Ghidra Basics - Identifying, Decoding and Fixing
Encrypted Strings

embee-research.ghost.io/ghidra-basics-identifying-and-decoding-encrypted-strings/

Matthew December 5, 2023

Advanced
Manual identification, decryption and fixing of encrypted strings using Ghidra and x32dbg.

In this post, we will investigate a Vidar Malware sample containing suspicious encrypted
strings. We will use Ghidra cross references to analyse the strings and identify the location
where they are used.

Using this we will locate a string decryption function, and utilise a debugger to intercept input
and output to obtain decrypted strings.

We will then semi-automate the process, obtaining a full list of decoded strings that can be
used to fix the previously obfuscated Ghidra database.

Summary

During basic analysis of a Vidar file, we can see a large number of base64 strings. These
strings are not able to be decoded using base64 alone as there is additional encryption. By
using Ghidra String References we can where the base64 is used, and hence locate the
function responsible for decoding.

1/29

https://embee-research.ghost.io/ghidra-basics-identifying-and-decoding-encrypted-strings/
https://embee-research.ghost.io/tag/advanced/

With a decoding function found, it is trival to find the "start" and "end" of the decryption
process. Using this knowledge we can load the file into a debugger and set breakpoints on
the beginning and end of the decoding function. This enables us to view the input (encoded
string) and output (decoded string) without needing to reverse engineer the decryption
process.

By further adding a simple log command into the debugger (x32dbg), we can tell x32dbg to
print all values at the start and end of the decryption function. This is a means of automation
that is simple to implement without coding knowledge.

Once the encrypted/decrypted contents have been obtained, we can use this to manually
edit the original Ghidra file and gain a deeper understanding of the malware's hidden
functionality.

Obtaining the File

The file can be downloaded here from Malware Bazaar.

SHA256: 0823253d24e0958fa20c6e0c4b6b24028a3743c5¢c895¢c577421bdde22¢c585F9f

Initial Analysis and Identifying Strings

We can download the file from Malware Bazaar using the link above, we can then unzip the
file using the password infected.

We like to create a copy of the origininal file with a shorter and more useful file name.
In this case we have chosen vidar.bin .

Name ifiec Type

. old 2 PN File folder
B 0823253d24e0958fa20c6e0c4bb6b24028a3743c5c895¢577421bdde22c585f9f / 0 AM File

B vidarbin /12 : BIN File

We can perform some basic initial analysis using Detect-it-easy. A typical workflow in detect-
it-easy is to look for strings contained within the file.

If we select the "strings" option, we can see a large number of base64-like strings.

(You could also use PeStudio or any other tooling that can identify strings)

2/29

https://bazaar.abuse.ch/sample/c7bf8bc1006158f659f59eaf37f39e10a437503059bbb310ed03d321134b936e/?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/c7bf8bc1006158f659f59eaf37f39e10a437503059bbb310ed03d321134b936e/?ref=embee-research.ghost.io

Detect It Easy v3.01

File name

C:\Users\Lenny\Desktop\malware\vidar\vidar.bin

File type Entry point Base address ‘ MIME

PE32 0042468d > Disasm 00400000 Memory map —
as

] D D e
PE

—— Strings

Sections TimeDateStamp SizeOfImage ‘ =
T e ntropy
0004 > 2023-10-30 07:14:49 00062000

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386 GUI

compiler Microsoft Visual C/C++(2010)[libeit]
linker Microsoft Linker(10.0MGUI32]

Options
’ Signatures [Deep scan About

280 msec Exit

The default minimum string length is 5, which results in a lot of junk strings. By
increasing this to 10, we can more easily identify strings of interest.

In the screenshot below we can see a group of base64-like strings. In many cases, encoded

strings like these are used to obfuscate functionality and Command-and-Control (C2)
servers.

Hence, they are a useful indicator to hone in on with tooling like Ghidra.

