
1/16

December 6, 2023

Unmasking the Enigma: A Historical Dive into the World
of PlugX Malware

splunk.com/en_us/blog/security/unmasking-the-enigma-a-historical-dive-into-the-world-of-plugx-malware.html


By Splunk Threat Research Team December

06, 2023
In the ever-evolving landscape of cybersecurity threats, one name that consistently
surfaces as a force to be reckoned with is "PlugX." This covert and insidious malware has
left a trail of digital intrigue, combining advanced features with a knack for eluding detection.
Its history is interwoven with cyber espionage, targeted attacks, and a continuous cat-and-
mouse game with security experts (1)(2).

The Splunk Threat Research Team (STRT) unravels the mystery of a PlugX variant, peeling
back the layers of its payload, tactics, and impact on the digital realm. Join us as we delve
into the dark corridors of this malware, exploring its side loading technique and how it
executes its malicious code in the compromised host . 

In this blog, the STRT provides a deep dive analysis of this threat, including:

PlugX .DAT Payload Extraction
PlugX .CFG Decryption
PlugX Extractor Tool

https://www.splunk.com/en_us/blog/security/unmasking-the-enigma-a-historical-dive-into-the-world-of-plugx-malware.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://blog.sekoia.io/my-teas-not-cold-an-overview-of-china-cyber-threat/
https://www.mandiant.com/resources/blog/infected-usb-steal-secrets
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/carderbee-software-supply-chain-certificate-abuse
https://go.recordedfuture.com/hubfs/reports/cta-2023-0808.pdf


2/16

PlugX Analysis
Process Masquerading
System info discovery
Firewall rule
Create service
Delete service
Drop Files
Impersonate User
Keylogger and Process Monitoring

PlugX .DAT Payload Extraction

Much like its predecessors, this variant of PlugX leverages the side-loading technique to
discreetly execute its nefarious code. In this intricate sequence, when a user initiates the
legitimate 'msbtc.exe,' the malware dynamically loads the 'version.dll,' a critical component
required for the initial layer of decryption of the 'msbtc.dat' file. This first layer decryption
employs a RC4 algorithm, discreetly orchestrated by the 'Version.DLL' within its
'VerQueryValueW' export function.

Upon successful decryption of the first layer, PlugX incorporates a set of critical headers,
which serve as essential components in the subsequent decryption and decompression of
its final payload. In Figure 1, we provide a comprehensive breakdown of these header
elements, shedding light on their intricate composition and their pivotal role in the
functionality of the malware.



3/16

Subsequently, the malware progresses to the second layer of decryption, which comprises
a series of XOR operations and basic mathematical operations that can be seen in our
extraction tool. These transformations are applied to generate a compressed layer, which is
further unpacked using the 'RtlDecompressBuffer()' API. This meticulous process
culminates in the creation of a headless PlugX payload variant, poised for injection into a
targeted process. The specific process chosen for this operation will be explored in
subsequent sections, shedding light on the malware's evasion tactics and persistence
strategies.

Figure 1: The 1st Layer Decrypted PlugX with its header



4/16

PlugX .CFG Decryption 

Differing from the decryption process for 'msbtc.dat,' when dealing with the 'msbtc.cfg' file of
this particular PlugX variant, it simplifies the procedure. It solely relies on the identical key
and RC4 algorithm as employed by the 'Version.DLL' to extract its configuration settings.
This streamlined approach emphasizes efficiency in handling configuration data, making
use of the existing tools to expedite the process.

PlugX Extractor Tool

In an effort to contribute to the cybersecurity community by facilitating the analysis of this
threat and the extraction of the PlugX payload along with its configuration file, the STRT has
taken the initiative to create a Python tool named plugx_extractor.py. This tool automates
the extraction process, ensuring seamless and precise results. The extracted data is
efficiently saved to a file, simplifying the investigative process and empowering security
professionals to dissect and understand this threat more effectively.

Below is a short video demo of how this tool extracts both Plugx payload and config files.

Figure 2: Decryption and Decompression of PlugX Payload 

Figure 3: plugx_extractor.py Demo

https://github.com/tccontre/KnowledgeBase/blob/main/malware_re_tools/plugx_extractor/plugx_extractor.py


5/16

PlugX Analysis

In the following subheadings, we will conduct an in-depth analysis of the headless Plugx
payload that we decrypted from the 'mbstc.dat' file.

Process Masquerading

Figure 4: Decrypted PlugX Config



6/16

After decrypting the headless PlugX payload from 'msbtc.dat,' it proceeds to inject it into
legitimate 'msdtc.exe,' which stands for Microsoft Distributed Transaction Coordinator. This
essential Windows service is responsible for managing distributed transactions across
various resources, including databases, message queues, and file systems.

