IcedID - Technical Malware Analysis [Second Stage]

© 0x0d4y.blog/icedid-technical-analysis/
January 9, 2024

In this report | will technical analyze the new IcedID malware, go deep through reverse
engineering, debugging and detection engineering.

Introduction

The IcedID is a banking malware design to steal financial information from your victims. The
IcedID malware is also know by MITRE ATT&CK as S0483, and has been around since
2017. The IcedID has been used by GOLD CABIN (also knows as TA551 by MITRE
ATT&CK), in a lot of campaign since 2017, but recently in a Covid-19 pandemic, they
execute a campaign of Phishing emails with malicious attachments (7st stage that download
the loader) to download and execute the IcedID.

Some public threat reports points to a modular capability of IcedID trojan, this makes this
malware family a greater evolution compare to Zeus malware. This modular capability of
IcedID is due to the fact that the malware downloads, through network communication with
command and control servers, new modules if necessary during the campaign.

In 2017, when IcedID emerge in the cyber scenario, has been observed the IcedID malware
was delivery through Emotet infections. Emotet has been a distribution of the elite malware
baking trojans, like Qbot and Dridex, and since 2017 the Iced/D was added in their list of
malware distribution.

Capabilities

In the samples that | will use as an objects of research for this article, | identified the
following MITRE ATT&CK Tactics and Techniques.

1/47

https://0x0d4y.blog/icedid-technical-analysis/
https://malpedia.caad.fkie.fraunhofer.de/details/win.icedid
https://attack.mitre.org/software/S0483/
https://attack.mitre.org/groups/G0127/
https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://malpedia.caad.fkie.fraunhofer.de/details/win.qakbot
https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex

ATT&CK Tatic

ATT&CK Technique

DEFENSE EVASION

Obfuscated Files or Information [T1027]

DEFENSE EVASION

Process Injection [T1055]

DEFENSE EVASION

Virtualization/Sandbox Evasion: System Checks
[T1497.001]

DEFENSE EVASION

Virtualization/Sandbox Evasion: Time Based Evasion
[T1497.003]

DISCOVERY Account Discovery [T1087]

DISCOVERY File and Directory Discovery [T1083]

DISCOVERY System Owner/User Discovery [T1033]

COMMAND AND Application Layer Protocol: Web Protocols [T1071.001]
CONTROL

Furthermore, it was identified that this samples, and members of its family, contain the
following capabilities according to Malware Behavior Catalog.

ANTI-BEHAVIORAL
ANALYSIS

Debugger Detection::Anti-debugging Instructions
[B0001.034]

COMMUNICATION

HTTP Communication::Create Request [C0002.012]
HTTP Communication::Get Response [C0002.017]
HTTP Communication::Read Header [C0002.014]
HTTP Communication::WinHTTP [C0002.008]

CRYPTOGRAPHY Encrypt Data::RC4 [C0027.009]
Encryption Key::RC4 KSA [C0028.002]
Generate Pseudo-random Sequence::RC4 PRGA
[C0021.004]

DATA Encode Data::XOR [C0026.002]

DEFENSE EVASION

Obfuscated Files or Information::Encoding-Standard
Algorithm [E1027.m02]

DISCOVERY Analysis Tool Discovery::Process detection [B0013.001]
File and Directory Discovery [E1083]
FILE SYSTEM Create Directory [C0046]

Read File [C0051]
Writes File [C0052]

Purpose of this Technical Article

2/47

http://maecproject.github.io/ema/

This is a technical article, which aims to analyze the IcedID second loader. This article will
not focus on network traffic analysis, mainly due to the fact that there are already excellent
articles written by techevo. You can access these articles by clicking here.

This analysis will understood as the study of WHAT and HOW /cedID executes its Tactics,
Techniques and Procedures. This type of analysis is performed through static analysis
through Reverse Engineering, and through dynamic analysis performed through a Debugger.

After performing such an analysis, this report will focus on two topics:

o What are the similarities between samples from different years?
o Development of Yara detection rules, with the aim of detecting IcedID infections.

Technical Analysis

In this article | will focus the analysis on an IcedID sample that was seen in 2020. However,
at the end of the technical analysis, we will analyze in more depth the similarities between
two more samples, from different years. Below you can see the SHA-256 hash from it, and
the link for download the sample.

76cd290b236b11bd18d81e75e41682208e4c0a5701ce7834a9e289ea9e06eb7e new_iced.exe

Link to download this sample, here.

This same sample has been executed into AnyRun Sandbox, but, the AnyRun don’t identify
this IcedID sample as a threat. The same sample has been executed into Triage Sandbox,
and it’s not identify at malicious too. This indicates the sample has a sandbox evasion
technique, to not be detected by sandbox or other detection methods.

Static Analysis

Now let’s start our analysis of this sample, and first, let’s identify some screening information
to understand the sample we have in hand.

Statically analyzing DLL imports, we can observe the import of two DLLSs:

o ole32.dll
¢ kernel32.dll

What catches our eye is the amount of kernel32.dll imports, but 67 functions is explicit
imported. This can confuses the analyst, when we are looking for binary packed pattern. But,
into the 67 imported functions, we can identify the VirtualProtectEx import.

3/47

https://twitter.com/techevo_
https://blog.techevo.uk/
https://bazaar.abuse.ch/sample/76cd290b236b11bd18d81e75e41682208e4c0a5701ce7834a9e289ea9e06eb7e/
https://app.any.run/tasks/3b6e46b9-552c-41bf-b366-46ce19f29811/
https://tria.ge/201217-ghp1yxjjnn
https://attack.mitre.org/techniques/T1497/
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex

#| OriginalFirstThunk| TimeDateStamp| ForwarderChain Name FirstThunk Hash| Name

00018918 00000000 00000000 00018aba 00012000 b9532845 KERNEL32.dll
1 00018a2c 00000000 00000000 00018ae4 00012114 ole32.dll

/

#l Thunkl Ordinal.l Hint| Name ’
0 00018a38 02ae|GetWindowsDirectoryA

1 00018a50 04b2|Sleep

2 00018a58 0400|RemoveDirectoryA

3 00018a6c | 04f0 VirtualProtectbx |

4 000718a80 0344 LocalAlloc

5 00018a8e 0284 | GetTempPathA

6 00018a%e 0348|LocalFree

7 00078aaa 00b5|CreateThread

8 00018f30 0052|CloseHandle

9 00018120 0524 | WriteConsoleW
10 00018f0c 0467 | SetFilePointerEx

The VirtualProtectEx API is often used by malware to modify memory protection in a
process (often to allow write or execution).

With the standard output, Capa cannot identify that sample is packed.

4/47

https://github.com/mandiant/capa

researcher@malwarelab:~$ capa new_iced.exe

md5

shal

sha256

| 17091a1e444f306b928d69f2b905bc8b

| 1078744833050626€9681c7c233c3a0963a0b559

76cd290b236b11bd18d81e75e41682208e4c0a5701ce7834a9e289ea9%e06eb7e

0s
format
arch

path

windows
pe
1386

/home/researcher/malware/new_iced.exe |

ATT&CK Tactic

ATT&CK Technique

DISCOVERY

File and Directory Discovery T1083

EXECUTION

Shared Modules T1129

MBC Objective

| MBC Behavior

DISCOVERY

| File and Directory Discovery [E1083]

5/47

| Capability

| Namespace

| contains PDB path
executable/pe/pdb |

| get common file path
interaction/file-system

| print debug messages
interaction/log/debug/write-event |

| get thread local storage value
interaction/process

| link many functions at runtime
linking/runtime-1linking |

| host-
| host-

| host-

This is probably due to the low entropy of the sample (despite the .text section being tagged

as packed, by DIE). High entropy is generally an easy indicator of using encryption in
samples. In this case, as we can see in the image below, the entropy is below 7.0.

Total—| —Status

ICCETI [T TTTTTTTT I bbt bbdgeidde) [[1]

Entropy | Bytes |

—~Regions
Offset Size Entropy| Status MName

00000000 00000400 2.59538 not packed PE Header
00000400 00070800 6.74437 packed Section(0)[".text']
00010c00 00007000 497474 not packed Section(1)[".rdata']
00017c00 00002200 5.28751 not packed Section(2)[".data']
00019e00 00008400 3.72828 not packed Section(3)['.rsrc']
00022200 00001800 6.41353 not packed Section{4)[.reloc']

From here, we need to make sure this is not a sample that is not packed. To do this, we will
dynamically analyze the sample, with the aim of discovering the existence of its unpacking

routine.

6/47

Unpacking with x32dbg — new_iced.exe

We saw in previous sections of this article, that any sandbox or tool, can be capable to
identify that this sample is packed, or even malicious. But, in our static analysis, we find the
VirtualProtect API call, and this API is widely used for unpacking process.

So, let’s diving in, and figure out that this sample is really packed or not, with the x32dbg.

On the x32dbg, we need to set some breakpoints on APIs, that is commonly used to run the
unpacking process. Are they:

A lot of others APIs can be used, but, this three is commonly used by packers.

As a precaution, we will set a breakpoint at IsDebuggerPresent in case the example
implements some Anti-Debugging techniques.

Below, we can see the breakpoints setup.

¥ new_iced.exe - PID: 6480 - Module: ntdll.dll - Thread: Main Thread 1928 - 32db [Elevated]

Fie View Debug Tradng Plugins Favourites Options Help Dec42023(T APl‘S to unparklng PFOCFSS

e

2023 (TitanEng
PLIEA S A I RN FATTSE T Y |

Sou Diog notes) Breskpoints §E memoryMap stk e P soot Rsymbos ATsource i References ¥ Threads W Handes $ Trace
Type Address Illodu‘legube‘l /Exception | state [pisassembly / |H'Itsl Summary
Software | 1 } } s t 1

OOD324FF <cnew dced exe Optionaldeader AddressOfForryPoints One-time £all new iced nz:n’n o entry breakpoint

7SA4FE60 | <kernel32.dl11.virtualAlloc> Enabled ov edi,edi o

75A50760| <kernel32.d11.virtualProtect> Enabled C 17 , edi o

TSAS2370| <kernel32.d11.IsDebuggerPresent> Enabled jmp dword ptr ds:[<IsDebuggerPresents] o

TSAB2DFD| <kernel32.d11.CreateProcessInternalw: Enabled ov edi,edi o

The first breakpoint match in the VirtualAlloc API has been triggered, so we need to press
execute till returns, and run again the sample, so we can observe memory allocation and
filling. This allocation and completion will be stored in the EAX register.

W new_iced.exe - PID: 6480 - Module: kernel32.dll - Thread: Main Thread 1928 - 32db [Elevated]
File View Debug Tracng Plugine Favourites Options Help Dec 4 2023 (TitanEngine
D6 il Y& 9§ *2 P2+ 00
LU Pleg S Notes i sreakpoints §% MemoryMap callsteck o e P sapt b symbos Psouce i References i Threads P Handes FE Trace
moy _ed1, edi |wirtualAiioc | N Hide FPU

p
:g; :EE.CS: EAX 00030000 new_iced. 00D30000
jmp dword ptr ds:[<virtualAlloc IMP. &Virtualalloc Ui 2
%lngs B [>] ECX 00000983 L8
cc int3 EDX OO0D0OF3C L

We need to follow in dump on EAX memory space, to visualize the allocation and filling with
data (possible shellcode on first round, and soon will be the unpack IcedID).