3/29

Strings — O X

0x00000000 - 0x0004bOff (0x0004ba00) D ANSI |:| Unicode

Offset v Size String
0000004d 00000028
000032a6 0000000d
0000488d 0000000a
00006618 0000000b

000111ff 0000000f
000138c4 0000000a
0001a8ee 0000000c
0002a703 0000000b

0002eff6 0000000c
0002f3ac 0000000a
000312b8 0000000a
000320a4 0000000e
0003211b 0000000e
00036a18 0000008c
00036aac 00000010
00036ac0 00000010
00036ad4 00000010
00036ae8 00000018
00036b04 00000010
00036b18 0000000c

21 00036b28 00000010

1This program cannot be run in DOS mode.
taHt(HtHt L Ht

meomTvsmT

N T ttHt<HEH

E-HuHtTHE T Hubv

taHtvHHtk2

<+t"<-ta<oufl

+D$N€TsT+Ds

<at,<r‘t"<th

LsTurrQaho

N+DsT €753

1f;p-r+f;pTw%f

1f:Hmr+f:H Twoef

Delosperma lavisiae is a species of flowering plant in the family Aizoaceae, native to ...
tw+lvmZwS5kffvene

mw+OhXB5pzuQtODz
vQ6MsXN15kffvene
mw+O0k2xxpXWFvPf85dFK5Q==
kAWZsW9duRmeug==

O 0 N o0 1 p W N

[I e I I e
O W O N v 1 A~ W N = O

sBmOomBxpRym
igOIpHZSUuTODVOA=

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Filter

—
=

Now we've identified some interesting strings within the file. We can go ahead and use
Ghidra to analyse these further and attempt to establish some context as to how they are
used.

Loading the File Into Ghidra

To analyse these strings further, we can go ahead and load the file into Ghidra.

This can be done by dragging the file into Ghidra, accepting all default options and allowing
the Ghidra analysis to run for a few minutes.

We can then continue our analysis by locating the same strings we found during initial
analysis. In this case we can start with the first base64 string of tw+1vmzw5kffvene

The below screenshots demonstrate how to perform a string search with Ghidra. search ->
For Strings

4/29

r Matching Instructions
r Address Tables

lirect References

C ar |r- .:.—1-.--I II:—T'I:—. 1 D —_:1-1-_-, s

Ghidra will present a window like below, we can typically go ahead and accept the defaults.

Make sure that selection Scope -> Search All is selected. Sometimes Ghidra
changes to selection Scope -> Search Selection if you have something
highlighted.

5/29

»#¥ Search For Strings

v Require Null Termination Minimum Length:
Pascal Strings Alignment:
Word Model: StringModel.sng Ja==

Memory Block Types
®) | oaded Blocks

All Blocks

Search

Once we've accepted the default search options, we can filter on the beginning of our
previous string tw+ to locate it.

This will reveal 3 strings starting with tw+
#¥ Edit Help

h String Search - 3 items (of 1258) - [vidar.bin, Minimum size = 5, Align = 1]

Defined Location in abel

Truncate If Needed

We can double click on any of the returned strings, which will take us to the location of the
string within the file.

Ghidra will automatically recognise if the location storing the string has been used
elsewhere in the file. This is known as a cross reference (xref) and is an extremely
useful concept to become familiar with.

In this view, we can also see that there is one Cross Reference (XREF) available. This
indicates that Ghidra has found one location where the string is used.

W+O

ue will

104387 A

zu z

Double-clicking the xref val h ushere the string has been referenced.

After double clicking on the xref value, we can see the base64 string (as well as others)
contained within function FUN_004016a6.

We can also see each of these strings is passed to FUN_00401526. Since every string is
going to the same function, it is very likely the one responsible for decryption.

Decompile: FUN_004016a6 - (vidar.bin)

Possibly a decryption function?

Initial base64 string

Side note - These strings undergo additional obfuscation as well as base64. We won't
be able to decode them using base64 alone.

