P2Pinfect - New Variant Targets MIPS Devices

cadosecurity.com/p2pinfect-new-variant-targets-mips-devices/

December 4, 2023

Blog

December 4, 2023

Summary

¢ A new P2Pinfect variant compiled for the Microprocessor without Interlocked Pipelined
Stages (MIPS) architecture has been discovered

o This demonstrates increased targeting of routers, Internet of Things (IoT) and other
embedded devices by those behind P2Pinfect

o The new sample includes updated evasion mechanisms, making it more difficult for
researchers to dynamically analyse

o These include Virtual Machine (VM) detection methods for embedded payloads, along
with debugger detection and anti-forensics on Linux hosts

Introduction

Since July 2023, Cado Security Labs have been monitoring and reporting on the rapid
growth of a cross-platform botnet, named “P2Pinfect”. As the name suggests, the malware —
written in Rust — acts as a botnet agent, connecting infected hosts in a peer-to-peer topology.
In early samples, the malware exploited Redis for initial access — a relatively common
technique in cloud environments.

There are a number of methods for exploiting Redis servers, several of which appear to be
utilised by P2Pinfect. These include exploitation of CVE-2022-0543 — a sandbox escape
vulnerability in the LUA scripting language (reported by Unit42), and, as reported previously

1/13

https://www.cadosecurity.com/p2pinfect-new-variant-targets-mips-devices/
https://www.cadosecurity.com/redis-p2pinfect/
https://www.cadosecurity.com/cado-security-labs-researchers-witness-a-600x-increase-in-p2pinfect-traffic/
https://nvd.nist.gov/vuln/detail/CVE-2022-0543
https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/

by Cado Security Labs, an unauthorised replication attack resulting in the loading of a
malicious Redis module.

Cado Security Labs researchers have since encountered a new variant of the malware,
specifically targeting embedded devices based on 32-bit MIPS processors, and attempting to
bruteforce SSH access to these devices. It's highly likely that by targeting MIPS, the
P2Pinfect developers intend to infect routers and loT devices with the malware. Use of MIPS
processors is common for embedded devices and the architecture has been previously
targeted by botnet malware, including high-profile families like Mirai, and its
variants/derivatives.

Not only is this an interesting development in that it demonstrates a widening of scope for the
developers behind P2Pinfect (more supported processor architectures equals more nodes in
the botnet itself), but the MIPS32 sample includes some notable defence evasion
techniques.

This, combined with the malware’s utilisation of Rust (aiding cross-platform development)
and rapid growth of the botnet itself, reinforces previous suggestions that this campaign is
being conducted by a sophisticated threat actor.

Initial Access

Cado researchers encountered the MIPS variant of P2Pinfect after triaging files uploaded via
SFTP and SCP to a SSH honeypot. Although earlier variants had been observed scanning
for SSH servers, and attempting to propagate the malware via SSH as part of its worming
procedure, Cado Security Labs had yet to observe successful implantation of a P2Pinfect
sample using this method — until now.

In keeping with similar botnet families, P2Pinfect includes a number of common
username/password pairs embedded within the MIPS binary itself. The malware will then
iterate through these pairs, initiating a SSH connection with servers identified during the
scanning phase to conduct a brute force attack.

It was assumed that SSH would be the primary method of propagation for the MIPS variant,
due to routers and other embedded devices being more likely to utilise SSH. However,
additional research shows that it is in fact possible to run the Redis server on MIPS. This is
achievable via an OpenWRT package named redis-server.

It's unclear what use-case running Redis on an embedded MIPS device solves, or whether
it's commonly encountered in the wild. If such a device is compromised by P2Pinfect and has
the redis-server package installed, it's perfectly feasible for that node to then be used to
compromise new peers via one of the reported P2Pinfect attack patterns, involving
exploitation of Redis or SSH bruteforcing.

2/13

https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/
https://openwrt.org/packages/pkgdata/redis-server

Static Analysis

The MIPS variant of P2Pinfect is a 32-bit, statically-linked, ELF binary with stripped debug
information. Basic static analysis revealed the presence of an additional ELF executable,
along with a 32-bit Windows DLL in the PE32 format — more on this later.

This piqued the interest of Cado analysts, as it's unusual to encounter a compiled ELF with

an embedded DLL. Consequently, it was a defining feature of the original P2Pinfect samples.

40 54 9@

Ba

Yals 2 oa 24
Embedded Windows PE32 executable

Further analysis of the host executable revealed a structure named “BotnetConf” with
members consistent in naming with the original P2Pinfect samples.

