
1/39

irfan_eternal January 6, 2024

Understanding Internals of SmokeLoader
irfan-eternal.github.io/understanding-internals-of-smokeloader/

Contents

irfan_eternal included in Malware Analysis
 2024-01-06 3020 words
 15 minutes

Introduction

https://irfan-eternal.github.io/understanding-internals-of-smokeloader/
https://twitter.com/irfan_eternal
https://irfan-eternal.github.io/categories/malware-analysis/

2/39

In this blog we will be discussing about Understanding Internals of SmokeLoader using Ghidra

Analysis

For readers who want to Follow along can get the sample from MalwareBazaar .The sample was first
Seen on September 5th 2023 14:12:29 UTC
. The sample is 32bit Exe File You can use the tool of
your Choice i will be using Ghidra in this blog. The Sample Consists of 3 Stages. In the next sections
we will look at each Stages in Detail

Stage 1

The Primary Job of Stage 1 is to Write a new Image to Memory which is the Second Stage

Shellcode Allocation and Calling

The Stage 1 Allocates a Executable Memory in Virtual address space using VirtualAlloc. Writes
Shellcode to this address space whose job is to Load the new Image in to Memory

It Calls the Shellcode from Address 40404a If you want to Dump this Shellcode and Understand What
it is doing you Can put a Breakpoint on this Location . Stepin to this Call and dump this portion or
Follow it in Debugger to Understand What it’s doing

https://bazaar.abuse.ch/sample/5c1735b8154391534f98e6399a2576a572c7fd3c51fa6ecc097434c89053b1f7/

3/39

Loading New Image to Memory

The Shellcode first Dynamically Resolves API Call. It uses StackStrings and GetProcAddress to do
this

Using the Dynamically Resolved API Calls it Loads the New Image to Memory by Parsing PE
Headers. If you have a good Understaing of PE File Formats and it’s offsets the below image will
make Sense to you

4/39

Some PE File Format offsets i want you take a note is 0x3c and 0x78 . Offset 0x3c is aslo called as
e_lfanew it is the File address of new exe header .e_lfanew* + 0x78 gives us the ExportDirectory
Virtual Address

After this Shellcode is Comletely executed the New Image will be Loaded in the Memory. You can
dump the Second stage from memory Now

Stage 2

Stage 2 is Very Obfuscated Stage with Multiple Anti-Analysis Techniques to Frustrate the Malware
Analyst working on it. It Includes Anti-Vm Checks, Encrypted Function code only Decrypted prior to
it’s execution, API Hashing etc… The Final Goal of this Stage is to Inject the Third Stage to
explorer.exe

Weird Conditional Jumps

This Stage Contains Weird Conditional Jumps as Show in the below image . They are JNZ and JZ
jumps with same Destination Address. This is Infact an Unconditional Jump. The Malware is using
this technique make it hard for the Disassembler and Decompiler

5/39

We can Fix this Easily by finding all the Places with this weird Conditional Jumps and patching it with
unconditional Jump.

def handleDoubleConditionalJumps():

 address_array = findBytes(currentProgram.getMinAddress(), b'\x75.\x74.',
1000)

 address_array += findBytes(currentProgram.getMinAddress(), b'\x74.\x75.',
1000)

 for addr in address_array:

 jmp_bytes = getBytes(addr, 4)

 if jmp_bytes[1] - jmp_bytes[3] == 2:

 clearListing(addr)

 dis.disassemble(addr, None)

 patch_instruction = bytearray()

 patch_instruction.append(0xeb)

 patch_instruction.append(jmp_bytes[1])

 patch_instruction.append(0x90)

 patch_instruction.append(0x90)

 patch_instruction2 = bytes(patch_instruction)

 clearListing(addr)

 clearListing(addr.add(2))

 clearListing(addr.add(3))

 block = mem.getBlock(addr)

 block.putBytes(addr,patch_instruction2)

 dis.disassemble(addr, None)

 jmp_instr = getInstructionAt(addr)

 new_jmp = jmp_instr.getDefaultFlows()[0]

 new_jmp2 = new_jmp

 for i in range(50):

 clearListing(new_jmp2)

 new_jmp2 = new_jmp2.add(1)

 if new_jmp2.getAddress == currentProgram.getMaxAddress():

 break

6/39

The Above Python Code does this using Ghidra API After we run this Script all the Weird Conditonal
Jumps will be patched to Unconditional jumps and Disasseblers and Decompilera will give us a Better
Output. The Below images Shows us the Sample after Execution of th Script