7/47

https://x64dbg.com/

R new_iced.exe - PID: 6480 - Medule: kernelbase.dll - Thread: Main Thread 1928 - 32db [Elevated]
File View Debug Tradng Plugins Favourites Oplions Help Dec 4 2023 (TitanEngine)
9 %ty ta2liEePhi# nERE
Seru ieg MUnotes) Breskponts o MemoryMap i calStack Msed Jsopt Sk symbos P sowce Y References iV Threads P Handes JE Trace

E————e ret 10 -
. mov_ecx, eax ecx:ZwAllocatevirtualMemory+c Lifi2 el
. €all kernelbase.7E5AAABD EAX D= *nnnn
. jmp kernelbase.765C39148 -
o7 int3 ER Modify value Enter
.7 int3 v Ecx 73
> EDX O¢ s Increment value +
<
;& Decrement value
_[_De ged @ zerovake 0
0 210 Vi
.Text:765CO14C kernelbase.d11:$13914C #13854C Allocate memory for the shellcode, and soon, to the et T oo
5 12RT0 Foownow |
/ unPBCk IcelD & Follow in Dump »
- — — - - & Follow in Disassembler
#Dumpl #Dump2 ¥ Dump ' Dump4 ' Dumps _i_’,‘w.nmm @ locals 7 struct Follow in Memory Map
[Address | Hex | ASCIT
00C40000 |8 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00| N... Copy value Ctrl+c
00C40010|00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00|....] :
00C40020| 00 00 00 00(00 00 00 00|00 00 00 00|00 00 00 00.. Copy all registers
00C40030|00 00 00 00|00 0O 0O 00|00 00 0O 00|00 00 00 00.. . -
00OC40040 (00 00 00 00|00 00 00 00|00 00 00 00|00 00 OO0 0O0)..
00C40050|00 00 00 00|00 00 0O 00|00 00 0O 00|00 00 00 00..
00C40060| 00 00 00 00(00 00 DO 00|00 00 0O 00|00 00 00 00/.. Undo
00C40070|00 00 00 00|00 00 0O 00|00 00 0O 00|00 00 00 00.. & .
00C40080|00 00 00 00|00 0O 0O 00|00 00 0O 00|00 00 00 00.. 3353553 2L Copy old value: 00030000

00C40090| 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00| ..
0O0C400A0 (00 00 OO0 00|00 OO0 00 00 (00 00 00 00|00 00 00 00| ..
00C40080(00 00 00 00|00 OO0 00 00|00 00 00 00|00 00 00 00)..
00C400C0 (00 00 00 00|00 00 00 00 (00 00 00 00|00 00 00 00) ..
00C40000(00 OO0 OO 00|00 OO OO0 00|00 OO0 00 00|00 0O OO 00| ..

L0019F648(return to 00197648 from DD13F64E
[00D3F138| return te new_iced.0O0D3F138 from
5 | 00D 4BES 0| new_iced. DOD4BESD

C€5C66212
00019441

0OC400E0 | 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00| .. 7
00C400F0 (00 00 0O 00|00 OO0 00 00 (D0 4! 00 gng};azi':
00C40100(00 00 00 00|00 OO0 OO0 00|00 00| .

00D320CS (return to new_iced.0oD320C5 from
FEOGES3D
70E03604
0000007 2
00000081
00000055
BF592788
00000067
00000000

S51F7D7C

00C40110(00 00 00 00|00 00 00 00|00
00C40120(00 00 00 00|00 00 00 00|00 i

00C40130(00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 C .
00C40140(00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00..

00C40150(00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00)..
00C40160(00 00 OO0 00|00 OO0 00 00 (00 00 00 00|00 00 00 00| ..
00C40170(00 00 00 00|00 OO0 OO0 00|00 OO OO 00|00 OO0 OO 0O0)..
00C40180 (00 00 00 00|00 00 00 00 (00 00 00 00|00 00 00 00| ..
00C401%0(00 00 0O 00|00 OO0 OO0 00|00 OO0 00 DO(0D DO OO0 00| ..
00C401A0(00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00
00C401B0(00 00 OO0 00|00 OO0 00 00 (00 00 00 00|00 00 00 00

This process, need to be done three times in this sample (maybe is less or more in other
samples), until we can get the unpacked IcedID. After repeat this process three times, we get
our strange MZ header.

2;‘1 Dump 1 ._:.;: Dump 2 2;‘1 Dump 3 2;‘1 Dump 4 2;‘1 Dump 5 Q Watch 1 @ Li

Address | Hex ASCIT
0OC60000 (40 38 S5A 90|38 03 66 02|04 09 71 FF|81 B8 C2 91| mMaZ}s.T...qv. ’ﬁu..
00Ce0010 |01 40 C2 15|Ce C8 09 1C|DE 1F BA FB|O0D B4 09 CD o

00C60020| 21 BS 01 4C|CO 0OA 54 68|69 73 20 OE|F0D 72 6F 67! ,.LA.This .prog
0OC60030 (67 61 6D 87|63 47 6E 1F |4F 74 E7 62|65 AF CF 75| gam.cGn.Otche Iu
00CE&0040 |5F 98 69 06|44 4F 7E 53|03 6D &F &4|65 2E 0D 89|_.17.D0O~5.mode. ..

00Ce0050 | 0A 24 4C 44189 01 9B D8(84 CD FA Be&|DF 58 04 BE _ﬂ:ﬂ_ﬂm
00Cs0060 | 0A 98 BF D6|CO OC BC 7C (60 EE 11 ZE|9E BE D6 43 - I I

DOCE0070|C8 3C B4 22|CC DA 52 69|63 68 28 21|8C 50 50 45] E<""I.Rich(!.PPE
O0CE0080| 80 4C 01 AD|C6 53 74 2B|9C 5D 14 1C|E0 07 02 AT ESTT g
DOCE0090 | 0B 23 OFE 0OC|83 0A 76 1B|A4 14 33 30|16 OB 10 2B|.#....V.H.3=...+
DOCE00AD |09 20 E6 AD|OC 40 02 05 |E0D 01 DO 41|08 A6 A2 AE|. & .@..3.DA. ' ¢®
O0CGO0B0 |15 88 1F 40|80 DO 53 2C |91 08 DA OF [1E 80 20 OC|...@.D5,..0... .
DOCE00CO| 21 49 78 2D|E9 9C D7 8C|2B 01 56 859[A8 94 SA 1F| !Ix-&.%.+.V. .Z.
O0CE00D0|C1 2E 74 65|78 CE 22 32|09 B9 91 DA|4E BS 42 43[A.tenl . ..M. B0
DOCEO0ED | CO 60 2E 72|64 61 72 74|80 63 04 AE|FC 65 06 0%3|A .rdart.h.=ie..
DOCEOOFD|DE 2B A3 73|52 2E 27 40|FF 02 CA 0OB|30 4C 65 14[= : = :
D0CE0L00|7C 28 €O CL1|AD 65 6C &F |63 S5C D4 40(93 44 38 2B| | (A4 eloc D@.DE+
00C60110 (18 28 E7 42(0A 01 D7 F6|00 51 53 55|56 57 33 DB|.(gB..xd.Q5Uvw30
DOCE0120| 8B 75 EA F2|6A 66 03 08|68 27 3F 80|51 02 F3 FF|.xedjf..h'7.0.6y
D0CE0130|15 2C 20 43 |BF C1 F8 83 |E7 DO 75 04|33 06 CO EB|., CiA@.cBu.3.A8
DOCE0140|6C 53 57 26|42 38 00 5C|24 18 89 03|85 CO 3E 74| 1SWRES.W%.... At
D0CE0150 |51 OC 50 64|08 28 3C BB|CE OE 44 34|89 BO 83 C7|Q.Pj.(<.I.D4.°.C
DOCE0L60| 31 39 &A 00|8D 4C 24 14|0C 51 FF 33|50 67 20 84|19i..L%..0v3Pg

DOCE0170 |07 FO B85 F6|74 08 6C 2A|10 3C 3B OB|0D 1A B3 7D|.B.56t.1*.<;....}
D0CG0180|C4 F9 12 BB|AC 65 50 3E|E4 24 46 33|F6 5F 42 30|Al. -hP>a$F36_B0
DOCE0190 |00 C6 5F SE|SD 5B 59 C3|79 55 51 EC(9D 0OC 9C F2|.£ AJ[yAyuoi...&
DOCGOLAD| 89 02 18 40|52 51 9A AD|2D 53 8D 37 (45 FC 88 C3|...BRQ. -5.7EQ.A
D0CG0LB0| 08 56 2B 81|28 &F 1D OE|87 4D FC 2B(30 08 F7 D9|.V+.(0...Mi+0, =0

nnrcndrnl a0 74 Fra 14lma 22 ca colop? co Ao cclem P2 ar o2 = wAlfsr " &18

The M8Z header is what we see on EAX register’s memory space, after unpacking process
is done. This header is a reference to APlib, that is widely used to compress malware.
Generally, when we find a PE artifact, with the APIib magic number, we can be sure that the

8/47

https://ibsensoftware.com/products_aPLib.html

binary is already unpacked in some memory space close to the artifact packed with APlib. So
let’s find the decompress IcedID.

Finding the Decompressed Unpacked IcedID

When the last VirtualAlloc breakpoint is reached, the next breakpoint is the VirtualProtect
(is the API that set protections configuration on that memory region). We can press execute
till return, to reached the end of the function, and then, exit the code related to the
VirtualProtect API and return to the sample code.

After that, we will be redirected to the some instructions that manipulate some address to
registers. To try to find the decompressed unpacked IcedID, we need to look the dump of
each address of the next instructions on the x32dbg.