3/13

}
Example of a partially-populated version of the BotnetConf struct

As the name suggests, this structure defines the configuration of the malware itself, whilst
also storing the IP addresses of nodes identified during the SSH and Redis scans. This, in
combination with the embedded ELF and DLL, along with the use of the Rust programming
language allowed us to positively attribute this sample to the P2Pinfect family.

Updated Evasion — consulting TracerPid

One of the more interesting aspects of the MIPS sample was the inclusion of a new evasion
technique. Shortly after execution, the sample calls fork() to spawn a child process.

The child process then proceeds to access /proc using openat (), determines its own
Process Identifier (PID) using the Linux getpid() syscall, and then uses this PID to consult
the relevant /proc subdirectory and read the status file within that. Note that this is likely
achieved in the source code by resolving the symbolic link at /proc/self/status.

4/13

Name:
State:
Tgid:
Ngid:
Pid:
PPid:

bioset

S (sleeping)
852

0

852

2

TracerPid: 0

Uid:
Gid:
FDSize:
Groups:

Threads:

SigQ:

SigPnd:
ShdPnd:
SigBlk:
SigIgn:
SigCgt:
CapInh:
CapPrm:
CapEff:
CapBnd:
CapAmb:

0
0 0 0 0
32

>
>
>

0/1942
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
ARRARAARRRRARRARRARAARARRRRRRR]
00000000000000000000000000000000
0000000000000000
0000003 fffffffff
0000003 fffffffff
0000003 fffffffff
0000000000000000

Cpus_allowed: 1

Cpus_allowed list: 0
voluntary_ctxt_switches: 2
nonvoluntary_ctxt switches: 0

Example contents of /proc/pid/status when process not being traced

5/13

/proc/<pid>/status contains human-readable metadata and other information about the
process itself, including memory usage and the name of the command currently being run.
Importantly, the status file also contains a field TracerPID:. This field is assigned a value of
0 if the current process is not being traced by dynamic analysis tools, such as strace and
ltrace.

loc_4F58B0: # CODE XREF: mw_evasion_func+1981]j
+var_BO
+var_290
+var_228

(dword_700550 - Ox7084EQ) ($fp)
$at, (aStatus - Ox6EQO00) # # "status"

loc_4F58CC: # CODE XREF: mw_evasion_func+1D8,j
$a3, loc_4F58EC

$a2, %al
($at)
loc_4F58CC

Example MIPS disassembly showing reading of /proc/pid/status file

If this value is non-zero, the MIPS variant of P2Pinfect determines that it's being analysed
and will immediately terminate both the child process and its parent.

6/13

read(5, "Name:\tmips_embedded_p\nUmask:\tee2", 32) = 32

read(5, "2\nState:\tR (running)\nTgid:\t975\nN", 32) = 32

read(5,
"gid:\tO\nPid:\t975\nPPid:\t1\nTracerPid:\t971\nUid: \tO\tO\tO\tO\nGid: \tO\tO\to\to",
64) = 64

read(5, "\nFDSize:\t32\nGroups:\t0O

\NNStgid:\t975\nNSpid: \t975\nNSpgid:\t975\nNSsid:\t975\nVmPeak :\t 3200

kB\nvVmSize:\t 3192 kB\nVmLck:\t 0 kB\n", 128) = 128

read(5, "VmPin:\t 0 kB\nVmHWM:\t 1564 kB\nVmRSS:\t 1560 kB\nRssAnon:\t
60 kB\nRssFile:\t 1500 kB\nRssShmem:\t 0 kB\nVmData:\t 108 kB\nvmStk:\t
132 kB\nVmExe:\t 2932 kB\nvmLib:\t 8 kB\nVmPTE:\t 16 kB\nVmSwap:\t

0 kB\nCoreDumping:\t@\nThre", 256) = 256

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
Ox77ff1000

read(5,
"ads:\t1\nSigQ:\t0/1749\nSigPnd:\t00OEEEEEEEEEEEEEEEEEEEEEEEEEEEAA\NShdPNd: \t000EEE00
0000000000000000ENOAENOA\NSigBlk: \tOOOOOONOOONOAONOEOOOENOOENOOENOEO\NSIigIgn: \tOOOEOOO
0000000000000000000001000\NSigCgt: \tOOOENOEONOAONNEOONENOOENOBENO60O0\NCapInh:\tOOOOOO
0000000000\NCapPrm:\teOEEEO3fffffffff\nCapEff:\teO0OOO3fffffffff\nCapBnd:\tOOOEOOIFfT
fFFfff\nCapAmb:\t0000000000000000\NNONewPrivs::\tO\nSeccomp:\tO\nSpeculation_Store_Byp
ass:\tunknown\nCpus_allowed:\t1\nCpus_allowed_list:\t0\nMems_allowed:\ti\nMems_allowe
d_list:\to\nvoluntary_ctxt_switches:\t92\nn", 512) = 512