7/39

Control Flow Obfuscation

This stage’s Control Flow is Obfuscated with the use of Anti-Debugging Checks

In the Below Image malware uses PEB’s BeingDebugged Field (Offset 0x2) to Check if Process is
Being Debugged. If it’s not being Debugged the Offset will contain 0, which is used to Calculate the
address where the Control flow is Transfered. If the process is being Debugged the Offset will Contain
1 and will lead to Exception

8/39

An other Anti-Deugging Technique it uses is the NtGlobalFlag Field(offset 0x68) in the PEB to Check
if it’s Being Debugged. If it’s not being Debugged the Offset will contain 0, which is used to Calculate
the address where the Control flow is Transfered. If the process is being Debugged the Offset will
Contain 0x70 and will lead to Exception

Encrypted Function Code

One of the most distinctive feature about SmokeLoader is that most of the Function code are in the
Encrypted form. They will only be Decrypted just before execution of that code. And will be re-
encrypted after that code has been executed

9/39

The above image show an Example how the Code look like before Encryption

The decryption_function in the above image is the function which decrypts the Code. It is a normal
XOR Decrption. The Function takes three parameters.

1. Size of the code to be decrypted
2. XOR Key used
3. RVA of the Starting of the Code that need to be decrypted. You can use the below function to

Decrypt one function at a time

10/39

def decryptShellcode(size, xor_key,
rva):

 va = rva + 0x400000

 va = hex(va)[2:]

 addr = toAddr(va)

 addr2 = addr

 enc = get_bytes(toAddr(va),
size)

 for i in range(size):

 clearListing(addr2)

 addr2 = addr2.add(1)

 size2 = size

 for i in range(0,size):

 enc[i] = enc[i]^xor_key

 for i in enc:

 i = i & 0xFF

 setByte(addr, i)

 addr = addr.add(1)

11/39

The Below Image Shows the same code after Decryption. The last call to 40131a is wrapper for
decryption_function, which will cause the code to be re-encrypted

API Hashing

The Hashing Algorithm used in 2nd Stage is DJB2 hasing Algorithm. In the below image you can see
the decompiled code for this. If you are having trouble Understanding this Code i would ask you to
read this blog . It Explains in Detail about API Resolving

https://irfan-eternal.github.io/analysing-shellcode-to-understand-how-they-call-windows-apis/

12/39

You can use the below python function to find the values of hashes of the API’s you need.

def api_hashing():

 api_list = []

 hasher = 0x1505

 hash2 = 0

 for a in api_list:

 hasher = 0x1505

 hash2 = 0

 for i in a:

 i = ord(i)

 hash2 = hasher

 hasher = hasher << 5

 hasher = hasher & 0xFFFFFFFF

 hasher = hasher + hash2

 hasher = hasher & 0xFFFFFFFF

 hasher = hasher + i

 hasher = hasher & 0xFFFFFFFF

 hash2 = hasher

 hasher = hasher << 5

 hasher = hasher & 0xFFFFFFFF

 hasher = hasher + hash2

13/39

 hasher = hasher & 0xFFFFFFFF

 hasher2 = hex(hasher)[2:-1]

 if len(hasher2)!= 8:

 hasher2 = "0"+hasher2

 print("API Name : "+a+" Address :
"+addresss)