After some try and failure, we encounter the decompressed unpacked /cedID, on the follow
instruction in 00C407F7 offset.

mov esi,dword ptr ds:[ebx+7014C2]

Below we can identify the truly unpacked IcedID on the 00C60CD3 address.

w new_iced.exe - PID: 4840 - Thread: Main Thread 9868 - 32db [Elevated] 1_' Binary g
Fle View Debug Tradng Plugins Favowites Options Help Dec 4 2023 (TitanEngine # copy -
D il tw§ tuBoeshn L BE R Drcokoont <
[3 o |42 Folowin 3
Hou Wieg Dnotes) breakpoints Sk Memorymap S calstack Wsen]ﬁ ae | serecces agaress
®|[D0C407 4D BBB3 B2147000 mov 857,dword ptr d5:[ebx 701483 &) Folow in Disassembler - esi: DOC40038
. O1FE add esi,edi -
. BD&3 D2147000 lea eax,dword ptr ds:[ebx-7014D2 & Folowin Memory Map Address: DWORD PTR DS: [EBX+7014C2]
. 50 push eax &
. 6A 04 push 4 & Graph G Constant: 007014C2
. 68 00100000 push 1000
. 57 push edi & Help on mnemonic Ctri+F1 |va'lue: [dword ptr ds:[ebx+7014C2]]
. FF93 DE147000 €&l dword ptr ds:[ebx+7014DE] - "
. 85C0 test eax,eax & Show mnemanic brief crlsshiftsFl L7 T esp oovsrspbo
--» v 75 02 ne C407D0 & ESI 00C4003B
. cp 03 3 2L Highlightng mode H EDI 00000000
. 81C7 00100000 add edi,1000
. I9FT cmp edi,esi Edit columns. .. EIP 00C407DA
. Z2 D& ib ¢
Elg——3 8883 7B107000 mov_eax,dword ptr ds:[&bx+7O107| 9 » T e
. 7 WOV aword Prr Os:[ebn- LS5 oy
. SBBE BA147000 mov edi,dword ptr ds:[ebx+7014BA % 2oy b L
. S8BSB B2147000 mov ecx,dword ptr ds:[ebx:701482 g OF 0 SF O DF O
- 30C0 xor al,al s CFO TF DO IF1
. FC B » <
e [loocs07es F3:AA rep stosb &
» |ooC407F7 B8BE3 C2147000 | mov esi,dword ptr ds:[ebx-7014C2 v | Default (stdcall)
. P
< a » |> |1: [esp+4] 00CEOCD3 DOCEOCD3
- . p=—2: [esp+8] DOD3F32F new_iced.00D3F32I
533'3“?“5:- dword ptr ds:[ebx+7014C2]]=[00C404C2]=00C60CD3 3: [esp=C] B7639EF3 B7639EF3
rd ptr ds:[dword ptr ds:[ebxs? 1= 1 S 4: [esp+10] 00000000 0OOOOODO
DOC407F7 ‘ 5: [esp+l4] FFFC417C FFFC417C

?] P P 2
s#' Dump 1 ' Dump 2 s+ Dump 3 & Dump4 g Dump5 = Watch 1 Set EIP Here Crl+*

Address | Hex ASCII < return to new_iced.00D3IFI2F
DOCEOCD3 |40) 54 90 00(03 00 00 00|04 00 00 OD(FF FF 00 O0|MZ...vuceeas Vs 2% Creste New Thread Here

OOCGOCE3 (B8 00 00 00[00 00 00 00|40 00 00 00|00 00 00 00|, !

00CGOCF3 |00 00 00 00(00 00 00 00|00 00 0O 00|00 00 00 00| . o Goto 4 E;E;é;g

00C600D03 (00 00 ¥ |00 00 00 00|00 00 00 00|C8 00 00 00| . i % 2048405

00CG0D13 | 0E 1F BA OE[00 B4 09 CD|21 B8 01 4C|CD 21 54 68|..%.. .1I,.LIITh & e e 2B Trom DO
00CE0D23 |69 73 20 70|72 6F 67 72|61 €D 20 63|61 6E 6E 6F|is program canno &L Search for o B A R T s L WL e
00CE0D33|74 20 62 65|20 72 75 6E|20 69 6E 20|44 4F 53 20|t be run in DOS 9 Fndreh . »

To validate this information, we can go to the Memory Map tab on the 32xdbg, and look at
00c60CcD3 address protections. As we can see below, this region of memory has Execute (E),
Read (R) and Write (W) protections. This indicates that unmapped region, has the same
rights of one executable.

9/47

ﬂ new_iced.exe - PID: 4840 - Thread: Main Thread 9868 - 32db [Elevated]

File WView Debug Tracing Plugins Favourites Options Help Dec 4 2023 (TitanEnging)
CoE =0 Yt ed taulloo @iy s L @O
QS@'-' CPU ;»:J Log &5@'-' Motes 2’ Breakpoints | & Memory Map | & Call Stack ﬂ SEH 2’ Soipt & Symbols ‘::,’ Source ‘Q References

Address | Size |Par1:y Info Content Type |Protection |Initial
00AL0000 | 00001000 @ User MAF -R---
D0AZ20000 | 00001000 @ User MAP -R---
00A30000 | 0000D000 (@ User MAP -R---
D0A3DO00 | 00LF3000 (@ User |Reserved (00A30000) MAP -R---
00C 30000 | 00004000 (@ User MAP -R---
00C34000 | 00004000 (@ User |Reserved (00C30000) MAP -R---
00C 40 00001000 (i User PRV

00C 60000 [00005000 [k User FRV

BOD 30000 | 00001000 @ User nen_1ced. exe NG

00D31000 | 00011000 [@ User "L text" IMG

00D 42000 | 00007000 @ User ", rdata" . IMG

00D 49000 | 0001B000 @ User . data" Reg|or‘| O‘F memory Where thE! unpacked IMG

00D 64000 | 00009000 @ User " rsrc” . IMG

00DEDO00 | 00002000 [@ User “.reloc” |celD is. NG

00D7 0000 | 00181000 @ User MAP

AnrAannnn | annennno B e ae man

Now that we found our unpacked IcedID, we need to save him into a file. To do this, we need
to select all data on the dump tab that we identify the unpacked malware, and save to a file.

3% new_iced.exe - PID: 4940 - Thread: Main Thread 9868 - 22db [Elevated]
File View Debug Tracdng Plugine Favourites Options Help Dec 4 20] |§ T \ | 3 =0 ——
. — . a = I
coE 50 taw§ taloEes i o Y9 oAl F
Depy o A2 Notes < Breakpoints :& Memary Map & Call 5t ﬁ Follow in Disassembler
—---#|[D0C#07CC | v 75 02 ne C407D0)) & copy Shift+C
| ® | DOC407CE D 03 h 3 Fallaw in Memary Map _
L---e|00C407D0 81C7 00100000 add edi,1000 & M paste Shift+v
(|nocso7De 39F7 cmp edi,esi Label Current Address :))
s|Docs07D3 | ~ 72 DB jb c407B5 & §i& Paste (Ignore Size) Ctrl+5hift+V
EIP n——————ad| 0 0C) 8B83 7B107000 mov eax, dward Watch DWORD -
¢ |00C407ED 5983 BAL47000 mov dword ptr 1)) §it saveToaFie
#||00C407ES SBEE BA147000 mov edi,dword Modify Value Space
® ((0OC407EC SBSE B2147000 mov ecx,dword & i v otectvirtualMemory+C ESP |
* oocao7F2 300 xor al,al Breakpoint ESI !
e ||D0C407F4 FC cld - EDI !
®|[00C407F5S F3:AA rep stosh ¥ Find Pattern... Ctrl+8
» ||pocs07E7 SBEZ C2147000 mov esi,dword !
s [oocao7FD 89F2 mov edx,esi M Find References Cirl+R =7
& ((DDOC407FF 0356 3C add esdx,dword X .
e |[00c40802 8082 FBO00000 lea eax,dword # syncwith expression 5 EFLAGS
#|0oc40808 OFBT4A 06 movZX ecx,word 1) otectvirtualMemory+C ZF 0 |
e |[nocaos0c 56 push esi Allocate Memory OF 0
® | 00C4080D FFE3 BA147000 push dword ptr M Goto o CF 0
®|((00C40813 50 push eax : £
®|((00C40814 51 push ecx otectvirtualMemory+C
& |(00C40815 E8 FBFEFFFF €all c4o412 ﬁ = » v | Default (s
*le > 1: [esf
€51-00CA0038 . Text + EH EEZE
dword ptr ds:[dword ptr ds:[ebx+7014C2]]=[00C404C2]=00C60CD3 ﬁ Int=qer b 4: [esp
- 5: [esp
00C407F7 z
3¢ Float *
&) &) a & e
doumpt Poumpz Foump3 P oumps Houmps P watch M Address 0019F5D4 | 00C60CT
address | Hex ! DD19F5DS | 0OD3FD
— — embly * | bo19FsDC | B7699EF
DDCE000N[40 28 SA 90|38 03 66 02|04 09 71 FF |81 B8 C2 91 e Eolloeoanm:
onceo0ln| 0l 40 c2 cs OE 1F BA F8|00 B4 03 CD O ToEoEAEEEGaT
00C, 21 B8 01 69 73 20 OE|70 72 6F &7 0019FSES | C5CBER:
0 67 &1 6D 4F 74 E7 62|65 AF CF 75 Tonbion| o
0 5F 98 69 03 60 GF 64|65 2E OD 89|_ Tonniemy o]
00CeUUS0 | DA 24 4C 34 CD FA BG|D7 58 04 BE oTortea F e,
ooceoosn| 0A 98 B7 11 BE D6 43 o
norcanzaleg oe oa foocooac

Now, we have our real IcedID, so let’s reverse engineering it.

Reverse Engineering — unpacked_iced.exe

Before we diving in on reverse engineering, let’s take a look at some triage information of the
unpacked sample.

Below we can see the import of four DLLs (unlike the packed version). Being them:

¢ kernel32.dll

10/47

e winhttp.dll
e user32.dll
e advapi32.dil
o shell32.dli

However, we will only highlight the most important ones.

The first API that catches our eye, due to its capabilities, is WINHTTP.dII. This DLL gives the
sample the capabilities of network connection. And, in the import functions, we can identify
network connections related functions as we can see below.

§8 00402068 WinHttpCloseHandle WINHTTP
B8 0040206C WinHttpSetOption WINHTTP
E& 00402070 WinHttpOpenRequest WINHTTP
§& 00402074 WinHttpSendRequest WINHTTP
E8 00402078 WinHttpQueryHeaders WINHTTP

§8 0040207C WinHttpOpen WINHTTP
E& 00402080 WinHttpReceiveResponse WINHTTP
§8 00402084 WinHttpQueryDataAvailable WINHTTP
§8 00402088 WinHttpConnect WINHTTP
§&8 0040208C WinHttpReadData WINHTTP

The second DLL of note is KERNEL32.dll. As we can see in the image below, this DLL gives
the sample the ability to perform file and directory manipulations, in addition to enabling
memory space manipulation, allowing the execution of techniques such as code injection into
memory.

11/47

§& 00402008
§& 0040200C
§& 00402010
§& 00402014
§& 00402018
§& 0040201C
§& 00402020
§& 00402024
§& 00402028
§& 0040202C
§& 00402030
§& 00402034
§& 00402038
§& 0040203C
§& 00402040
§& 00402044
§& 00402048
§&8 0040204C

IstrcpyA
ExitProcess
CreateDirectoryA
IstrcatA

Sleep

IstrlenA
ReadFile
HeapFree
WriteFile
CreateFileA
CloseHandle
HeapAlloc
GetFileSize
GetProcessHeap

GetModuleFileNameA

VirtualProtect
VirtualAlloc
HeapReAlloc

KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32

This indicates, that the unpacked IcedID have the capability of do some, write file to execute
the next stage, code injection to evade detection, and network communications to connect to
the command and control server. As we can see on public threat intell, the IcedID is a
modular banking trojan. Network-related API imports are a hint of these modular features of
IcedID, as seen in the public threat reports described in the introduction sections.