mmap2 (NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
Ox77fefo00

munmap (0x77ff1000, 4096) =0

read(5, "onvoluntary_ctxt_switches:\to\n", 1024) = 29

read(5, "", 995) =0

close(5) =0

munmap (0x77fef000O, 8192) =0

sigaltstack({ss_sp=NULL, ss_flags=SS_DISABLE, ss_size=8192}, NULL) = 0
munmap (0x77ff4000, 12288) =0

exit_group(-101) =?

+++ exited with 155 +++

Strace output demonstrating TracerPid evasion technique

Updated Evasion — disabling core dumps

Interestingly, the sample will also attempt to disable Linux core dumps. This is likely used as
an anti-forensics procedure as the memory regions written to disk as part of the core dump
can often contain internal information about the malware itself. In the case of P2Pinfect, this
would likely include information such as IP addresses of connected peers and the populated
BotnetConf struct mentioned previously.

I's also possible that the sample prevents core dumps from being created to protect the
availability of the MIPS device itself. Low-powered embedded devices are unlikely to have
lots of local storage available to them and core dumps could quickly fill what little storage
they do have, affecting performance of the device itself.

7/13

loc_4F5874: # CODE XREF: mw_evasion_func+1641j
$at, (off_700564 - O0x7084E0) ($fp)
$t9, $at, (sub_S5E41EC - Ox5E0000)
$t9 sub_5E41EC

$a0, $voO
$at, (dword_700550 - Ox7084EQ) ($fp)
$al, %$at, (aFailedToDisabl - Ox6EQQQ0)

$t9, $s0, (sub_5E41AC - Ox5EQ000)
$t9 sub_5E41AC

$az2,

$vO, loc_4F58B0

$s2, $voO
loc_4F6208
$a0,

This procedure can be observed during dynamic analysis, with the binary utilising the
prct1() syscall and passing the parameters PR_SET_DUMPABLE, SUID_DUMP_DISABLE.
munmap (Ox77ff1000, 4096) =0
prctl(PR_SET_DUMPABLE, SUID_DUMP_DISABLE) = 0

prlimit64(0, RLIMIT_CORE, {rlim_cur=0, rlim_max=0}, NULL) = 0

Example strace output demonstrating disabling of core dumps

Embedded DLL

As mentioned in the Static Analysis section, the MIPS variant of P2Pinfect includes an
embedded 64-bit Windows DLL. This DLL acts as a malicious loadable module for Redis,
implementing the system.exec functionality to allow the running of shell commands on a
compromised host.

8/13

Disassembly of the Redis module entrypoint, mapping the system.exec command to a

handler

This is consistent with the previous examples of P2Pinfect, and demonstrates that the
intention is to utilise MIPS devices for the Redis-specific initial access attack patterns

Ekported entry 1. RedisModule_OnLoad

public RedisModule_OnLoad
RedisModule_OnLoad proc near

var_ 28= dword ptr
var_20= dword ptr
var_18= dword ptr

push
sub
mov

rbx

rsp,

rbx, rcx
sub_180001000

eax,

short loc_180001AF6

[rsp+ +var 18],
r9, aReadonly

[rsp+ +var_20],
r8, sub_1800018F0O
rdx, aSystemExec
[rsp+ +var 28],
rcx, rbx
cs:gqword_180005928
eax,

short loc_180001AF6

loc_180001AF6:
mov eax,
add rsp,
pop rbx
retn

RedisModule_OnlLoad endp

mentioned throughout this blog.

9/13

Interestingly, this embedded DLL also includes a Virtual Machine evasion function,
demonstrating the lengths that the P2Pinfect developers have taken to hinder the analysis
process. In the DLLs main function, a call can be observed to a function helpfully labelled
anti_vm by IDAs Lumina feature.

