
1/6

Fr4 January 10, 2024

Analysis of an Info Stealer — Chapter 2: The iOS App
medium.com/@icebre4ker/analysis-of-an-info-stealer-chapter-2-the-ios-app-0529e7b45405

Fr4

--

Introduction

This is the second part of the article series: “Analysis of an Info Stealer”. In this chapter, I will
analyze the iOS info stealer app, which was delivered through the phishing website
discussed in the preceding article. If you haven’t had the chance to read the first article and
you are curious about the distribution methods of this malicious app, you can catch up by
reading it here:

Preface

Reversing an iOS app presents its own set of challenges, distinguishing itself from the
process of reversing an Android app (that is definitely easier for a variety of factors). In light
of this distinction, I decided to create this article with a twofold objective:

To continue the analysis of this malicious campaign and examine the entire attack
chain.

https://medium.com/@icebre4ker/analysis-of-an-info-stealer-chapter-2-the-ios-app-0529e7b45405
https://medium.com/@icebre4ker?source=post_page-----0529e7b45405--------------------------------
https://medium.com/@icebre4ker?source=post_page-----0529e7b45405--------------------------------


2/6

But also to explain some basics and share some ‘tricks’ I use to speed up and improve
the efficiency of iOS app analysis

Technical Analysis

In the previous chapter, I showed the iOS app download process, highlighting the specific
use of an enterprise certificate. This certificate is installed before downloading the .ipa file
and is used by threat actors to verify the legitimacy of the app.

Figure 1 — Malicious app verified using an enterprise certificate

Now that the malicious app has been installed on the iPhone, the initial step is to dump the
.ipa file with frida dump in order to start the static analysis.

“A .ipa file is an iOS and iPadOS application archive file which stores an iOS/iPadOS
app. Files with the .ipa extension can be uncompressed by changing the extension to
.zip and unzipping.”

Static Analysis

After downloading and unzipping the .ipa file, the observed structure in Figure 2 (on the left)
reveals the main files for analysis. Specifically, I will focus on:

file that stores settings and other data in a key-value format (Figure 2 — on the right)
file, that is the Mach-O (Mach-Object) executable, which is a native format for
executables on macOS and iOS. The following file contains the code of the app.

Figure 2 — .ipa file structure (on the left) and the content of the Info.plist (on the right)

The file provides valuable information, including:

CFBundleDisplayName: Telegram Viewer is the user-visible name of the bundle,
visible on the Home screen in iOS
CFBundleExecutable: viewer is the name of the bundle’s executable file.
CFBundleIdentifier: com.cafe24.viewer is an identifier string that specifies the app
type of the bundle
CFBundleSupportedPlatforms: iPhoneOS specifies the platforms for which the app is
designed to run.
MinimumOSVersion: 14.0 specifies the minimum version of the operating system
required to run the app.
NSContactsUsageDescription: "" specifies a message that tells the user why the app
is requesting access to the user’s contacts. When the app is launched, users can
anticipate a prompt seeking permission to access contacts on their iPhone.

https://medium.com/@icebre4ker/analysis-of-an-info-stealer-chapter-1-the-phishing-website-80712d21fb3b
https://github.com/AloneMonkey/frida-ios-dump


3/6

In the context of iOS app development, the “CF” prefix stands for “Core Foundation.”
Core Foundation is a C-based framework in the macOS and iOS operating systems
that provides fundamental data types and services for macOS and iOS applications.
The “NS” prefix typically stands for “NextStep,” which refers to the original name of the
framework that evolved into Cocoa, the primary application framework on macOS and
iOS. Keys with the “NS” prefix are often related to various configurations and
permissions.

To analyze the viewer file, I utilized . Prior to delving into the code analysis, I used a Ghidra
script developed by Laurie Wired, named “SwiftNameDemangler.py”. This script helps
improve code readability and simplifies Swift code, making it more accessible for in-depth
examination. (If you have been dealing with reverse C++ code, you have most likely already
used the demangling feature).

Figure 3 — Comparison between “normal” and demangled decompiled code

Since the amount of code inside Ghidra is quite huge, strings are a good starting point to
begin the static analysis. From the analysis of the Info.plist file we have seen that the app
would access the user’s contacts, so the “” string is a good candidate.

Figure 4— String search inside Ghidra

Starting from this function (Figure 4) and using the “Find References to” feature of Ghidra, it
is possible to identify what should be the “core” function of the malware:
FUN_1000111e4(void) ; so let’s break it down.

The CNContactStore object represents the user’s contacts store database, and you
use it to fetch information from that database and save changes back to it.
authorizationStatusForEntityType returns the current authorization status to
access the contact data.