Now, that we understand possible functionalities, let’s dive in on reverse engineering.
NOTE: The name of internal functions, variables and data chunks are renamed by me,
and it's not the default way that disassembler/decompiler produce.

The first function is start. This section contains only the /ced/D main function, and then the
call to the ExitProcess API.

12/47

public start

start proc near

call iced 2020 main

push ; uExitCode
call ds:ExitProcess

start endp

Now let’s analyze the iced_2020_main function. Below, we can see the logical structure of
the code.

13/47

Below, we can see the main function, which can be done through IDA pseudo-code. The
image below allows us to identify the main features of this IcedID sample:

o Creation of the c:\\Users\\Public\\ directory, where the photo.png file will probably be
stored.

14/47

» Execution of a decryption routine, using the RC4 algorithm (function rc4_routine). It is
interesting to note that the IDA Decompiler interpreted a series of setup instructions for
calling the routine, as an array (key_and_data_decryption_array). And in this array,
we are presented with information such as the size and position of the decryption key,
the data to be decrypted and the address of all this data (in the .data section, as we
can see the data reference below).

; Section 3. (virtual address 00003000)

; Virtual size : 00000250 (
; Section size in file : 00000400 (
Offset to raw data for section: 00001400
Flags Cc0000040: Data Readable Writable

; Alignment : default

data

__data_rcdkey

_data_encrypted_ﬂéta dd

dword_40300C
unk_ 403010

» A series of conditionals to execute the creation of the photo (file_creation_photo_png
function).png file, collection of hardware information and network communication with
the c2 servers (hardware_info_net_connection function).

» And the last function to be executed is a function that carries out a series of
instructions, which resemble the memory code injection technique (code_injection
function), using the data encrypted in .data.

15/47

The first block of instructions in the sample, which involve the use of the CreateDirectoryA
and GetUserNameA API, with the purpose of building the path to create a directory (if not
existing), with the purpose of dropping the photo.png into it, is very straight to the point.
Therefore, we will focus on the function that performs the data decryption process
(rc4_routine), using the RC4 algorithm.

Below, we can observe the pseudo-code of the re4_routine function, which shows us the
Heap allocation in memory with the data present in the .data section (apparently the key +
data), the call of the rc4_ksa_prga function, which we will see the core of its operation below
, and the execution of the XOR stage of the RC4 encryption algorithm. It is at this stage that
the 248 bytes after the key are decrypted.

16/47

5] IDA View-A =] Pseudocode-A Hex View-1 Structures Enums

thiscall red_routine(int *key and data decryption_array)

Inside of the rc4_routine function, we can analyze the core of another function called
rc4_ksa_prga. As we can see below, this function have a rc4 KSA/PRGA routine pattern.
This pattern is the two first stages of the rc4 algorithm.

17/47

15 IDA View-A = Pseudocode-A Hex View-1

rad_kaa prga proc near

RC4 ksa and prga loops

As we can see in the image below, after executing the decryption routines, the CPU will do a
test between the EAX register, and jump to the file_creation_photo_png function if the
result is not zero.

18/47

; lpStringl

; pébBuffar

:.lpﬂt:ing

; lpBuffar

; lpSecurityAttributas

:.lpPathHumE

t aPhotoPng

:.lpEt:ingl

data_encrypted data
] ffaset data redkey plus encdata

int

¢ lpFileNama
file creation_photo_png

loc 4015DF

Let’s dive in the instructions of file_creation_photo_png.

Before we continue the analysis, we need to remember the pseudo-code of the IcedID main
function. As we can see below, the file_creation_photo_png function takes three
arguments.

e pszPath
o |pBuffer
e NumberOfBytesToWrite

pszPath in particular underwent a series of transformations throughout the execution of the
Main function. And when it is used as an argument in the file_creation_photo_png function,
it is the absolute path of the photo.png file.

19/47

pcbBuffer = 256;

if (SHGetFolderPathA (0.
lstrcathA (pszPath, "c:\

else
lstrecath (pszPzath, W\
dlrectory length = lstr
= serNameh (&ps=zPath[d
CreateDirectoryi {nszPat
lstrecath (pszPath,

key and data de;ryntlbn

key and data decryption

key and data decryption
key and data decryption.
key and data decryption
if ('red _routine (key a

sers '.:_._]_J_L:-._

_%8, :f P, nszPathE {ij}

)i
lenA (pszPath) ;
irectory_length], &pcbBuffer);

b, 0); = =\

noto.png '
array l\‘h,rf;lmt}!;.n:l:tti:-. _redkey plus encdata;
- H

[0

array[l

array[2 (int) &data encrypted data;
[3 0x248;
[4

array
(int) &data encrypted data;

)i
]
]
]
]
]

array
nd data decryption array))

rn 0;
i(;:)file creation photo png(pszPath, (void **)&lpBuffer, &nNumberOfBytesToWrite)

'heap allocation((

int) lpBuffer, nNumberOfBytesToWrite, &pcbBuffer, (unsigned int *)wv5)

With this in mind, let’s look at the pseudo-code of the file_creation_photo_png function,
and next, we’ll analyze its functionality.

Iz IDA View-A

BOOL _ fastcall file creation photo_png(
LPCSTR lpFileName,
void **pointerZ photopng allocated_memory_block,
DWORD *pointer photopng filesize)

OL bool return read
HANDLE photo_png open_|

3] Pseudocode-A ® Hex View-1 Structures

file; // esi
_handle; // eax

void *pointer photopng open_handle; // edi

DWORD FileSize; // eax

HANDLE ProcessHeap; // eax

void *pointer_photopng allocated_memory block; // eax

HANDLE handle callinq_process heap; // eax
SIZE T var FileSize plusl; // [esp-4h] [ebp-18h]

v01d *var_p01nter2_photopnq allocated memory block; // [esp-4h] [ebp-18h]
DWORD NumberOfBytesRead; // [esp+l10h] [ebp-4h] BYREF

bool return read file
photo_png open_handle

peointer photopng_open |

0o-

tre1re ileA (lpFileName, 0x80000000
handle photo_png open_handle;

if (photo_png_open_handle == (HANDLE)-1)

return 0;

FileSize = GetFileSize (photo_png_open handle, 0);
*pointer photopng filesize = FileSize;

if (FileSize)
{

var_FileSize nlusl = Filesize + 1;

ProcessHean = GetPrc

Tal Heap () ;

pointer nhotonnq allocated_memory block = HeapAlloc (ProcessHeap, 8u, var FileSize plusl);
*p01nter2_photopng_allocated_memory_block = pointer_ photopng allocated memeory_ block;
if (pointer_photopng allocated memory block)

{

bool_return_read_file = ReadFile(

if (!'bool_return_

{

pointer photopng open handle,

pointer photopng allocated memory block,
*pointer photopng filesize,
&NumberOfBytesRead,

0

read_file || NumberOfBytesRead != *pointer photopng filesize)

if (*pointer2_ photopng_allocated memory block)

{

var_pointer2_ photopng allocated_memory block = *pointer2 photopng allocated_memory block;
handle calling process_heap = GetProcessHeap();
HeapFree (handle calling process_heap, 0, var pointer2 photopng allocated_memory block);

bool_return_read_file = 0;

}
}

0

CloseHandle (pointer photopng_ open_handle) ;
return bool_return_read_file;

As we can see in the pseudo-code above, the function is very straight to the point, where the
process of creating a handle for the photo.png file is basically executed, and the allocation of
this handle in memory. During the end of the execution of the file_creation_photo_png
function, it is possible to observe the cleaning being carried out.

After executing the photo.png file handle creation function, the CPU will perform a test in the
EAX register and skip the control flow to the hardware_info_net_connection function, if the
condition is met. If the condition is not met, the flow will jump to executing the
heap_allocation function.

._datn_encrypted_datu

ay], offset _ data_recdkey plus_encdata

; int

c, [el] ; lpFileName
file_creation_photo_png

It is important to note (as we can see in the image below) that this function is called twice in
the main function. One if the conditions are not met after creating the photo.png file handle,
and another if the conditions are not met after executing the hardware information collection
function and HTTP network communication routine.

21/47

{ !file creation photo_p
I(int)

{ 'hardware_info_net_connection|
|| 'heap alleocation((in

write_file_photo_png(pszPath, lpBuf

By analyzing what the heap_allocation function does, we can understand why it is executed
if a certain function is not completed as expected. In the pseudo-code below, you can see
that this function performs a series of calculations to determine the size of the buffer to be
allocated on the heap, with the purpose of allocating the data present in .data (rc4 key and
encrypted data). After this allocation, the rc4_routine function is executed to decrypt the
data in memory.

Returning to the normal sample flow, when executing the handle creation function for the
photo.png file, if conditionals are met, the flow will jump to the
hardware_info_net_connection function.

22/47

; 10kt

1 ; lpFileName

¥

file creation_ph

loc_4015DF

hu;;.a.r_;_.s llocation

loc_401613

$
4

hardware infeo net connection

loc_4015R8

As we can see on pseudo-code below, inside of the hardware_info_net_connection
function, has two main functions, the hardware_info_collection and the http_connection.

BB Pseudocode-A = Hex View-1 n Structures] Imports Exports
dw. info collection|

1, data encrypted_data, (_DWORD

nk_403050;
r, L sunk_403051) ;

The hardware information, was implemented in the code is based on timestamp of the
device, and the CPU model. Analyzing the call of _cpuid, with just a little research on
Google, we can find that matches with VMware hypervisor CPUID. That value, is the same

23/47

that we can see on IcedID.

Pseudocode-A = Hex View-1 A Structures
goto LABEL 12;

(unsigned int)sub system timestamp < 750)}
v22 Zero;
o LABEL 12;

if ((unsigned int)sub_ system_timestamp >= 1000)
LABEL 11:
++v20 zero;
else
++v2l zero;
LABEL 12:

‘e.com » article - Traduzir esta pagina

anisms to determine if software is running in a ...

However, during the dynamic analysis, we will discover that the hardware information
collected by IcedID will be used to build the HTTP request to be sent to C2.

If everything was of expected, the code will continue and execute a network related function,
and after that, will check if the result of the communication results in a 200 HTTP status
code.

24/47

IDA View-A

loc_4012DC:
lea C
push

lea

push

push

call

lea

mov

mowr

lea

lea

[ebx] ,
012A6

hardware info_net_ connection endp

dword ptr [edi],
short loec_ 4012A6

Below, we can see the decompiler version of the code above.

while (1)
{
wsprintfW (str_buffer 256, L"%5", buffer str 256);
viz = 1;
str buffer array[0] = (int)buffer 256 str;
str buffer array[l] = (int)str buffer 256;
vll = 443:
if (http connection((int)str buffer array, lpBuffer, nNumberOfBytesToWrite) == 200)
break;

Let’s dive in the function http_connection_func.