7/29

Recipe Oom s Input

mw+0k 2xxpXWFvPf85dFK5Q==
From Base64

Alphabet

_ v .
A-Za-70-9+/= . Remove non-alphabet chars e 22 = 1

Output
D Strict mode utpy

eeelg¥ueXk+iiaiia
If we click on the FUN_00401526 function taking all the encoded strings, we can see that it's
rather long, confusing and contains a lot of junk code.

Luckily, we don't need to analyse it in detail in order to decrypt the strings. Since we know
the location of the function within the file, we can use a debugger to obtain the decrypted
content for us.

The name of the function is the location within the file. This is all we need to be able to
locate it within a debugger.

Eg for function FUN_00401526, the location of the function will be 00401526.

Decompile: FUN_00401526 - (vidar.bin)

4woid| FUN 00401526 (undefined4

char cVar2;
undefined4

lstrlenA(1

me

8/29

As a side note, if we look at the same function within the disassembly view on the left
hand side, we can see that there are 542 xrefs available.

This means that FUN_00401526 is used 542 times throughout the file, a number this
high is another strong indicator that the function is used for decoding.

We now know the location of a function that is likely responsible for decrypting the strings.
Although we could analyse it statically, this is difficult, time consuming and often
unnecessary.

A better method is to load the file into a debugger and use breakpoints to monitor the
location of the function. We can use this method to obtain input (encrypted string) and output
(decrypted string) without needing to manually analyse the function. We just need to know
where the function starts.

Loading The File Into x32dbg

Since we now have a function to monitor, we can go ahead and load the file into x32dbg for
further analysis.

We can start this by dragging the file into x32dbg, and allowing the file to reach it's entry
point using F9 or Continue.

9/29

EIP ECX EDX ESI EDI

Breakpoints

E8 2E7F0000
E9 89FEFFFF

Memory Map

W call Stack

rd ptr

b eax
cmp dword ptr

SS:

Source

B soipt & symbols

® References

Threads

optionalHeader.AddressofEntryPoint

[ebp+8]

: [eax],DDDD

8138 DDDD0000
75 07 jne vidar.114
push eax
vidar.111DBF
pop ecx ecx:EntryPoint

50
0BD7FFFF
)

Al F0761300
83GY
8945 FC

[1376F0]

readInitThunk

ridar.0011C5¢0

.text:0011468D vidar.bin: $2468D 3A8D <OptionalHeader.AddressOfEntryPoint>

Confirming and Synchronising Base Addresses in Ghidra

Before continuing analysis in the debugger, we need to confirm the base address is the
same as in Ghidra. This ensures that the function will be stored at the same location.

The location within Ghidra and X32dbg will always be <base address> + xyz. But if
<base address> differs, then we occasionally need to fix it.

We can double check the base address by clicking on the Memory map option within x32dbg.
The base address will be the one on the same line as your file name.

The base address in our case was 0x000f0000 (this address may differ for you)

call Stack

Info

Log Notes Breakpoints

Party Content Protection

RW

R

f
,),,,,

Reserved

Executable code
Read-only initialized data
Initialized data
Base relocations
00195000
001A0000

), Wowb4 TEB (3808),

- - —

We need to make sr th hiibs ddres is

aligned with Ghidra.

10/29

The base address can be found in Display Memory Map -> View Base Address.

In this case, Ghidra's base address is 0x00400000 , we can manually change this to match
the 0x000f0000 found in x32dbg.

#3 Base Image Address

040000 ‘ ype Gilimbizeet yte Sour Sol Comment

& na X

nitialized Byte Sour. Source Comment

v

New Base Address to Sync with Debugger

After selecting 0K, Ghidra will reload the file with the new base address.

After reloading a base address, sometimes Ghidra will get lost. You may need to do
another string search + xref (same process as before) to identify the string decryption
function again.

With the correct base address now loaded, the string decryption function will have a new
name FUN_000f1526 to reflect it's new location.

11/29

We can now use this address of 00011526 to create a breakpoint within x32dbg.

Decompile: FUN_000f16a6 - (vidar.bin)

Function address has been updated to match
the debugger.

Setting Breakpoints on the Decryption Function

We now want to create a breakpoint at the corrected address of the decryption function.

