix of the Mutex), we
can also find infected machines.

Figure 14: Velociraptors Mutants Hunt

Persistence techniques

AsyncRAT distinguishes between two types of persistence. Either the installer is run with
administrative privileges, in which case a Scheduled Task is created. Or a new entry in the
Run Key is created when the installer run as an unprivileged user. Below is the relevant code
(highlighted with the red square is the code that creates the Scheduled Task).

https://github.com/NYAN-x-CAT/AsyncRAT-C-Sharp/blob/5937e381f9569f2568c5fcc6c00c99cbb8198805/AsyncRAT-C%23/Client/Install/NormalStartup.cs


12/14

Figure 15: The code that creates the Scheduled Task
In Figure 16, the sample was installed as an unprivileged user, resulting in a new run key.

Figure 16: Run-Key
The THOR APT scanner from from Nextron findes AsyncRAT samples based on the Rule
Reversed_String - see Figure 17 for the relevant code. Probably noisier than stealthier 🤔

Figure 17: Reversed Registry Key Path

Figure 18: Rule Reversed_String from THOR Scanner
Below is the newly created Scheduled Task (installation with admin rights) - the executable is
again placed in AppData\Roaming (one of the two options in the builder).

Figure 19: The newly created Scheduled Task

https://www.nextron-systems.com/


13/14

QuasarRAT

QuasarRAT is another RAT we see periodically in our IR cases. It was also used against
NATO facilities in March 2023, as reported by Proofpoint.

We can hunt for

Detect the usage of standard C2 ports
Hunting for the persistence mechanisms
Mutexes
Last but not least, hunting for User-Agents

Qualys has published an excellent paper, Stealthy Quasar Evolving to Lead the RAT Race,
where the builder and much more details about Quasar are described in detail.

Standard C2 ports

In the client builder (which creates an executable used for the infection), the default port is
pre-configured to 4782.

Figure 20: Default port
On ThreatFox, we see that a quarter of the samples kept this default port. The other samples
use a different high port.

Figure 21: Default ports in the wild (Threatfox)

Mutex Hunting

We can create a “random” Mutex per client build, though random is not quite right, as the
structure of the mutex remains the same. 🤔

Figure 22: Default Mutex
With the following regex, we can find these generated mutexes and thus efficiently find
infected clients on the network:

[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$


Using the example of a recent sample on Bazaar, we look at the Mutexes logged by Joe
Security. So besides the default port also, the default mutex values are used in the wild.

Figure 23: Default Mutex in the wild
Utilising Velociraptor and the Mutants-Hunt with the following regex:

https://twitter.com/threatinsight/status/1504240694449225731
https://qualys.com/docs/whitepapers/qualys-wp-stealthy-quasar-evolving-to-lead-the-rat-race-v220727.pdf
https://threatfox.abuse.ch/
https://threatfox.abuse.ch/browse/malware/win.quasar_rat/
https://bazaar.abuse.ch/sample/9e6fa1f280864e2933528e17984bf2d448b003bda842145f34e63cc8a4b337ef/
https://www.joesandbox.com/analysis/1373796/0/html


14/14

(?-i)\\[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$


Which finds the infected machine in the lab 😎

Figure 24: Velociraptor's Mutants Hunt

User Agent

The hard-coded user agent string could be used for hunting or monitoring purposes. This
User Agent ist also part of the the Sigma rule Malware User Agent, mainted by the Nextron
Systems stuff.

Figure 25: Hardcoded User-Agent

Persistence techniques

Quasar uses the exact same persistence mechanisms as AsyncRAT, which we analyzed
above in depth. A run-key entry is created when the installation is performed under an
unprivileged user, or a new scheduled task is created with administrative credentials.

Figure 27: Quasar Persistence

https://github.com/quasar/Quasar/blob/16a4702d0e2064070ee7e6319bd708b786294820/Quasar.Client/IpGeoLocation/GeoInformationRetriever.cs
https://github.com/SigmaHQ/sigma/blob/master/rules/web/proxy_generic/proxy_ua_malware.yml