25/47

Analysis of http_connection Function

All plaintext config is encrypted, but we can prepare ourselfs to debugging process after
reverse engineering the sample.

Below we can see the first part of the network communication setup.

IE Pseudocode-A Hex View-1 A Structures

var WinHTT
if (WinHTT

* (LPCWSTR 2 = ¥
*(WORD *) (str buffer array + 8),

0);

- = *(_DWORD *) (str_buffe
http request handle ']

L '
* (LPCWSTR *) (str buffer array + 4),

Buffer) ;

The IcedID use all capability of wininet’s APIs. In this first part we can see the usage of the
follow APIs:

o WinHttpOpen -> this API initializes, for an application, the use of WinHTTP functions
and returns a WinHTTP-session handle;

o WinHttpConnect -> this API specifies the initial target server of an HTTP request and
returns an HINTERNET connection handle to an HTTP session for that initial target;

o WinHttpOpenRequest -> this API creates an HTTP request handle;

In this first part of this network communication setup, the IcedID initialize the HTTP
connection with the APlIs listed above. Below, is the rest of the http_connection.

26/47

https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpopen
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpconnect
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpopenrequest

I8 Pseudocode-A O] Hex View-1 I Structures 4] Impaorts -] Exports
Buffer) ;
if (http_request_handle)
{
if (*(_DWORD *) (str
{

Buffer = 13056:

e false return ? h

>_request handle,

if (!'dwBufferLength)
break;
v8 + dwBufferLength
w10)
0)

]
m

Pseudocode-A = Hex View-1 Structures
| goto LABEL 20;

}
vid = v10 + 1;
ProcessHeap =
if (vd)
vl2z = (char *)HeapReAlloc (ProcessHeap, 8u, v4, vl1d);
else
vl2 = (char *)HeapAlloc (ProcessHeap, 8u, vld);
vd = v12;
if (!'viz)
goto LABEL 20;
if (!WinHttpReadData (http_request_handle, &vl2[v8], dwBufferLength, &dwBufferLength))
break;
if (!dwBufferLength)
break;
v8 += dwBufferLength;
dwBufferLength = 0;
vl7 = v8;
}
while (WinHttpQueryDataAwvailable(http request handle, &dwBufferLength));
if (vd)
*((_BYTE *)vd + v8) = 0;

LABEL 20:
*var lpBuffer = vd;
*nNumberOfBytesToWrite = v17;
}
WinHttpCloseHandle (http request_handle);
}

WinHttpCloseHandle (hInternet) ;

WinHttpCloseHandle (var WinHTTP_session_handle) ;

The rest of the http_connection function, uses the follow APls:

o WinHttpSetOption -> this API sets an Internet option;

o WinHttpSendRequest -> this API sends the specified request to the HTTP server;

o WinHttpQueryHeaders -> this API retrieves header information associated with an
HTTP request;

o WinHttpQueryDataAvailable -> this api returns the amount of data, in bytes, available
to be read with WinHttpReadData;
WinHttpReadData -> this api reads data from a handle opened by the
WinHttpOpenRequest function;

https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpsetoption
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpsendrequest
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpqueryheaders
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpquerydataavailable
https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpreaddata

« WinHttpQueryDataAvailable -> returns the amount of data, in bytes, available to be
read with WinHttpReadData.

In this part, the function handle with the data downloaded from the command and control
servers. Beyond of network communication capabilities, we can observe the usage of heap
manipulation APlIs, like HeapAlloc and HeapReAlloc, as a conditional statement for the code
proceed.

After that, this functions realize the clean up in the stack, closing the handles.

A curious fact that we can see above, is that data_encrypted pointer is present on this
function, and, can be usage if some statements are reached, after a sleep of 5000 seconds
(1 hour and 38 minutes). By the way, this sleep technique is a sandbox evasion technique.

while (1)
{
, buffer str 256);

(int)buffer_ 25
(int) str_buffer

£ (ht
break;
(*lpBuffer && *nNumberOfBytes

var d
if

W ~int fW (buff
}
return 1;

}

Write the photo.png and Code Injection

After the network communication routine, do a test on EAX register with him self, and if the
results not was the operand expected it will jump to the same heap allocation and rc4 routine
that we saw before. The processor will do the same test with EAX, and with the results are
the same as earlier, it will take a jump to the write_photo.png.

We will not delve deeper into this function, because the name is self explanatory. The only
information that we need, is what API will use to carry out this activity, the answer is simple,
the code will just use the WriteFile (writes data to the specified file) API.

After that, the code will call the last function of this sample, the function that execute a code
Injection.

28/47

https://learn.microsoft.com/en-us/windows/win32/api/winhttp/nf-winhttp-winhttpquerydataavailable
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-writefile

IDA View-A

s |

loc 4015DF:
lea edx,
lea
call

jz

fBytesToWrite] ; nNumberOfBytesToWrite
abp Buffar] ; lpBuffar

ecx, [ebp+pszPath] ; lpFileName

write file phote png

Analyzing this function, in the image below, we can see that it is very straight to the point.
The function uses VirtualAlloc to allocate memory.

After some calculations, using the variables that contained the return value of the
VirtualAlloc function and the pointer to the previously set buffer size, the function uses

GetModuleFileNameA to collect the complete path of a file, performing a series of
calculations with the variables.

29/47

https://learn.microsoft.com/pt-br/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulefilenamea

12 Pseudocode-A = Hex View-1 R Structures H

E T *) (al + 4);
11 d_region IZE T *)Virtualal 0, *(DWORD *) (al + 4) + 1880

ocated_region - v2);

ted region + v6 + 2) & OxF2;

data_encrypted data;

= dword 40300C;
ve + 16, 0x104u);

In the last part of the code injection function, the code implements some for loops, probably
with the aim of iterating each byte of the encrypted data, within a single memory space,
which will be used later. Finally, the code will use VirtualProtect.

5, v5[1], 0x20u, &£floldp

s_allocated reg

In general, this function gives the ability to inject code into memory (possibly a PE artifact),
which must be contained within the previously dropped photo.png artifact.

With that, we now can understand what APIs are used to construct a network
communication, decrypt data, injection and dropped routines, now we know what APIs we
need to set breakpoints when we will doing dynamically analysis of unpacked IcedID.

Now that we understand the main functionality of the IcedID, let’s dive into the debugging
stage of our analysis, with x32dbg.

Dynamically Analysis of IcedID Unpacked

30/47

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

In this dynamic analysis, we will focus on understanding the decryption routines and network
communication with the C2 server.

Below, we can now see the exact prologue instructions that we identified through the
disassembler. When following the data from address 7E3000 in the dump (the same data as
.data, identified in Disassembler by 0x403000), we are able to observe that our assumption
becomes possible.

That is, in the image below, we can see that after the first 8 bytes, only 248 bytes remain.
Exactly the value we observe in Disassembler. Therefore, we can validate our assumption
that the first 8 bytes of the .data data are the RC4 decryption key, and the remaining 248
bytes are the data to be decrypted.

To test this assumption, let’s set a breakpoint exactly after calling the decryption function,
and execute the function.

8 unpack_iced.exe - PID: 5940 - Module: unpack_iced.exe - Thread: Main Thread 7024 - 32 X X § . - [m] *
e ew Tracing Favorites Optors Hep Dec 4 2023 (T Pushing the decryption config on the stack, before call the decrypt function

SE U ¥ 9y taw B g o P B B
Bou [Guwe UNotes ® Breskpoints M MemoryMap [} CalStack SpSEH 0 Soipt @ Symbos < D References W Tivesds o
[GoreisiT| [push eax T i
esiilstreat

| s Wide FPU
E : 000 | & re. ata: ey ®% + encrypt data ITE3D08 uﬂpﬂck_'ic!ﬂ.w;'E!Dﬂa ~
. res key position (First 8 bytes of the data)
. encrypted data posftion (248 bytes after the key)) B v
IE—’: Fed_decrypt_data L
:| esi:lstreat v [tk pldcl) < - EDM

<

] -
dword ptr ss:[dword prr ss:[ebp-24]]=[] k_iced. | 3: +8] EEECIA43 EECCBA4E
unpack_iced. 007E3000 H 73 737

.Text:DOTELSTF unpack_iced.exe:$15TF #97F <all rc4 data: key (Bbytes + encrypt data)>

Wowp1 Wowp2 WWoump3 Woumpd WEoumps @ waichi Ieellocsls Y struct ~
e, unpack_1iced. 00TE3N08

— - P ¢ 3 e d i

ogégﬁg E 2 g i s unpack_iced. D0TE3D08

[00TE3020 | 9€ B1 59 89|CD 10 BC BF 4 cc 39 - I.u. L

G7E3030 | 1F B 76 6F Al 73 20 4145 D4 18 731D : 5 M,

(7E3040 |39 F7 13 17(F9 DO 97 9820 96 CB DA 3D 11 23 DE| Frmil, - . E.=.

loo7E3050 |81 32 £3 OE|1c 27 F4 7E|DC 86 €5 73[0c BS 76 F3 gak..” = -.

|oo7E3a60 | 1D SF 05 33| BA 5F 68 62|46 1S CB 36(95 F9 04 F7|...3° kBF.E6.U.+ npack_1 07EL64:
0TE3070 |84 93 C7 €9 1D EF 90 B4 B6 43 24 D1|F3 64 F6 C6 E.7. ufﬁdu\ H = 3| recurn - :'afﬁﬁﬁ-cgg;:fnﬂi::
07E3080 | 40 FB D2 2C 32 08 37 30|BF 2A A SO |46 2A 54 FS 3.70.%.1F*T8 The key is the 8 first b_,rtes g o .
looresaso |67 BE €1 78|74 6 4F DB (43 32 70 3c|E9 B4 E1 DA ;ﬂ{tm\bp«f.m kernel32. BaseThrendtad tThunk
ounmnuwwﬂuuu“ﬂ«7sisu:uux9l.su:¢m:w.lq oc °

07E080/ 00 64 72 F4 10 CF 5O D63 D1 85 AC|AC 81 8 7¢| iro. 11K~ | eturn to ntdll.RtIGetAppcont:
JooTE30co |SC €2 OF 65 B2 64 €1 84 |ES 46 2E SA[F4 29 80 13|\b.e.da,éF..8).. e s
|[p0TEZ000 |EC 57 B8 EA|70 5F 55 D2|Bl 09 ZF D6|B3 A4 1C 28 1w, . fo"E,

OTEZ0ED | 7D E6 DI 9A|CL E6 E6 57 F3 BL 69 78|84 56 00 KO E{I {:V. -

07E30£0|€2 D3 14 €958 F5 6C 53/0 B4 07 BE|E3 09 €1 28 A0.E[0. 5] . 2d.AC 4’_“’19 rest of 248 bytes, is the data
loo7E3100 |53 3E DE S1/4a 28 D8 03|37 DC EB BE(S1 8€ 14 38 S>.qi+0. né.}..l; h illbed d
[0OTEZ1L0 D4 4D S1 0B|46 A6 9C 72|47 83 85 46|29 87 7C DA H -

07E3120 | AE B4 AD FB|1D BE FF 5C 3D 9A 3D 94|05 7E 5F FC|® - that will be decrypte

07E3L30|AE FS 13 D7 |87 84 81 82\737c a0 77 A2 IF AB 93
[007E3140 | BD BS 74 E3|7D 90 5B B1 5B FF 48 6E
|oa7e31s0|9c 97 EB 95 42 €6 73 61|85 33 01 A1[CF 37 50 21

07E3160 |18 BC FO BB|DC €9 FC 55 |4E SC E9 4F (B4 9C B6 56
|oo7E3170|75 28 DA 3E ES A7 D4 EC DA AE EB DB|0L 04 EE EA 4[| coooo000 v
[00TEZ1E0 |@C BF QD 7790 58 AD 47 (D3 4E 83 Bl 63 OA AE E2|Uo. .
[;07E3190 |77 EA 06 70,C5 84 30 6E 93 BA A7 27|02 8D EZ AC we. e M L >
Paused [unpack jed.exe: DUTEI08 - DOTESZE (DxD0000ZHE bytes) |~ |Time Wiasted Debuggng: 0:01:28:22

Exactly after executing the decryption function, we can observe the network communication
configuration of IcedID (an index.php, and some c2 server domains) in plain text.