Using the new address of 0001526, we can go back to x32dbg and create a breakpoint
using bp 0001526

U Ul Ou Ol 57 4 Zl 40 3 L 43 Ad JU &b
EE E3 D3 FO/ 06 00 00 00lcc 7B 55 /77101 00 00 00
9A 8B 13 35/96 5D BD 4F| 8E 2D AZ2 44|02 25 FO 3A

Command] bp 000£1526

Breakpoint at 000!

With the breakpoint set, we can let the malware run until the function is triggered.

12/29

fx #

Breaknointe Memory Man @ o)l Stack B scipt o

55 push ebp

RRFC ehn_edp

B8 80140000 eax, 1480

E8 CcD070200 vidar.111D00

Al F0761300 m ,dword ptr ds:[1376F0]
33C5 - ,ebp

8945 FC mov dword ptr ss:[ebp-4],eax
53 push ebx

String decryption function from Ghidra. pord ptr ss:[ebp+8]

When the breakpomt is h|t we can view the current encoded strlng within the stack window
on the right-hand side of x32dbg.

Unlocked

"1Cu2bvdu™

)ptionalHeader. AddressOfEntryPoint> (0011468D)

If we aIIow the function to complete using the Execute Until Return option, we can jump to
the end of the decryption function and see if any decrypted output is present.

Execute Until Return tells the debugger to allow the current function to finish without
continuing beyond the current function. This is an easy way to obtain function output
without it getting lost somewhere during execution.

The "Execute Until Return" button looks like this.

Options Help

;S =

Breakpoints Memory Map B Call Stack

push ebp

After the Execute Until Return has completed, we can observe the first decoded string
HAL9TH within the register window.

13/29

The decoded string is contained within EAX, which is the most common location where
function output will be stored.

Hide FPU

004FFEDF
0011468D

No that the ecoded string is visible, we should note the current location of EIP within the
debugger. This will tell us the exact location where we can find a decrypted copy of the
string.

In the screenshot below, we can see that this location is 0x0eef16a3. This is the end of the
decryption function, and we should create another breakpoint here.

Creating a breakpoint here is functionally identical to using Execute Until Return
every time we hit the function, but creating a second breakpoint is much easier.

As
Breakpoints Memory Map ® Call Stack Script ‘J

5B pop ebx
E8 48060200 vidar.111CEA

esi
NV dar.128424

The new breain can be created with bp 000f16a3 r by resing F2 on the address
highlighted in green.

Command: bp 000£16a3

Breakpoint at 000F

If we continue to execute using F9 or Continue, we will hit the original string decryption
function again.

14/29

This time there is a new encoded string present in the stack window 1gwSvkdzsA==.

efault (stdcall)

[esp+C] O0OOFDEZE v .000FDE2E
[esp+10] 0011468D .OptionalHeader.AddressOofEntryPoint> (0011468D)
[esp+14] 00000000 00000

Allowing the malware to run with F9 again, will trigger our second breakpoint, which contains
the decoded value of JohnbDoe.

| 1 O
U/ 4q | =)

E AX | ¢) 2

EBX 002a2000
ECH UEY3UAC]
EDX 004FEA49
EBP O04FFEEOD
[004FFEC4

As you obtain decrypted values, it can be useful to google them to determine their purpose
within the context of malware.

According to CyberArk, The two values JohnbDoe and HAL9TH are default values used by the
Windows Defender Emulator. The malware likely uses these values later to determine if it's
being emulated inside of Windows Defender.

Anti-Emulation Check

The second check is an anti-emulation check for Windows Defender Antivirus. The malware calls to
GetComputerNameA and compares the computer name to HAL9TH. In addition, it checks if the
username is JohnDoe by calling to GetUserNameA. Those two parameters are being used by the
Windows Defender emulator.

Obtaining Additional Decoded Values

By allowing the malware to execute with F9, we will continue to hit the existing breakpoints
and observe decoded values.