In Figure 5, it inspects the command line parameters of the 'msdtc.exe' process. If it detects
'-a,' it indicates a fresh execution, and if it finds '-b,' it triggers additional features.

System Info Discovery

As part of its beacon communication with the C2 server, the PlugX malware retrieves the
compromised host's username, computer name, and operating system information.

Figure 5: The msdtc.exe with parameter check



7/16

In addition to the aforementioned actions, it will make an attempt to gather network-related
information from the compromised host by initiating queries to the ipinfo.io website. This
data collection process involves retrieving details about the host's external IP address,
geographical location, Internet service provider, and other relevant network-related
parameters. By querying ipinfo.io, the malware aims to build a comprehensive profile of the
compromised host's network environment, which can be further utilized for various
malicious activities or information gathering.

Figure 6: System Info Discovery



8/16

Firewall Rule

The malware initiates a strategic action by adding a firewall rule, which it designates as
"Microsoft Edge." This rule is configured to permit incoming network traffic for a specific
TCP port, which is crucial for its communication with the Command and Control (C2) server.
In our test environment, we customized the PlugX configuration to establish a connection
through port 7777.

By creating this firewall rule, PlugX manipulates the host's security settings, ensuring that
network traffic on the specified port is permitted. This allows the malicious software to
maintain a covert line of communication with its remote C2 server through port 7777,
thereby enabling the exfiltration of data, execution of commands, and potentially additional
malicious activities. This deliberate manipulation of the firewall settings is a key component
of the malware's ability to operate stealthily within the compromised system.

Figure 7: Network Info Discovery

Figure 8:  Add Firewall Rules 



9/16

Create Service

During its installation process and to establish persistence and gain elevated privileges
within the compromised host, the malware executes a multifaceted strategy. One of its key
actions involves the installation of a service that is strategically overlaid onto the legitimate
"msbtc.exe" executable. This service plays a pivotal role in orchestrating the covert
operations of the malicious software.

This service is configured to perform two essential functions:

Automated Decryption: Once in place, it operates as a sophisticated decryption mechanism.
It diligently decrypts the concealed, compressed payload and configuration files that
constitute the heart of the PlugX malware. This decryption process is initiated seamlessly
upon the execution of the legitimate "msbtc.exe."

Dynamic Payload Loading: Simultaneously, the service facilitates the dynamic loading of
the decrypted PlugX payload and configuration. This allows the PlugX to transition from its
concealed state to full functionality as it injects itself into the mstdc.exe processes and
memory, positioning itself to carry out its malicious agenda.

Delete Service

In the initial execution phase of PlugX, the malware meticulously executes a sequence of
actions designed to eliminate or clean-up any traces of its previous installations and related
artifacts. This calculated process is enacted to ensure the seamless and error-free

Figure 9: Create msbtc.exe services



10/16

reinstallation of itself, minimizing the likelihood of detection or interference. A telling
example of this sophisticated housekeeping operation is illustrated in the figure below.

Drop Files

As part of its installation process, the PlugX orchestrates dropping copies of all its essential
components that are critical to the PlugX overall functionality. The dropped copies are
placed specifically in the "%programdata%\MSB" folder.




Figure 10: Delete msbtc.exe services



11/16

 

Impersonate User

To gain privilege escalation, this particular variant of PlugX exhibits a capability to
impersonate the currently logged-in user by leveraging the "explorer.exe" process. This
technique allows the malware to adopt the identity and permissions of the legitimate user,
thereby gaining unprecedented access to system resources and sensitive data. By
disguising its activities within the "explorer.exe" process, a common and essential
component of the Windows operating system, PlugX effectively conceals its malicious
intentions.




Figure 11: Dropped Files



12/16

Keylogger and Process Monitoring

PlugX also possesses a keylogging feature, enabling it to covertly monitor keystrokes and
process activities on the compromised host. The data collected through this surveillance is
discreetly stored in a file located within the "%ALLUSERPROFILE%\MSB" directory,
specifically named "kl." This gathered information plays a pivotal role in the malware's data
collection and exfiltration strategy. Subsequently, the contents of the "kl" file are
systematically read and transmitted to the Command and Control (C2) server.

Figure 12: Impersonate Logged-on User Through Explorer.exe Process



13/16

Detections

The Splunk Threat Research Team has curated relevant detections and tagged them to the
PlugX Analytic Story to help security analysts detect adversaries leveraging the malware. 