__inte4 _ fastcall dllmain_crt_dispatch(HINSTANCE al, int a2, void *const a3)
{

int v3; // edx

__int64 v4; // rdx

__int64 result; // rax

if (la2)

return dllmain_crt_process_detach(a3 != 0i164);
vd = a2 - 1;
if (1v3)

return dllmain_crt_process_attach(al, a3);
v4d = (unsigned int)(v3 - 1);
it ((_DWORD)v4)
{

if ((_DWORD)v4 !'=1)

return 1i64;

LOBYTE(result) = _scrt_dllmain_crt_thread_detach(al, v4, a3);
}
else

{
}

return (unsigned __ int8)result;

LOBYTE(result) anti_vm();

Decompiler output showing call to anti_vm function

Viewing the function itself, we can see researchers Christopher Gardner and Moritz Raabe
have identified it as a known VM evasion method in other malware samples.

10/13

; _vecrt_bool _ cdecl anti_vm()
anti_vm proc near
sub rsp, ; lm2k data:
[
{
"author": "christopher.gardner",
"fn_name": "anti_vm",

"sample;offset":_"a2c9dbe291f3546f0e063755b8afa46e:0x1@60c344".
"source_file": "idb://bea3fd@8dbd4ce8c3d3bc3cO0bdc256f",
"timestamp": "2020-08-11T14:14:21.024138Z"

"anno_type": "LIB",
"author": "christopher.gardner",

"fn_name": "___ scrt_dllmain_crt_thread_attach”,
"sample_offset": "a2c9dbe201f3546f0e063755b8afad6e:0x10067e53",
"source_file": "idb://bea3fd@8dbd4ce8c3d3bc3cO®0bdc256f",
"timestamp": "2020-08-11T14:14:21.024138Z"

"anno_type": "LIB",
"author": "christopher.gardner",
"fn_name": " vcrt_initialize",

"sample_offset": "a2c9dbe201f3546f0e063755b8afad6e:0x1006b963",
"source_file": "idb://bea3fd08dbd4ce8c3d3bc3cOObdc256f",
"timestamp": "2020-08-11T14:14:21.024138Z"

"anno_type": "LIB",
"author": "moritz.raabe",
“fn_name": " scrt_dllmai

call sub_180002834

test al, al

jnz short loc_1800021CD

loc_1800021CD:

call sub_180002834

test al, al

jnz short loc_18600021DD

sub_180002834
short loc_1800021C9

loc_1800021C9: loc_1800021DD:
xor al, al mov al,
jmp short loc_1800021DF

rsp,

anti_vm endp

IDA’s graph view for the anti_vm function showing Lumina annotations

Conclusion

11/13

P2Pinfect’s continued evolution and broadened targeting are clearly the work of a
determined and sophisticated threat actor. The cross-platform targeting and utilisation of a
variety of evasion techniques demonstrate an above-average level of sophistication when it
comes to malware development. Clearly, this is a botnet that will continue to grow until it's
properly utilised by its operators.

While much of the functionality of the MIPS variant is consistent with the previous variants of
this malware, the developer’s efforts in making both the host and embedded executables as
evasive as possible show a continued commitment to complicating the analysis procedure.
The use of anti-forensics measures such as the disabling of core dumps on Linux systems
also supports this.

Cado Security Labs researchers will continue to monitor and report on the growth of this
emerging botnet.

If you'd like to see how Cado can help you investigate this threat,request a demo.

Indicators of Compromise (loCs)

Files SHA256

MIPS ELF 8b704d6334e59475a578d627ae4bcb9c1d6987635089790350c92eafc28f5a6e

Embedded d75d2c560126080f138b9c78ac1038ff2e7147d156d1728541501bc801b6662f
DLL Redis
Module

About The Author

Matt Muir

Matt is a security researcher with a passion for UNIX and UNIX-like operating systems. He
previously worked as a macOS malware analyst and his background includes experience in
the areas of digital forensics, DevOps, and operational cyber security. Matt enjoys technical

12/13

https://www.cadosecurity.com/demo/

writing and has published research including pieces on TOR browser forensics, an emerging
cloud-focused botnet, and the exploitation of the Log4Shell vulnerability.

About Cado Security

Cado Security is the provider of the first cloud forensics and incident response platform. By
leveraging the scale and speed of the cloud, the Cado platform automates forensic-level data
capture and processing across cloud, container, and serverless environments. Only Cado
empowers security teams to respond at cloud speed.

Prev Post Next Post

13/13

https://www.cadosecurity.com/how-good-do-you-want-to-be/
https://www.cadosecurity.com/new-feature-in-cloudgrep-yara-rules-json-output-and-log-parsing/