Here we can see that the malware has decrypted some windows APIl names (LoadLibraryA,
VirtualAlloc) as well as strings related to Crypto Wallets (Ethereum, ElectronCash, Binance).

15/29

https://www.cyberark.com/resources/threat-research-blog/meet-oski-stealer-an-in-depth-analysis-of-the-popular-credential-stealer?ref=embee-research.ghost.io

We can use this knowledge to assume that the malware is dynamically loading APls, and
likely stealing the data of Crypto Wallets.

24C1848 EBX 0000000F
002A2000 o 030s

0000000F

002A2000

024C189 24 :
002A2000 EBX 0000000F

EAX 4C1990 ; .
' 02A200 =il =
Lr‘r | O’UL.LQUO Eex 00

0

00

00F
If we recailbefore, there were 542 references to e strig deryption function. This is a few

too many to observe manually, so we can go ahead and perform som basic automation using
a debugger.

Automating the Process With Conditional Breakpoints

Now that we have existing breakpoints on the start and end of the decryption function, we
can add a log condition to print the interesting values to the log window.

We can add a log condition by modifying our existing breakpoints. We can do this within the
breakpoint window, and then Right-click -> Edit on the two existing breakpoints.

16/29

. Log ' Notes Breakpoints Memory Map ® Call Stack Script

Address Module/Label/Exception State Disassembly

000F1526 | vidar.bin Enabled push ebp
000F16A3 vidar.bin Enabled 4 i@ Follow breakpoint

Remove Del
Disable Space
Edit Shift+F2
Reset hit count

Enable all (Software)

Disable all (Software)

Remove all (Software)

Add DLL breakpoint

Add exception breakpoint

Copy breakpoint conditions

Paste breakpoint conditions

Copy

Printing Encoded Strings With x32dbg

Ouir first breakpoint is at the "start" of the encryption function, and we know from previous
analysis that the encoded value will be inside the stack window.

Observing the stack window closer, we can see that the exact location is [esp+4]

efault (stdcall)

[esp+4] 001283FC vidar.001283FC "lgwsvkdzsA=="
[esp+8]

[esp+C]) / . 000FDE2E
[esp+10] 0011468D dar.OptionalHeader.AddressOfEntryPoint> (0011468D)
[esp+14] 00000000 00000000

We can now tell the breakpoint to log the string contained at [esp+4]

We can do this with the command Encoded: {s:[esp+4]}. The "Encoded: " part is not
necessary but it makes the output easier to read.

Since we don't need to stop at every breakpoint (we just want to log the results), we can add
another condition run; in Command Text.

This will tell x32dbg to resume execution after printing the output.

17/29

Edit Breakpoint vidar.000F1526

Break Condition: |

X
Log Text: Encoded: {s:[esp+4]} Print String at [eSp+4]

Log Condition:

Command Text: Continue after printing

Command Condition:
Name:
Hit Count:

Singleshoot || Silent Fast Resume Save Cancel

Printing Decoded Strings with x32dbg

We can repeat the same process for the second breakpoint.

This time instead of printing [esp+4], we want to print the decoded value contained in eax

EBX 002A2000
ECH UEY3UAC]
EDX 004FEA49
EBP 004FFEEOD
I 004FFEC4

After editing the scond breakpoint, we want it to look something like this.

This should be identical to the previous breakpoint, with only [esp+4] being replaced with
eax.

We can also change Encoded: to Decoded: to make the final output easier to read.

18/29

Edit Breakpoint vidar.000F16A3

Break Condition: |

Log Text: Decoded: {s:eax} Print String at EAX

Log Condition:

Command Text: Continue after printing

Command Condition:

Name:

Hit Count:

Singleshoot || Silent Fast Resume Saye Cancel

With the new breakpoints saved, we can restart the malware or allow it to continue it's
current execution. This will print all encoded and decoded values to the log window.

(You can find the log window next to the breakpoints window)

After restarting the malware and leaving the breakpoints intact, we can see our initial
encoded string and it's decoded value of kernel32.d11.

We can also see additional decoded values related to Ethereum keystores.