This release used and considered the relevant data endpoint telemetry sources such as:

Process Execution & Command Line Logging

Figure 13: Keylogger and Process Monitoring

Figure 14: Example of the kl file 



14/16

Windows Security SACL Event ID, Sysmon, or any Common Information Model
compliant EDR technology
Windows Security Event Log
Windows System Event Log
Windows PowerShell Script Block Logging

Indicators of Compromise (IOC)

 Name: msbtc.cfg

 Size: 416 bytes

 SHA256: 66f9cc42c27cf689911f6ba3e24ad9cbec6fa3066a50c448d4cbf5d8a66d2eb5

 Name: msbtc.dat

 Size: 697243 bytes (680 KiB)

 SHA256: f991c13a24df578a9f31741a263dc1405eac660d4e749465991bac68eccdc490

 Name: msbtc.exe

 Size: 310384 bytes (303 KiB)

 SHA256: fca2fad3466fefebd6df133d48485374ca647dedcc2ef9ba52e7d0ccdbf91000

 Name: VERSION.dll

 Size: 230912 bytes (225 KiB)

 SHA256: 64c5c9732a97f9b088e63173cb8781cae33d29934fdbe3652393394c4188d15c

Playbooks 

Non-hunting detections associated with this analytic story create entries by default in the
Splunk Enterprise Security risk index which can be used seamlessly with risk notables and
the Risk Notable Playbook Pack. Additionally, the Automated Enrichment playbook pack
also works well with the output of any of these analytics.

Playbook Description



15/16

Automated
Enrichment

Moves the event status to open and then launches the Dispatch
playbooks for Reputation Analysis, Attribute Lookup, and Related
Tickets.

Identifier
Reputation
Analysis
Dispatch

Detects available indicators and routes them to indicator reputation
analysis playbooks. The output of the analysis will update any artifacts,
tasks, and indicator tags.

Attribute
Lookup
Dispatch

Detects available entities and routes them to attribute lookup
playbooks. The output of the playbooks will create new artifacts for any
technologies that return information.

Related Ticket
Search
Dispatch

Detects available indicators and routes them to dispatch related ticket
search playbooks. The output of the analysis will update any artifacts,
tasks, and indicator tags.

Why Should You Care?

This blog helps security analysts, blue teamers, and Splunk customers to identify PlugX
malware by enabling the community to discover the PlugX tactics, techniques and
procedures being used by threat actors and adversaries. By understanding its behaviors,
the STRT  was able to generate telemetry and datasets to develop and test Splunk
detections which are designed to help defend and respond against this threat.

Learn More

You can find the latest content about security analytic stories on GitHub and in Splunkbase.
Splunk Security Essentials also has all these detections now available via push update. In
the upcoming weeks, the Splunk Threat Research team will be releasing a more detailed
blog post on this analytic story. Stay tuned!

For a full list of security content, check out the release notes on Splunk Docs.

Feedback

Any feedback or requests? Feel free to put in an issue on Github and we’ll follow up.
Alternatively, join us on the Slack channel #security-research. Follow these instructions If
you need an invitation to our Splunk user groups on Slack.

Contributors

https://research.splunk.com/playbooks/automated_enrichment/
https://research.splunk.com/playbooks/identifier_activity_analysis_dispatch/
https://research.splunk.com/playbooks/attribute_lookup_dispatch/
https://research.splunk.com/playbooks/related_tickets_search_dispatch/
https://github.com/splunk/security-content/releases/tag/v3.12.0
https://splunkbase.splunk.com/app/3449/
https://splunkbase.splunk.com/app/3435/
https://docs.splunk.com/Documentation/ESSOC/3.21.0/RN/Enhancements
https://docs.splunk.com/Documentation/ESSOC
https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat


16/16

We would like to thank Teoderick Contreras for authoring this post and the entire Splunk
Threat Research Team for their contributions including Michael Haag, Mauricio Velazco,
Lou Stella, Bhavin Patel, Rod Soto, Eric McGinnis, and Patrick Bareiss.

Posted by

Splunk Threat Research Team

The Splunk Threat Research Team is an active part of a customer’s overall defense
strategy by enhancing Splunk security offerings with verified research and security content
such as use cases, detection searches, and playbooks. We help security teams around the
globe strengthen operations by providing tactical guidance and insights to detect,
investigate and respond against the latest threats. The Splunk Threat Research Team
focuses on understanding how threats, actors, and vulnerabilities work, and the team
replicates attacks which are stored as datasets in the Attack Data repository. 




Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of
industry-recognized experts who are encouraged to improve the security industry by
sharing our work with the community via conference talks, open-sourcing projects, and
writing white papers or blogs. You will also find us presenting our research at conferences
such as Defcon, Blackhat, RSA, and many more.



Read more Splunk Security Content. 

https://twitter.com/tccontre18
https://twitter.com/M_haggis
https://twitter.com/mvelazco
https://twitter.com/ljstella
https://twitter.com/hackpsy
https://twitter.com/rodsoto
https://twitter.com/SnekCharmerr
https://twitter.com/bareiss_patrick
https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://github.com/splunk/attack_data/
https://github.com/splunk/security_content