31/47

-ﬂ"- unpack_iced.exe - PID: 5840 - Module: unpack_iced.exe - Thread: Main Thread 7024 - 32db

The decrypt function was excuted

File View Debug Tradng Plugine Favourites Options Help Dec4 2023 (TitanEnging)
coE 0l Y 9§ taldZeoPLfir L EHS
B cru | # Log |1 Motes ® Breakpoints B Memory Map [E) call stack = @ SEH 1o script %] Symbels <% Source 4~ References W Threads =
#|[007E1S7T] push eax -~
e |[007E1S78 FFD& EEll esi esiilstrecat
@ [00FELS7A B8 O8307E0D mov eax,unpack_iced.7E3008
. C745 DC 00307E0OD mov dword ptr ss:[lebp-2afll,unpack_iced.7E3po0|all rc4 data: key (8bytes + encrypt data)
. 804D DC lea ecx,dword ptr ss:[lebp-z4]
. C745 EO 08000000 mov dword ptr ss:|[ebp-zo0f,s rc4 key position (first 8 bytes of the data)
. 5945 E4 mov dword ptr ss:|febp-i1C],eax
. C745 ES 48020000 mov dword ptr ss:febp-13],2458 encrypted data position (248 bytes after the key)
. 5945 EC mov_dword ptr ss:|febp-14f,eax
- ES8 CCOZ0000 £all unpack jced, FEISGE rca decrwpt daty
Eg—s 5F edi [+] decrypt function was executed!! |
. 5E DOD e51 €51: Istrcac he
>
edi=0
.text:007EL5AZ unpack_iced.exe:$15A2 #3A2 <[+] decrypt function was executed!!>
24 Dump 1 24 Dump 2 ¥4 Dump 3 24 Dump 4 24 Dump 5 @ Watch 1 |x=] Locals fé’ Struct
Address | Hex ASCII ~
—_= —
007E3000|E3 DC 67 AZ2[13 F3 F1 C4|FB 33 3D 1E(02 00 00 0O g : =
DO7E3010(2F &3 GE GF|GE 78 2E 70|68 70 00 00[00 0O 0O 0O \
007E3020|00 00 00 00|00 OO0 00 00|00 OO0 00 00|00 00 00 00| .. .sasee- e -
D07E3030 |00 00 00 00|00 00 00 00(00 00 00 00(00 00 00 00|cu.w... \ The rc4 key remains
007E3040 (00 00 00 OO(00 OO0 00 00|00 OO0
O0Q7E3050(13 62 6F 6C (64 62 64 69 ri .boldidiotruss.x
O07E3060|79 7A 00 OF [6E 63 7A GL1|6F 70 vZ..nizaoplov.xy
O0FE3070(7A 00 OF 31|35 33 69 73|68 61 Zz..153ishak. best
O07E3080 (00 10 69 6C (75 32 31 70|6C 61 ..iluzilplane. xyz
007E3090| 00 00 00 00|00 OO0 00 00|00 0O
007E30A0 |00 00 00 00|00 OO0 00 00|00 0O
007E30B0 |00 00 00 OO(00 OO0 00 00|00 OO0
007E30C0| 00 00 00 00|00 OO0 00 00|00 0O
007E3000| 00 00 00 00|00 OO0 00 00|00 0O
007E30EOQ |00 00 00 OO(00 OO0 00 0O|00 OO0 .
QO7E30F0 |00 00 00 00|00 00 00 00|00 OO The lcedID conﬂg was de(jrypted
007E3100| 00 00 00 00|00 OO0 00 00|00 0O h b h 2 d . |
007E3110 (00 OO0 00 OO(00 OO0 00 00|00 OO0
007E3120 (00 00 00 OO(00 OO 00 OO|00 OO0 t IS mUSt et ec omains.
007E3130|00 00 00 00|00 OO0 00 00|00 0O
007E3140|00 00 00 00|00 OO0 00 00|00 OO
007E3150 (00 00 00 OO(00 OO0 00 0O|00 OO0
007E3160| 00 00 00 00|00 OO0 00 00|00 OO
007E3170|00 00 00 00|00 OO 00 00|00 OO
007E3180 (00 00 00 OO(0O0 OO OO OO|00 OO0
007E3190|00 00 00 00|00 OO0 00 00|00 OO 00 00|00 00 0O W
Command:|: like assembly instructions): mov

| Paused

|unpack_iced.exe: 007E3000 -> 007E3007 (0x00D00008 bytes)

Let’s restart the sample in the debugger, and analyze the decryption process in more detail.

As we can see in the image below, the CPU moves the data address from .data to the ECX
register, and immediately after that, the function executes the first two stages of rc4 (KSA

and PRGA). Then, the CPU performs the third phase of the RC4 algorithm, which is the XOR

operation between the keystream and the data.

| set a breakpoint at the exact restart point of the XOR loop, and ran it several times, until
enough data was decrypted and became clear text. If we observe, the first 8 bytes have not
been modified, which in fact means that these first 8 bytes are the decryption key.

32/47

) unpack_iced.exe - PID: 9768 - Module: unpack_iced.exe - Thread: Main Thread 4780 - 32db

File Wiew Debug Tracing Plugins Favourites Options Help Dec42 (Tita
SE =20 5% 9§ 2B &E2sdPict sB B

B cru | Log | 1 Notes #® Breakpoints B Memory Map)V call Stack =7 SEH %3] Script &] symbols <7 Source ' Referen

ar gine

® BBESG& 04 mov edx,dword ptr ds:[A
. 804424 0C lea sax. dword ptr =<
. SBOE mov ecx,dword ptr ds:[Input the raw data to full decryption stage |
* 4 PUETT eop
® o aush oo
. ES 43FFFF call unpack_iced.7EL1B0F rc4 ksa/proga |
™ 8BGE 0OC MoT—=hr T e e e
* 59 pop ecx
. B5ED test ebp,ebp
— - v T4 4D je unpack_iced.7E1921
L] 57 push edi
. 8BTE 10 mov edi,dword ptr ds:[esi+10]
& [007EL18DS 8BC3 Moy _£3x, eb
® | O07E18DA 8BTG 08 mov esi,dword ptr ds:[esi+&] key selection before the XOR rc4 phase |
L 2BF7 Sub _es51,ed]
ETP guamy 1 FEC3 inc b XOR rcd4 Toop point |
o ™ OFBGDE MOvZX EOK, T
| . BA4CIC 14 mov cl,byte ptr ss:|fesp+rebx+14]
g . OFBGD1 movzx edx,cl
! . o2cz add al,dl
' . OFBGCO MOVZK eax,a
H ® 594424 10 mov dword ptr ss:lfesp+1o0fl,eax v
| (K RAddnd 14 mrws al hwte ntr co-Becnesave A
\L £ >
esi=0
dword ptr ds:[dword ptr ds:[esi+08]]=[8]=777
.text:007ELSDA unpack_iced.exe: $18DA #CDA <key selection before the XOR rc4 phasex

WWoump1l Epump2 BWDump3 WDump4 B Dumps IWatch 1 Ix=llocals 5 Struct

Address | Hex ASCIT ~
007E30000 E3 DC 67 A2 |13 F3 F1 C4|FE 3D 1E alge.onaliz=
0 3010[2F GF GE B4 |65 78 2E 7 00 00 J1ndex. php.
007E3020| 00 00 OO0 00|00 00 OO0 00|00 00 OD(D0 OD OO0 OO[=i e rseacss
007E3030] 00 00 OO0 00|00 0O 0D 00|00 00 00
007E2040] 00 00 00 00|00 00 00 00|00 00 00
007E3050] 13 62 6F 6C |64 69 64 69 72 7
0DO7E3060] 79 7A 00 OF |6E 69 7A 61|6F 6C 6F
007E3070| 7A 00 OF 31|35 33 &9 73|68 6B 2E
007E3080) 00 10 &9 6C |75 32 31 70|6C G6E 65
007E3090| 00 00 OO0 00|00 00 00 00|00 00 00
007E30A0| 00 00 OO0 00|00 0O 0D 00|00 00 00
007E30BO| 00 GA 72 F4|10 CF 5D 5D |69 85 AC
OOFeEINCAl co 2 OF _gco 8 L4 £ 240 el == T}

.beldidiotruss.x
¥Z..nizaoplov.xy
Z..1531shak. best
.dluziplane. xyz

Command: | Co

Paused |unpad<_iced.exe: 00FE3000 - 00FE3007 {0x00000008 bytes)

To validate once and for all, | went to CyberChef and put the first 8 bytes as the key, and the
next 248 bytes as data. And indeed, the data was successfully decrypted!!

33/47

https://gchq.github.io/CyberChef/

Now shifting the focus to the hardware information that the sample collects, we can now
observe the true usefulness of this information for adversaries. Below, we can see that after
executing the functions that we identified in the reverse engineering process, such as
hardware_info_collection function, the collected values are concatenated in a way that

resembles a URI.