Obtaining Only Decrypted Values

19/29

By temporarily disabling the initial breakpoint (right click -> disable) , we can print only the
decoded values. Here we can see some potential encryption keys, as well as SQL
commands used to steal mozilla firefox cookies.

We can also observe that the malware attempts to steal credit card information from web
browsers.

value from cookies

e\\User Data\\"

mium\\User Data\\"

Using Results to Edit Ghidra Output

If we go back to Ghidra, we can revisit the initial function containing references to encrypted
strings.

20/29

Decompile: FUN_000f16a6 - (vidar.bin)

rold FUN 000flé6a

FUN 000f1526 ("
FUNiU 00f152
h'UlIiu 00f1!

FUN 000f1
FTJN_{'\ 00£152
E'UIFU 00f

FUN 000f1

FUN 00O0f1Ff

FUN 000f1!
FUN 000f1"
FUN 000f1°
FUN 000f1°
FUN 000f1
FUN 000f
E'L‘Hiu 00f
FUN 000f1
FUN 000f1"
FUN 000f15

Since we now have both the encrypted and decrypted values, we can edit the Ghidra view to
reflect the decoded content.

Here we can see decoded values within x32dbg, reflecting the same encoded values as the
above screenshot.

21/29

reakpolnt

n"T1me

KTpFNuuhaUqgvy

We can also note that after each call to the decoding function, the result is stored inside of a
global variable (indicated by a green DAT_00138e98 etc on the left hand side).

This usually means that the same variable will be referenced each time the decoded
string is used. If we rename the variable once, it will be renamed in all other locations
that reference it.

We will see this in action in a few more screenshots.

22/29

Decompile: FUN_000f16a6 - (vidar.bin)

rold FUN 000flé6a

FUN 000f1526 ("
FUNiU 00f152
h'UlIiu 00f1!

FUN 000f1
FTJN_{'\ 00£152
E'UIFU 00f

FUN 000f1

FUN 00O0f1Ff

FUN 000f1!
FUN 000f1°
FUN 000f1°
FUN OOOf1:
FUN 000f1
FUN 000f
E'L‘Hiu 00f
FUN 000f1
FUN 000f1"
FUN 000f15

Using the output from x32dbg, we can begin renaming those global variables DAT 000+ etc to
their decoded values.

This will significantly improve the readability of the Ghidra code.

This process can be done manually or by saving the x32dbg output and creating a
Ghidra Script. The process of scripting this is in Ghidra is relatively complicated and
will be covered in a later post.

For now, we can edit the names manually (Right Click -> Rename Global Variable)

Below we can see the same code after some slight renaming. Making sure to reference the
x32dbg output.

We like to prepend each variable with str_ to indicate that it's a string. This is optional
but improves the readability of the code.

23/29

Decompile: FUN_000f16a6 - (vidar.bin)

2|void FUN 000f16a6 (void

= &
= FUN_000£1526 ("]
= FUN 000f1526("

_ FUN 000f£1526 ("
= FUN 000£1526 ("sBr
_: FUN O
FUN 000£1526
FUN _000f£1526
FUN 000f1526
FUN 000f1526
FUN 000f1526 ("
FUN 000£1526
FUN 000£1526 ("'
FUN_000£1526 ("
FUN 000f1526
FUN 000f1526
FUN 000f1526 ("
FUN 000f1526
FUN 000£f1526 ("'

return;

With the DAT_* locations modified to their decoded values, any location within Ghidra that
contains the same DAT_ value will now have a suitable name, making it much easier to infer
the purpose of the function.

To determine where a variable is used, we can again use cross references. Double
clicking on any of thepAT _* values will show it's location and any available cross
references where it is used.

"JohnDoe" is referenced twice within the file.

Once when it's created (W) and once when accessed for use (R)

For example, here is the function containing "JohnDoe" before the DAT * values are
renamed.

If we had encountered this function without first decrypting strings, it would be difficult to tell
what the function is doing.

Example of a function before marking
decoded strings.

r

After arking p h DAT_* values with more appropriate names, the function now looks like
this.

