
1/9

DarkGate: From AutoIT to Shellcode Execution
vmray.com/cyber-security-blog/darkgate-from-autoit-to-shellcode-execution/

Join us as we explore the malicious tactics and activities of the DarkGate malware family.

05 January 2024

Table of Contents

Overview

The DarkGate malware family is known for its variety of features including the download and
execution of malicious payloads, information stealing and keylogging abilities, as well as
employing multiple evasion techniques. It is being sold as a service to cybercriminals and

https://www.vmray.com/cyber-security-blog/darkgate-from-autoit-to-shellcode-execution/


2/9

has been active since at least 2018, but only recently gained in popularity after the Qakbot
infrastructure was taken down by law enforcement. What stands out is its rather complex
delivery methods and multitude of evasion tactics to avoid detection, one of which is the
abuse if AutoIt scripts to execute native code and not just commands.

AutoIt, commonly used to automate tasks within the Windows environment, such as
simulating mouse clicks or keystrokes on the GUI, is abused to execute a malicious
shellcode in DarkGate’s hands. This technique attempts to let the malware operate under the
radar by betting on static analysis tools inability to parse compiled and obfuscated AutoIt
scripts.

Recently, we have taken an in-depth look into the DarkGate malware family to gain insights
into the inner workings of this malware family as well as to improve detection and
configuration extraction. In this blog post, we want to specifically highlight the interesting way
by which DarkGate accomplishes executing malicious native code via AutoIt scripts.

Infection chain of DarkGate

Figure 1: Overview of the DarkGate delivery chain we have spotted so far.

DarkGate’s infection chain can start with multitude of file types, including DLLs, JScript,
VBScript, EXE and MSI files (see Figure 1 for a common delivery chain). 

This visualization highlights the journey from the initial delivery file to the subsequent stages.
It progresses through the AutoIt interpreter to the execution of shellcode, ending in the
execution of the actual DarkGate Loader.

https://www.vmray.com/wp-content/uploads/2024/01/darkgate_delivery_chain-3-scaled.jpg


3/9

Figure 2: Execution chain from the initial JS file, to the powershell downloader, finally landing in the
AutoIt interpreter where the script executes it's shellcode.

Differing from typical malware tactics, DarkGate does not use AutoIt scripts to execute
new commands (such as cmd) as evidenced by our process graph in Figure 2. This leads us
to the intriguing question: how exactly does DarkGate execute its malicious code?

An important clue is in our process graph, which tells us that the AutoIt interpreter injects
code into another process.

DarkGate Using AutoIt Scripts

The choice of AutoIt by DarkGate’s developers is strategic: Our investigations reveal that the
malware often employs compiled and protected AutoIt scripts, which are additionally
obfuscated to further cloak their malicious intent. This level of protection makes it challenging
to dissect and understand the malware’s inner workings for researchers and static analysis
tools alike.

By utilizing tools such as myAut2Exe or Binary Refinery, we can extract the original source
code from these obfuscated scripts. This process, albeit requiring some clean-up, does
produce a readable source code for our manual reverse engineering purposes. The
deobfuscated code in Figure 3 provides us with a pivotal insight into DarkGate’s operation:
The malware utilizes specific Windows API functions, notably EnumWindows, but in other
samples we have also seen a call to CallWindowProc. 

Figure 3: Deobfuscated and simplified AutoIt script

https://www.vmray.com/wp-content/uploads/2024/01/darkgate_process_graph.png
https://www.vmray.com/wp-content/uploads/2024/01/darkgate_autoit.png


4/9

DarkGate’s Shellcode Execution

The aforementioned API functions, while typically used for legitimate purposes, are
repurposed by DarkGate to execute its malicious payload.

CallWindowProc is typically used for customizing actions in a Windows GUI, like modifying
button functionality. However, DarkGate calls this function while pointing the first
parameter, lpPrevWndFunc, to its shellcode. In effect, Windows then executes the malicious
shellcode as if it were a window procedure. This seems to be a known workaround to
execute native code via AutoIt scripts at least since 2008.

In some variants of DarkGate, EnumWindows is abused instead, which is a legitimate API for
enumerating top-level windows. This function is designed to execute a specified callback
function for each window, but DarkGate sets the callback function address to it’s shellcode
location. Given that there’s almost always at least one open window, this ensures the
execution of the malicious shellcode at least once.

Any callback-based Windows API function could potentially be abused in a similar way, but
specifically executing native code via EnumWindows in AutoIt seems to be new and unique
to DarkGate as far as we are aware. While all of this may be hard for static analysis tools to
extract, behavior-based analysis allows one to capture this in action. Our execution logs (see
Figure 4) clearly show the runtime execution of EnumWindows and the following call to
LoadLibraryA executed by the shellcode.

Figure 4: VMRay's function log captures runtime execution of EnumWindows by the AutoIt script.