¥ unpack_iced.exe - PID: 3768 - Module: unpack_iced.exe - Thread: Main Thread 4780 - 32db - [m] x
Fie View Debug Tradng Plugins Favowites Oplions Hebp De (TitanEngine)
SoE il tawy tauliesis nLRE
Bou g [notes ® predkpoints WM MemoryMep () Calstak SRsen o aipt @ symbols <7 Sowce - References W Thresds B Handes 7 Trace

57 sh edi]

i push o0l - Hide FPU

E8 BSFEFFFF - unpack_iced.TE10F6 anti_wvm_capability . -~

804424 20 Tea eax,dword prr ss:fesp+20 EAX D00OO034 4

50 sh Elx ~ ' o EBX O013FF64

0F31 ECX 2FBF3DA3

50 push eax EDX 0D13FI2C

FF35 71 push dword ptr ds: [7E3008] EBP OD19FESC

804424 4C lea eax,dword ptr ss:fesprscl —_— 4" /photo.png?id=011E3D33FBF2

o1 push 1 . ESI OOTEL63D <unpack_iced.OptionalHeader. Mdressofintry?mnts
68 QC2OTEDD msn unpack_1iced. 7E200C E200C:" /photo. png™id=%0. 2X%0. BXK0. BX%S DI
eax

unpack_iced. 007EL264

esi:EntryPoint

didiotruss.xyz"

:

H ptr i

1E3D33F8 1E3D33FB
FITCF36A FITCFI6A
0019F918 0019F918 "O0000000000F F 40000005

¥owp! PHowmp? @Woump3 WHoumps PHoumps Ewanrm teeitol § stuct A R
aress [-
° " 0000000000F F 40000005
unpack_iced. EntryPoint
TIEESTE T unpack_iced. EntryPoint
0019F 388
0019F 998
0019F3A8
0019F 388
D019FICE
0015F308 y a ¥
ﬂ?ﬂ:ﬁﬁ vje 3
Command: x sepazated ebx |Defour ~
| 00196935 {0x0000000] bytes) [Time Wasted Debugging: 0:02:10:27
If we analyze the HTTP request construction function, we have confirmation that in fact the
hardware information that was collected is sent to one of the c2 domains present in the
previously decrypted configuration.
¥ unpack_iced.exe - PID: 5768 - Module: unpack_iced.exe - Thread: Main Thread 4780 - 32db - o x
Fie View Debug Tradng Plugins Favourites Options Help Dec 4 2023 (TitanEngine)
D6 0 {9y tali-«@ffis L0
By [Glog [lotes ® Bredponts memoryMap () ColStek SESEH loisapt @smbos O Sowee S Refreces Wweods Mitandes 7 Trace
- [BBCH moy eCx,eax N ~ . I Hide FPU
- B94C24 20 mov_ dword ptr ss:ffesp+20f,ecx [dword ptr ss:[esp+20]]:
- B85C9 Test ec-:d_:c-: -~
I C GEas Roaneen J.:,"':gg‘m1,‘§dn,:f‘;?tem.r] [E8xoo19F308 &L"boldidiotruss. xyz"]
i F7D8 neg eax
i - 57 push edi EDX 00000000
| . EBP 72026700 <winhttp.winkttpclosesand]e>
| . ESE 00L9FBAS
i - ESI 00000000
i - 894474 20 mov dword ptr ss:Besp+20),eax [dword ptr ss:[esp+20]]: EDT OOL9EEES
| - o HOP eax, eax
N :g :::: can EIP OOTELECA unpack_iced. 007ELECA
! - 50 push eax . ¢ o
P R Bueh o [guore preass ool | 225 % 10 0"
H - b OF 0 SF 0 OF O
EE— CFo TFo IF1
d 21 2 v
i E OF84 19010000 ;:S&l;:(k_‘icld TEI?FB 2 2
. =) | et totdcal) * |[5 3] 0] unlocked
= esp] DO541F58 O00541F58
0 ptr d E!Dﬂi QOTE20FC unpack_iced.00TE20FC L™GET™
esp+8, 0019FC38 O019FC3E L"/photo.pngTid=011E
5|

LTEXTIDOTELGCA unpack_ficed. exe:$16CA ®ACA

D05 41FS8

ool @oump2 Woump3s @oump4 PWoumps W warhi Ivelloask & Struct D07E20FC | unpack_iced.L"GET™ -
= DO19FC 38| L"/photo. pngTid=011E3033FBF27C B

O0TE20FC | 47 00 45 00|54 00 00 00

007E210C | 84 21 00 00|00 00 00 00|00 00 00

00TE211C |00 20 00 00|DS 21 00 00|00 00 00 0800000

007E212C | 4A 22 0O 00|54 20 00 00|BC 21 00 DO19EEEE

Q07E213C |00 0O 0O 00|56 23 00 00|08 20 OO -

007E214C | 00 00 00 00|00 00 00 00|38 24 00 e s s ey

0OTE21SC |EO 21 00 00|00 OO 00 00|00 00 00 DO19FFE: P .

007E216C |5C 20 00 OO|00 OO0 00 00|00 0D OO 39 " n ar P

007E217C |00 00 00 00|00 00 00 00|18 22 00 Z:EE:::: Feturn to user3Z.wsprintfw+ld from user32.wvsprintfw

0DO7E218C 1A 23 00 00|26 23 00 00(34 23 00

0O07E219C |12 23 00 0O|FA 22 00 00|56 22 00 e v

DOTE21AC | 6€ 22 00 00|7A 22 00 00|88 22 00 . N

34/47

We now know that this IcedID sample uses the RC4 encryption algorithm to encrypt
communication settings with c2 servers. But, we know even more, we know where the
sample stores the key and data that will be decrypted, and how it will be decrypted.

With this knowledge, we can produce a script that automates the process of decrypting the
network communication configuration with the c2 servers. In the next section, we will cover
developing a configuration extractor for IcedID. If successful, we will be able to reuse this
script to extract the configuration of network communication with c2 servers from other
samples, without having to carry out the entire debugging process after the sample is
unpacked.

Configuration Extractor Development — IcedID

Well, we have all the information needed to automate the IcedID configuration extraction
process. We need a script that:

* Receive a PE artifact

* Read the .data section of the PE file, through the péfile library

o Select the first 8 bytes for the RC4 decryption key

o Select the remaining 248 bytes of data encrypted with RC4

o Treat the raw data in hexadecimal, using a library like binascii

o Perform the RC4 decryption process, using the arc4 library

o Print the key, encrypted data, and decrypted data in a formatted format after
executing the above processes.

You can find the complete configuration extraction script on my Github, or just by clicking
aqui.

With the configuration extractor developed, we can test on other unpacked samples, from the
IcedID family, in the hope that our script will perform the configuration extraction process
automatically.

In order to test our script on different samples from IcedID, | added two samples, in addition
to the one that was already the subject of our analysis. All three samples you can find at the
links below:

With that, below is the PoC video of the execution of the configuration extractor | developed,
tested on three different samples from the IcedID family. And as you can see below, the
script managed to extract the settings successfully!

Code Patterns between Samples from Different Years

35/47

https://github.com/erocarrera/pefile
https://docs.python.org/3/library/binascii.html
https://pycryptodome.readthedocs.io/en/latest/src/cipher/arc4.html
https://github.com/Icaro-Cesar/RE_AutomationPythonScripts/blob/main/RE_Automation/config_extractors/icedid/iced_conf_extractor.py

In this section, we will analyze two more unpacked samples from 2019 and 2023, with the
aim of identifying /cedID code reuse over the years. Allowing us to understand the familiarity
between samples, and identify opportunities for creating signatures, to detect samples that
follow the same pattern. To perform this analysis, we will use the BinDiff plugin in IDA.

We will perform this analysis, using the same samples that we tested with the config
extractor, in the previous section.

When we run BinDiff between the sample we analyzed in this article
(unpacked_icedid.exe) that was reported in 2020, with the unpacked_1648556 sample
from 2019, we can already notice the great similarities between the internal functions of the
samples.

Basic Blocks 203.2% Jumps 152.5% Instructions -128.1% Similarity 0.99
762 y

141 =

—————

43 / 43 Matched Functions

b " w| Show structural C|'i|'ge§ v Show 0|'|_l‘||'5|fl.(‘l¢'|§ changed »| Show identica
Similarty Confidence Address Primary Name Type Address Secandary Name Type Basic Blacks Jumps

100 097 80491630 Nomal | 98481630 start wormal | 1 0

100 | 0% B040180F Nomal | B848180F sub_48180F Normal | 5 00 s 0
100 | 099 00401004 Nommal | 6048189A sub_48189A Normal |0 & 00 7 0
100 I 0% 80481224 Nomal | padaizzd sub_481224 normal @)) oo 12 0
100 | 0ee B848133E Normal | @a48133E sub_48133E Normal 0 10 00 ® 0
100 [0% 80491008 Nommal | 08481808 sub_401800 Nomal @ n oo 16 [
100 | 0% 80401368 Nomnal | 84813ER sub_4813E8 Normal g 1 oo 19 [
100 I 0% BE4814FG Normal BE4814F9 iced_2819_main Harmal o 19 00 19 0
100 [0% 89401868 Nomal | 9848186E sub_48186E wormal @) 1 oo 20 0
100 | 0% Ba4810F6 Nomal | B64@1eFe sub_4810F6 Normal | 20 00 2 0
100 I 0% BE481 648 Nomal 88481648 sub_481648 Normal o 25 o0 29 o

In the table in the image above, we should focus our attention on the Similarity and
Confidence columns. Basically, how close it is to the value 1.0 is how similar each function
is. And as we can see in the image above, the internal functions of the unpacked_1648556
sample (from 2019) are identical to the functions of the unpacked_icedid.exe sample (from
2020).

Now if we compare the unpacked_icedid.exe (from 2020) and winme_sc_carved.bin (from
2023) samples, we will observe several similarities, but some differences between certain
functions. Below, we can see this in BinDIff.

36/47

https://github.com/google/bindiff

Basic Blocks 132.2% Jumps 84.5% Instructions -145.9% Similarity 0.67
r 543
— 1207w E
fo.6% E a0 lf
m .‘i"“ T ol
iE — — i
) v) T ol
= Foodddf PP
43 / 43 Matched Functicns
|- £ | ¥ show utal eh
Frimary Name | Type Address Secondary Name Type
hardware_info_collection Nomnal B84815E6 sub_4815E6 Narmal
file_creation_photo_png 1 Normal a84a1138 sub_481138 MNarmal
heap_allocation Nomal B848182E sub_48182E Mormal
start | Nomal BE4E1ASC start MNarmal
hardware_info_net_connection Nomnal 88481714 sub_481714 Normal
write_file_photo_png Nomal B84811CA sub_4811CA Normal
http_connection Komal BE481868C sub_48188C Mormal
code_injection Nomal @a4a188F sub_48188F MNormal
rcd_ksa_prga | Romal BE4B1EZA sub_4@81E2A Mormal
iced_2028_main Nomal 88481950 sub_481990 MNormal
red_routine Nomal B8481E69 sub_481E89 Normal

Analyzing the image above, we can see a slight difference between the main functions, a
slightly larger difference in the http_connection function, and a considerable difference in

the heap_allocation function.

Now that we know that the unpacked_1648556 sample is identical to the sample we
analyzed in this article, let’s note the important similarity between unpacked_icedid.exe
(from 2020) and winme_sc_carved.bin (from 2023) in the hardware_info_net_connection
function. Below, we can see the similarity in the code structure between the two versions.

