
1/9

By Saikumaravel January 4, 2024

Qakbot Returns - K7 Labs
labs.k7computing.com/index.php/qakbot-returns/

The Qakbot malware has reappeared just four months after law enforcement disrupted its
distribution in the “Duck Hunt” operation. Lately, various security companies have noticed
the malware spreading through phishing emails. Microsoft, which discovered this,
described it as a small-scale campaign starting on December 11, 2023, specifically
targeting the hospitality industry. Although the number of these emails is currently low,
given Qakbot’s past persistence, it’s anticipated that the volume will rise soon. We got our
hands on one such sample by this tweet.

https://labs.k7computing.com/index.php/qakbot-returns/
https://twitter.com/MsftSecIntel/status/1735856754427047985
https://twitter.com/threatinsight/status/1737564830171533343

2/9

Figure 1: Microsoft discovery of Qakbot resurface

Binary Analysis

As per Microsoft’s tweet, in the recent campaign, an MSI file is being downloaded to the
user’s machine from the malicious PDFs which were spread through phishing mails.

3/9

Figure 2: Execution Flow

On analysing the MSI file, we found that the suspicious DLL compressed inside was a
patched IDM (Internet Download Manager) DLL with Qakbot inside.

Figure 3: Qakbot inside IDM DLL

We found that this DLL was packed with a custom packer. Usually unpacking the Qakbot
DLL is quite simple. It uses VirtualAlloc() to allocate memory to unpacked code and
VirtualProtect() to change the protection on a memory region. We set breakpoints on both
of those APIs to unpack. We first got the dump of the PE file without the MZ header. Later,
we found that it was the Qakbot second stage loader by manually adding the MZ header.
The threat actor employs this method to avoid detection by EDR, as it scans memory
regions for MZ headers to identify potential process injection methods.

4/9

Figure 4: Unpacking Qakbot

On further unpacking, we got the final Qakbot payload which loads from memory while
executing. Some security researchers found that in the new campaign, Qakbot uses AES
encryption to encrypt and store victim information but the final payload we got was the
usual Qakbot payload with the same RC4 encryption.

https://twitter.com/Threatlabz/status/1735863156738871470

5/9

Figure 5: Final Qakbot payload

On dynamic analysis, the MSI drops an installer temp file which passes the command line
to invoke rundll32.exe and hides the window to run in background.

Figure 6: MSI installer

6/9

Since the threat actor uses PDF in their kill chain, the malicious DLL self copies itself in the
name of AcrobatAC.dll and passes the command line arguments to execute the DLL with
Qakbot export function EditOwnerInfo.

Figure 7: Malicious DLL running on background

It showed the dummy Acrobat window and fake error window as a decoy. Further we found
that the malicious DLL invokes the wermgr.exe – Windows Error Manager in suspended
state to pursue its kill chain.

Figure 8: Decoy and invoking wermgr.exe

We dumped the PE file from wermgr.exe which was our previously unpacked final Qakbot
payload. The threat actor implied Process Hollowing technique to inject malicious code
into the suspended process of Windows Error Manager.

7/9

Figure 9: Process Hollowing wermgr.exe

As mentioned earlier, the wermgr.exe creates a registry key with RC4 encrypted data of
victim system information, timestamp of installation and C2 information which is a usual
Qakbot TTP.

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/decrypting-qakbots-encrypted-registry-keys/

8/9

Figure 10: Creates registry key

Qakbot tries to make a C2 connection in the background when the victim believes
wermgr.exe is running. Since the C2 was down at the time of analysis, it was unable to
establish a connection for carrying out any further malicious activity.

Figure 11: C2 connection by wermgr.exe

We at K7 Labs provide detection against latest threats and also for this newer variant of
Qakbot. Users are advised to use a reliable security product such as “K7 Total Security”
and keep it up-to-date so as to safeguard their devices.

IoCs

9/9

Hash Detection Name

723DAE8ED3F157E40635681F028328E6 Backdoor (005af9cf1)

88BBF2A743BAAF81F7A312BE61F90D76 Backdoor (005af9cf1)

References