Since we googled these values and determined they are used for Defender Emulation
checks, we can infer that this is (most likely) the purpose of the function.

Decompile: FUN_000f8f7a - (vidar.bin)
void FUN 000f8f7a (void) Function references defender emulation strings.

We can make a reasonable guess that the function
is an emulation check.

*) FUN_001084e4 () ;

15 do |

Using that assumption, we can change the name to something more useful.

25/29

Decompile: mw_checkDefenderEmulation - (vidar.bin)

void mw checkDefenderEmulation (void)

Renaming function with a more suitable
name.

*) FUN _001084e4 () ;

’

Nw, anyhere where that function is called will be much more understandable.

To see where a function is called, we can double click it and view the x-refs again to
see where the function is used.

26/29

Before modifying function nhame.

(*) (0x14) ;
dE) (0x14) ;
(*) (0x14) ;
mw_checkDefenderEmulation () ;
(s) (0x14
(*) (0x1
(*) (0x14
(s) (0x14
(*) (0x1
(G) (0x14
mw_checkDefenderEmulation();
(*) (0x14) ;
(*) (0x14) ;
dEs) (0x14) ;
(*) (0x14) ;
(*) (0x14) ;
(i) (0x14) ;
mw checkDefenderEmulation() ;
(*) (0x14) ;
(>) (0x14) ;

) (0x14) ;

) 7
) ;
) e
W After modifying function name.
) ;
) =

After renaming all remaining DAT_* variables, it begins to make even more sense.

The malware is temporarily going to sleep and repeatedly checking for signs of Defender
Emulation.

checkDefenderEmulation () ;
) (0x14) ;

) (0x14)

) (0x14)

) (0x14)

1)

x14)

S L

o

~N o U W N

) (
) (

~heckDefenderEmulation () ;

’
H
’
’

’

[T T

(S

o

checkDefenderEmulation () ;

o
)
)
)
N5
)

:14)
)
A similar concept can be seen with the decoded string for VirtualAlloc.

Below is a function referencing VirtualAlloc, prior to renaming variables.

} while
}
iVar2 = (*) (*(int *) (unaff EST +
*(int *) (unaff ESTI + 0x148) = iVar2;
* (undefined4 *) (unaff ESI + 0x144) = * (undefined4
if (ivar2 == c0) {

if ((*(byte *) (unaff ESTI +

return

*) (unaff ESI +
*) (unaff ESI +

return (- (uint) (* (int *) (unaff ES

After renaming, we can see that it's primary purpose is to create memory using VirtualAlloc.

(There are some other things going on, but the primary purpose is memory allocation,
hence we can rename this function to mv_AllocatewithvirtualAlloc)

} while (local 8 !'=

}
iVar2 = (*
*¥ (int *) (unaff ESI + 0x148
* (undefined4 *) (unaff ES
if (ivar2 ==) |
if ((*(byte *) (unaff ESI + 0x56

iVar2 (*

*(int *) (unaff EST +

*(uint *) (unaff EST +
}

return (- (uint) (* (int *) (unaff ES

This process can be repeated until all points of interest have been labelled with appropriate
values.

This is time-consuming if you wish to mark up an entire file, but it is effective and will reveal a
significant portion of the files previously hidden functionality.

Once you're comfortable with performing this process manually, you can eventually create a
script to do the same thing for you.

Creating a script will still require obtaining the decrypted strings through some means, but
the process of renaming everything can be done well with a Ghidra script.

Conclusion

We have now looked at how to identify basic obfuscated strings, decrypt them, and fix their
values within Ghidra.

Although this is a relatively simple example, the same overall process and workflows are
repeatable across many many malware samples.

As you become more confident, many of these steps can be automated further or scripted.
The renaming process can be replaced with a Ghidra script, and the "debugger" process can
be replaced with scripted Emulation (Unicorn, Dumpulator etc).

Regardless, this blog demonstrates some core skills that are important for building the
baseline skills to begin exploring future automation.

29/29