14/39

Checks KeyBoard Layout

Next the malware checks the keyboard layout of the device. If it’s Russian(0x419) or Ukranian(0x422)
the malware won’t do any malicious activites. If this is not the case it continues doing it’s Buisness

Previliges Check

The Malware Check if it’s running with Higher Previliges using this API Call’s OpenProcessToken ->
GetTokenInformation(TokenIntegrityLabel) -> GetSidSubAuthority
It is Checking if the Integrity level is
above 0x2000 (SECURITY_MANDATORY_MEDIUM_RID)
If the values greater than 0x2000, it is
high integrity. If the user is local admin, but a process was executed normaly, you have the medium
integrity Level. If the user clicks run as administrator you would have 0x3000.

15/39

If this is not the Case it will use Run As Administrator Option to get Higher privileges

API Resolving for APIs of NTDLL

The Malware Then Open’s a handle ntdll.dll with shareMode set to 0,Creates a file mapping object for
ntdll, Maps a view of this file mapping into the address space of the Malicious process and does API
resolving using the Same Hash Algorithm (djb2) in this mapped View. This is to make sure no APIs
are being hooked by EDR

16/39

Anti-Sandbox, Anti-Emulator and Anti-VM Techniques

The Malware has Multiple Checks to detect if it’s in a VM or sandbox. In the below Image malware is
checking if the dlls sbidedll(Sandboxie), aswhook(Avast) and snxhk(Symantec) are mapped into
malicious process address space. These DLLs are related to Sandbox solution or Anti-Virus products,
another interesting thing to note is that the arguments are stored in the return adress of the function

Another check used by the malware is to check in the Registry Tree for device and drivers if it
contains anything related to Virtual machines. It Opens the Registry keys
SYSTEM\CurrentControlSet\Enum\IDE and SYSTEM\CurrentControlSet\Services\Disk\Enum\SCSI
using NtOpenKey and gets and the number and sizes of its subkeys using NtQueryKey

17/39

It then uses NtEnumerateKey to get the information about the subkeys and check if this subkeys
contains the strings qemu, virtio, vmware, vbox, xen . These strings are related to Emulators and
Virtual Machines

The Next check it uses is to detect Emulators . It Checks Current Process’ File path with AFEA.vmt
using wcsstr this is a Technique called error-based anti-sandbox check. It is explained in detail by
herrcore in this video

https://www.youtube.com/watch?v=8jckguVRHyI

18/39

Injection of Third Stage using Heavens Gate Technique

The Malware First Checks if it’s running on a 64 bit or 32 bit System by looking at the GS Register
because GS is non-zero in Win64 and In a ’true’ 32 bit Windows GS is always zero.. If it’s running on
a 64 bit System it uses Heavens Gate technique .“Heaven’s Gate” is a technique used to run a 64-bit
code from a 32-bit process, or 32-bit code from a 64-bit process .To know more about this technique I
request you to refer this article

Here it is used to run 64-bit code from a 32-bit process for Injection of the Third Stage. If the System
only supports 32 bit it Executes the Code shown in the Below Image

https://0xk4n3ki.github.io/posts/Heavens-Gate-Technique/

19/39

The third Stage is injected to explorer.exe. It uses GetShellWindow and GetWindowThreadProcessId
to get the process ID of explorer.exe. It then uses NtOpenProcess and NtDublicateObject to create a
duplicate handle for explorer.exe. It then creates a section then Maps the same section to malicious
process and explorer.exe. Another section is also created and this process is again repeated. The
third stage is then written to this section in the malicious Process. Since explorer.exe also has the
same section mapped it will also have the third Stage in it’s Memory.