Variants of DarkGate

To investigate this further, we have manually selected multiple DarkGate samples dating
back to it’s initial version in 2018. Through manual clustering based on code similarities,
we’ve identified four distinct variants:

1. First Variant: This variant embeds the payload within the compiled AutoIt script,
encrypted using XOR and surrounded by the “padoru” keyword. It specifically checks
for the presence of Sophos antivirus software and leverages the VirtualProtect call to
make the shellcode memory region executable and uses the CallWindowProc API to
execute the shellcode.

2. Second Variant: Here, the payload is scattered throughout the AutoIt source code as
hex codes, which is put together at runtime. This variant switches its strategy to abuse
the EnumWindows API instead of CallWindowProc.

https://www.vmray.com/wp-content/uploads/2024/01/darkgate_flog.png


5/9

3. Third Variant: This is similar to the others but with a key difference: it checks if it is
running with SYSTEM privileges.

4. Fourth Variant: This one is from 2018, has much less complexity as it contains no
obfuscation. It creates a shortcut (LNK) to the AU3 file placed in the startup directory
and reads the shellcode from a previously dropped ‘shell.txt’ file. Like the first variant, it
also abuses CallWindowProc.

We have also noticed that there are differences in how the shellcode was implemented,
which we will briefly look into next.

Payloads in DarkGate

The payloads in DarkGate’s various samples typically follow a similar mechanism, primarily
focusing on loading the next stage of the malware, which is often tasked with downloading
the final DarkGate malware.

 One notable technique observed in these payloads is the byte-by-byte construction of the
code using the mov instruction, a method likely adopted to evade detection by scanning tools
before runtime extraction (see Figure 5).



6/9

Figure 5: The shellcode copies a PE file into a memory location byte-by-byte without loops,
potentially to avoid detection.

Additionally, some payloads exhibit a deliberate pattern of jumping around the code (see
Figure 6).

https://www.vmray.com/wp-content/uploads/2024/01/darkgate_byte_by_byte_copy.png


7/9

Figure 6: Obfuscated shellcode dropped by DarkGate

This complexity is designed to hinder manual analysis, making it more challenging to dissect
and understand the malware’s functionality and intent. For dynamic, behavior-based analysis
solutions such as VMRay’s Platform, none of these obfuscation attempts can hide the
malicious actions taken by the sample.

 In particular, while such intricacies in the payloads underscore the stealth and sophistication
embedded in DarkGate’s design, our dynamic approach reveals the executed functions in
the function log just the same, regardless of any obfuscation attempts such as jumping

https://www.vmray.com/wp-content/uploads/2024/01/darkgate_jump_obfuscation.png


8/9

around, calling native functions via AutoIt scripts or employing multi-stage payloads spread
over different memory regions.

Conclusion

Despite DarkGate’s extensive obfuscation efforts, dynamic, behavior-based analysis proves
to be a helpful tool in identifying and understanding this malware. By not solely relying on
static analysis, it’s possible to trace the entire code execution journey – from initial infection,
through the AutoIt3 interpreter stage, to the injection, and finally to the actual DarkGate
malware, culminating in the extraction of its configuration. 

This case study highlights the lengths to which attackers will go, continually exploring
obscure methods to deliver their malware and challenge existing security solutions.

References

IOCs

Hashes:

754d7afb2c3454d86ded95668c74c119c5ec4465
18f49619d69b057e81163bdf08eab5f355ce662c
5629b3684d406e431c6f41c5df56455c3b944c41
47718e8df5e7a0d0b2c74f10696ca50cf6e1e0b9
bb0f4a60bbd8256e42f57d8b0b1269f2ec855428
eabcef1e27b7452c74acfa0f201e9a937b0dee6d
c46e52b896bf3b53a6878d2b2386a9dc40377f19
29b6a8ae869cdc1a95bae83dd97874e5efa79613
d25e55d1eed18e55557ee9da7d195748dd2814f0
2e0d4798c12a7d71ad45a621dddb750bae0cd23b
edc5d0dc190dcd0e031e2c5b43026fd3a61caed0
c90d572f7f160dd8a3ae6e825eeb2a9d6628cef5
0d47cbd6d19a17a57077cbc0d0aa659865458672
f68cc52f19c11d07d72118e71919df20ffabe9f2

URLs:

hxxp://adhufdauifadhj13[.]com:2351
hxxp://sftp.bitepieces[.]com:443
hxxp://sftp.noheroway[.]com:443
hxxp://saintelzearlava[.]com:80
hxxp://trans1ategooglecom[.]com:80
hxxp://sanibroadbandcommunicton[.]duckdns[.]org:5864



9/9

hxxp://faststroygo[.]com

Emre Güler
Threat Researcher

See VMRay in action.
 Get full visibility into the most challenging threats.

REQUEST FREE TRIAL NOW

https://www.vmray.com/try-vmray-products/