Figure 5 — Code of FUN_1000111e4 function

With these two lines of code, the malware checks whether it has access to the user’s
contacts, verifying if the required permission was granted during the app’s launch.

Going down a little bit in the code (Figure 6), it is possible to observe that:

CNContactStore see above
PTR__CNContactFamilyNameKey , PTR__CNContactGivenNameKey ,
PTR__CNContactPhoneNumberKey appear to be pointers to an object that represents the
key, the key and the key in theCNContact object.
CNContactFetchRequest is an object that defines the options to use when fetching
contacts.
initWithKeysToFetch creates a fetch request for the specified keys.

https://github.com/LaurieWired/iOS_Reverse_Engineering/blob/main/SwiftNameDemangler.py


4/6

Figure 6— Fetching contacts data code

In summary, this piece of code is fetching contacts data from the CNContactStore object,
and storing the result in a variable.

Another interesting string to search is “” in order to get the Command and Control (C2)
server’s URL but also other details such as the paths used, the parameters, etc.

Figure 7— String search inside Ghidra

In fact, analyzing the code, the following information can be extracted:

The URL of the C2 server is: https:]api.]telegraming.]pro
The paths used are: getregistertoken and getuploadtoken
The library is used to manage the HTTP communication. This information can also be
obtained by looking at the huge amount of references within the code or through
Ghidra’s “” window.

Figure 8 — Alamofire library

Dynamic Analysis

With an overview of the malware’s functionality gained from static analysis, let’s proceed to
the dynamic analysis using Frida, Objection and Burp, aiming to further analyze:

how the malware works “in action”
which directories and files are used
the network traffic

When launching the “TelegramViewer” app, users are presented with a prompt seeking
permission to access contacts, a behavior anticipated based on the earlier static analysis
conducted.

Figure 9 — Launching of the malicious app

If the user allows permission, they are then prompted to enter a phone number and is shown
a button labeled “Open Album.” It is worth noting that the use of the term “album” in this
context could possibly be attributed to a copy-and-paste error, particularly when considering
the distribution of other apps masquerading as secret album management apps.

Figure 10 — Malicious app “in action”

However once the button is pressed, the following POST requests are made:

/getregistertoken : the network, iphone model, victim phone number and iOS
version are sent to the C2 server

https://frida.re/
https://github.com/sensepost/objection
https://portswigger.net/burp


5/6

/getuploadtoken : for each POST request the data of a contact saved on the device
are sent. In particular the: first name, last name and phone number (as analyzed in the
static analysis section)

Figure 11 — Data sent to the C2 server

Another way to intercept communications and/or extract useful information is through Frida.
In particular, frida-trace is very useful for dynamic tracing of method calls. For instance, in
this case, we are aware that the app utilizes Alamofire to handle communication. By using
the following command, we can trace some methods of this library.

frida-trace -U "Telegram Viewer" -m "-[Alamofire.SessionDelegate URLSession*]."

The -m option is used to filter the methods that will be traced. It allows you to specify a
method signature pattern to match against. In this case, the pattern is "-
[Alamofire.SessionDelegate URLSession*].", indicating that the trace should include
methods of the Alamofire.SessionDelegate class that start with URLSession.

After running the command and the malicious app, Frida will auto-generate multiple
JavaScript files within a directory called __handlers__ . These scripts serve as a solid
starting point for editing and generating the necessary information as output.

Figure 12 — Example of output of modified __handlers__ script

Lastly, another interesting tool to use during dynamic analysis is Objection, which can be
utilized, for instance, to retrieve pertinent directories associated with the app by using the env
command. This will print out the locations of the applications Library, Caches and
Documents directories. Although in some cases it is possible to retrieve interesting files and
data, in this case I did not find any useful information :(

Figure 13 — Objection “env” command output

Conclusions

In conclusion, the analysis of the iOS info stealer app, discovered through the phishing
website outlined in the previous article, has unveiled how this malware is able to steal the
contacts and other personal information from the infected iPhone of the victims.

Lastly, I hope you’ll find this short article useful as a starting point to analyze an iOS malware
app. Stay tuned for the next article!

Indicators of Compromise (IOCs)

https://medium.com/@icebre4ker/analysis-of-an-info-stealer-chapter-1-the-phishing-website-80712d21fb3b


6/6

File Name: Telegram Viewer.ipa
Md5: 660ccad4b26abc543e64fe2319ae5771

iOS Mach-O Binary Name: viewer
 Md5: 47f2c25499473a82348d1a1568c6b591

C2 Server: https:]//api.]telegraming.]pro