20/39

Then RtlCreateUserThread is used to Execute the Malicious third stage from explorer.exe’s address
space

if the System supports 64 bit. It Decrpyts the 64 bit code for Injection and uses heaven’s gate
technique technique to excecute this. The process of Injection is same for Both. In the below images
you can see the 64 bit code which dynamically resolves RtlCreateUserThread API and it is then used
to Execute the malicious third stage from explorer.exe’s address space

21/39

To get the third stage you can set the GS register to 0 in the debugger at the time of injection, set
shareMode to FILE_SHARE_READ (0x00000001) when opening handle to ntdll.dll and defeat all the
Anti-Analysis techniques mentioned to get the third Stage in explorer.exe and dump it. You can aslo
get the entrypoint of the function if you look at the parameters of the RtlCreateUserThread

Stage 3

The Main objective of this stage is to Decrypt C2 URl Communicate to C2 and Download the Final
payload. This stage is also responsible for Persistnace of the Malware

Dynamic API Resolving using API Hashing

Third stage of the malware has a Different set of API resolving . it uses ROL8 hashing you can see
the algorithm in the below image

22/39

It uses this Hashing Algoritm to resolve APIs in multiple DLLs’ (kernel32, ntdll, user32, advapi32,
ole32, winhttp and dnsapi)

You can use the below code to get the Hashes of the APIs used in Third Stage

def stage3ApiHashing():

23/39

 api_list = []

 hasher = 0

 for api in api_list:

 hasher = 0

 for i in api:

 i = ord(i)

 i = i & 0xdf

 saved_val = i

 hasher = hasher ^ saved_val

 hasher = rol(hasher, 8)

 hasher = hasher & 0xFFFFFFFF

 hasher = hasher + saved_val

 hasher = hasher & 0xFFFFFFFF

 hasher = hasher ^ 0x38127ba6

 hasher = hasher & 0xFFFFFFFF

 print(hex(hasher))

 hasher2 = hex(hasher)[2:-1]

 while len(hasher2)!= 8:

 hasher2 = "0"+hasher2

 print(api+" : "+hex(hasher))

24/39

Encrypted Strings

The Important Strings in the third Stage are Encrypted in a custom rc4 encryption algorithm. The
Encrypted string is Stored in the Format of DataSize:Data

When it Comes to the custom rc4 algorithm. The key Stream Generation is Different from the default
rc4 algorithm the below image shows the decompiled view of the custom rc4 decryption algorithm

25/39

I Have Converted it to python Here is the code to Decrypt the Strings

def key_scheduling(key):

 sched = [i for i in range(0, 256)]

 i = 0

 for j in range(0, 256):

 i = (i + sched[j] + key[j % len(key)]) % 256

 tmp = sched[j]

 sched[j] = sched[i]

 sched[i] = tmp

 return sched

def streamXor(data, key, data_len,key_len, shed):

 counter = 0

 i = 0

 j = i

 while data_len != 0:

 i = i+1

 i = i & 0XFF

 temp = shed[i]

26/39

 temp = temp & 0xFF

 j = j + temp

 j = j & 0xFF

 shed[i] = shed[j]

 shed[j] = temp

 shed_swap = shed[i] + temp

 shed_swap = shed_swap & 0xFF

 data[counter] = data[counter] ^ shed[shed_swap]

 counter = counter +1

 data_len = data_len -1

 return data

def customrc4(data, key, data_len,key_len):

 shed = key_scheduling(key)

 final_result = streamXor(data, key, data_len,key_len,
shed)

 print(final_result)

def main():

 data = bytearray(b'\xb2\x16\x17\x9f\x23\x37')

 key = b'\x29\xc5\xbd\xe6'

 customrc4(data, key, 6, 4)

main()

27/39

The Decrypted Strings of the Third Stage can be seen in the Below Image

28/39

Analysis Tools Check

This Stage Checks if the system is running Analysis tools by looking at the Process name and
Window Class name

In the Below Image you can see the Malicious process Gettting the Name of all the Processes
running, Calculates their Hashes using the algorithm used in Stage 3(ROL8 hashing) and Check it
against Hashes of Analysis tools shown in the image below. If they match, that Process is Terminated