[68a81224 hardware_info_net_connection] 1

primary £

IcedID sample
2020 version

sub_48171A 88481714

secondary

IcedID sample
2023 version

37/47

The functions that have an important functionality, and which are also identical between all
versions analyzed in this article, are the decryption routine functions through RC4.

Below, we can observe the similarity between the unpacked_iced.exe and

unpacked_1648556.exe samples, referring to the routine function of the RC4 KSA and
PRGA stages being executed. It is also possible to observe the pattern of these RC4
phases, through the presence of the value 0x100 in loops, followed by XOR operations.

[EowwTeor 7o es-prya
primary

IcedID sample, 2020 version

secondary

IcedID sample, 2019 version

0040180F o
us|

B048180F
BR4R1E10
B0481811
B0481812
0481813
0481814
BR4B1E16

MABIEIA x
u

B048181C
B0481810
B0481821

0940180F
00401 80F
BR4R1818
00401811
00401812
89401813
00401814
BR4B1816

BOMBIEIA xor
usi

0040181C
89481810
00401821

inc oa;

red_ksa_
mov

cap eax, Bx108
b BxddnBz3

o
BO401865 §

mp ehx, @x188
b Bx418IZ

B048180F
BR4R1BET
80421868
BR4R18ET
BO4B186A
B0421868
BR4B186C

80421860 retn

sade1mC

mov
no

cap eax, X109
b BxdénBz3

sub_4018 |

B40188F sub_401880
BB40182E mov
#401828 mov ob:

cap obx, Bx18@
ib Bx401832

-

B040180F
BO4BIBET
B0401868
BO481850
BO4B1B6A
B0401868
BO4B1BEC
B0481860

rEdd84EF
8

AEBZERE

In the following image, we can see the same pattern being observed between the
unpacked_iced.exe and winme_sc_carved.bin samples.

38/47

:
primary secondary

IcedID sample, 2020 version IcedID sample, 2023 version

BO40180F red_ksa_proa BO401EIA sub_401EZA

B848188F push ecx /i rcd_ksa_prga BB481E2A push ecx

BB4BIE10 push ecx BB4BIEZE push ecx

80481811 push ebx BO401E2C push ebx

BEB4BIE12 push sbp BB4BIEZD push ebp

80401813 push esi BO4BIEZE push esi

80481814 mov ebp, edx BO4B1E2F mov ebp, edx

SB401816 mov ws:[esprvar_d], ecx BM4BIEI1 mov ws:[esprvar 4], ecx
BB4B1E1A xor ed, edx BB4B1EIE wor edx, edx

BB4BIBIC push edi BB4BIEIT push edi

BO481810 mov edi. ss:|esprarg. 8] BO4RIEIE wov edi. ss:|esprarg @]
80481821 mov eax, edx BB481EIC wov eax, edx

¥ ¥

BB4B1EIA sub_481EZA

BR4B1EEF rod_ksa_prga
08401823 mov dn:|eaneedi], al BB4D1EIE mov du:[eanvedi], al
00401826 inc eax B8401EN inc eax
BR4B18Z7 cEp wax, Bx180 BR4BIERZ cmp eax, Bx188
00401820 jb Bxd4diE23 B0401E4T jb Bx4@1EIE
OB40180F red _ksa_prga OOIEZA sub _4R1E2A
OB4B182E mov cl, dl BBB1E4S mov el, dl
8481838 mov ebx, edx GB4B1ELE mov ebx, edy

DADTBOF rod_ksa_prga DOA0TEZA sub_4@1E2A

80401832 mov eax, s%:[esprvar_d] BB401E4AD mov eax, ss:[esprvar_d]
BI4B1BI6 movzxesi, o1 dl BO4O1ES] movzxesi, b1 dl

BB4R1B3F mov dl, ds:[ebxsadi] BA4B1ESE mov dl, ds:[ebxsadi]
BE4A1BIC mov al, du:[esireax] BA4BIEST mav al, du:[esiseax]

BB408183F add al, dl BO4B1ESA add al, dl

B0401841 add el, al BB481ESC add el, al

00401843 mov sa: [espevar_§), cl BO4BESE mov sa: [espevar 5],
BB4R1B4T movExecs cl BO4B1ELZ movEvecs cl

DAITBAA mov al, b1 de:[ecxsedi) BRADTEES mov al, b1 de:lecxeedi)
BO461840 mov ds: [ebxsedi], al BO4B1ELE mov ds: [ebxsedi], al
BB4R1B58 lea eax, du:ifesiel] BO4DIEEE lea eax, de:[esis1]
00401853 mov de:[ecxeedi], dl BOLRIEGE mov da:[ecaeedi], dl

BO401858 mov el, as:|espevar 5] BO4RIETT mov el, as:|espevar 5]
BI401ETT div ebp

BB48185E inc ebx BA4BIETY inc eb

B040185F cmp ebx, Bx188 BO4B1ETA cmp ebx, Bx188

80401865 b Bu4@1832 BI40TERR b BWARIEAD

PR4BIEET pop wcx

PR4B1B6C pop ecx
B0401ERE retn

88481860 retn

Below, we can observe the similarity between the unpacked_iced.exe and
unpacked_1648556.exe samples, referring to the routine function of the RC4 routine after
executing the first two stages (KSA and PRGA), and finally executing the XOR operation
that will decrypt the data that we observed in previous sections.

39/47

primary

q
¥

IcedID sample, 2020 version

sub_40186E B040186E

secondary

IcedID sample, 2019 version

In the following image, we can see the same pattern being observed between the
unpacked_iced.exe and winme_sc_carved.bin samples.

40/47

B04018B6E rc4 utine : sub_481E89 D0401EED

prlmary secondary
IcedID sample IcedID sample
2020 version 2023 version

This information is extremely useful, both for identifying code reuse between samples, and
consequently the identification of new strains of malware families (or use of malware by
different malicious actors), and for the development of Yara signatures, to detect samples of
more effective way.

That's what we’ll do in the next section.

Development of Yara Detection Rules

In this section we will use the intelligence we collected through our analysis, and use it to
create a detection rule, which can detect samples from the IcedID family.

In addition to creating our Yara detection rules, we will use the Unpac.me platform to carry
out a Yara Hunt, with the purpose of validating the quality of our detection rule, by detecting
other samples in the Unpac.me database.

As we can see in the previous section, we identified code reuse in some of the main
functions. This will be decisive for the production of our detection rule, because, if the IcedID
family reuses the code of primary functions, we can use these patterns in our detection rules.

The primary functions for the operation of both samples analyzed in the previous section are:

41/47

https://www.unpac.me/

e rc4_ksa_prga
e rc4_routine
» hardware_info_collection

In our analysis, these functions had their codes reused in both samples, therefore, they will
be part of our detection rule. The code reuse pattern is collected using the Disassembler,
where we will identify the same sequences of bytes (in hexadecimal) being used in the
functions mentioned above. Below, we can see the sequence of bytes referring to the
rc4_ksa_prga function. This sequence is the same in all samples analyzed in this article.

IDA View-A

Furthermore, we also selected some strings that also appear constantly in the three samples
analyzed.

Having this information, we created our detection rule, which | called
iced_family_was_detected, and validated its syntax in Unpac.me, as we can see in the
image below. The Yara detection rule has all the information collected and analyzed in this
article.

42/47

Yara Hunt

@D Submissions @D Labeled Artifacts @D Unlabeled Artifacts @D Goodware

Packed Files (PE | PE+) Unpacked Malware (PE | PE+) Unpacked Unknown (PE | PE+) Known Good (PE | PE+)

iced_family_was_detected

shardware info collect code pattern [
38 OF A2 6 OF B6 44 4E @

B EA 4C 24 1 1 1C 8B C2 : 10 3D F5 8A CA 8B DA

ern {

3 8A 4C 1C OF B6 C2 4c

ring8
string9

info collect code pattern or
prga_pattern or
operation pattern or
($related ring")

Rule Validation

Yara Version

Compile Test

Simple Scan

Large File Scan
Compile Warnings
Wildcards in Hex String
Short Byte Sequences

After performing the validation, | started Yara Hunt on Unpac.me. This run returned 5
different samples from the Unpac.me database, just labeled as part of the /ced/D family, and
without false positives.

43/47

Hunt Results

Launched Rule Matches Status
09/01/2024 iced_family_was_detected Bio Koo K fo 0 | compiete (1m 315) |
13:38:56 Submissions Unpacked Malware Unpacked Unknewn Goodware

Lookback Window

(12/12 weeks)

Yara Rule | O

Rule Validation: P

Matches: 1

— Scan Coverage: 98 %
In 12 week lookback window

Associated Analysis 5 Goodware (81%)
Matches Distribution T | Artifacts Labeled (100%) —_—
Artifacts Unlabeled (100%)
Submissions (100%) L}
Goodware: 0

In full lockback window

Observed Lifespan 3 Years
First Seen 21/10/2020
Last Seen 15/12/2023
Lxe) | c— <50KB 1 lcedID_init_loader 1
@ : «100KB] MALWARE_Win_lcelD 1
=250KB 0
<500KB 0
<1MB o
<SMB 0
<10MB 0
=25MB 0
<50MB 0
<100MB 0

44/47

YaraRule | O

Rule Validatior

Matches: 1 Scan Coverage: 98 % -
In 12 week lookback window
Associated Analysis 5 Goodware (81%)
Matches Distribution (I Artifacts Labeled (100%)
Artifacts Unlabeled (100%)
(100%)

Goodware: 0
In full lookback window
Observed Lifespan 3 Years
First Seen 21/10/2020
Last Seen 15/12/2023
UExE § 1 <50KB — lcedID_init_loader A
[232] 1 <100k MALWARE_Win_icelD

<250KB

<500KB

<1IMB

<SMB

<10MB

<25MB

<50MB

<100MB

Selection (0) @ @
Matches == First Seen & Last Seen « Type Size $
84f90b50e6bb1c020756cc1B8a39a622294f ff2cbdddcBfcT78187e63fcd%ecl37 (B € 5 21/10/2020 15/12/2023 @@ 25KB

lcediD_init_loader MALWARE_Win_lcelD

= Analysis Reports (5)
4066 B

| also carried out the validation using the Yara Scan Service platform, and below, we can

see the result.

45/47

https://riskmitigation.ch/yara-scan/index.html

riskmitigation.chfyara-scan/ X + % Navegacao privativa

& https://riskmitigation.ch/yara-s t5/09fa493b9f22741d4 ® # &

Obviously, the validation was also performed with the samples that we analyzed, | didn’t pay
much attention to them, as it is obvious that it would work, since | made the Yara detection
rule based on them. But, just to show the functionality, below are the matches in my
laboratory.

46/47

Conclusion

| hope that in this article | have exposed my sample analysis and reverse engineering
methodology, as well as the entire process of identifying patterns between samples and
detection engineering. And | hope that you who are reading this article may have learned
something new, or may have gained some insight. Until next time, feedback is always
welcome.

You can access the Yara rule and the config extractor at the following links.

See you later!!

47/47