29/39

There is an Additional Check Which get the Class Name of all top-level windows on the screen. It
then Calculates their Hashes using the algorithm used in Stage 3(ROL8 hashing) and Check it
against Hashes of Analysis tools shown in the image below. If they Match, the Process related to that
window is Terminated

Previliges Check

The Same Previliges Check done in Stage 2 is done again Stage 3. The Malware Check if it’s running
with Higher Prviliges using this API Call’s OpenProcessToken-
>GetTokenInformation(TokenIntegrityLabel)->GetSidSubAuthority
It is Checking if the Integrity level is
above 0x2000 (SECURITY_MANDATORY_MEDIUM_RID)
If the values greater than 0x2000, it is
high integrity. If the user is local admin, but a process was executed normaly, you have the medium
integrity Level. If the user clicks run as administrator you would have 0x3000.

30/39

Mutex Check

The Malware Uses the Computer Name and Volume Infromation to a Create a Formatted Data which
is used as a Seed to Create an MD5 Hash with these Values. These Values is used in Multiple Places

31/39

One of the most important Place these Value used is to Create a Mutex with this name. The Malware
Creates a Mutex with this name and After that uses RtlGetLastWin32Error , if the return value is
ERROR_ALREADY_EXIST Malware Exits the Thread. This is done by the malware to make sure the
malware is run only once in a System

32/39

Copy to New Path and use of Zone.Identifier

The Malware Creates a File Path at AppData or Temp . Check if the File running is in this Path. If it is
not Running on this path it Delete itself and Copy the File from Curent Location to the File Path
Created at AppData or Temp

33/39

One Important thing to note here is the Malware Also removes the Alternate Data Stream
:Zone.Identifier . It Stores the Data whether the file was downloaded from the Internet. By Doing this
System won’t Understand the File was downloaded from Internet

Changing File Attributes and FileTime

After Moving the File to Appdata or Temp . The Files Attribute is Changed to 6 (
FILE_ATTRIBUTE_SYSTEM | FILE_ATTRIBUTE_HIDDEN). This makes the File Hidden and
operating system uses a part of, or uses this File exclusively.

34/39

Then Malware Chnages the Malicious Files Creation Time , Last Access Time and Last Write Time to
the Creation Time , Last Access Time and Last Write Time of advapi32.dll in System Dir. My
Assumption for this Technique is that it is trying to not show it’s a New File

Persistance

The Persistance is Achieved by Creating a Scheduled task using ITaskService interface

35/39

First it Deletes the Task with Name FireFox Default Browser Agent{MD5 Value Used to Create Mutex}
. Then It Sets Author of the task as Current User. Then Trigger of the task is set when the Current
User Logins in. The File path of Task is Set to the Malicious File Copied to AppData or Temp
And It
Finally Registers the task with name FireFox Default Browser Agent{MD5 Value Used to Create
Mutex}

36/39

C2 Decryption and Communication

The C2 URL’s are Encrypted using the Same Custom rc4 encryption Algorithm used in Stage3. The
Data is also Stored in the Same format DataSize:Data. You can use the Same Decryprtion Function
mentioned above to decrypt the Strings

37/39

Here is the List of C2 URL’s i found in this Malware

38/39

The malware then uses the c2 URL with WinHttp Library to Communicate to the C2 server

Since It’s a Loader Based on C2 Response It Loads the Final Payload

Indicators of Compromise

Type Indicator Description

SHA256 5c1735b8154391534f98e6399a2576a572c7fd3c51fa6ecc097434c89053b1f7 Initial File

39/39

Type Indicator Description

CnC hxxp://potunulit[.]org/ Command
and Control

CnC hxxp://hutnilior[.]net/ Command
and Control

CnC hxxp://golilopaster[.]org/ Command
and Control

CnC hxxp://newzelannd66[.]org/ Command
and Control

References

Back | Home
Analysing .NET AsyncRAT using dnSpy

javascript:void(0);
https://irfan-eternal.github.io/
https://irfan-eternal.github.io/analysing-.net-asyncrat-using-dnspy/

