
1/33

Maksim Mikhailov November 28, 2023

RisePro Malware Analysis: Exploring C2 Communication of a New Version
any.run/cybersecurity-blog/risepro-malware-communication-analysis/

HomeMalware Analysis
RisePro Malware Analysis: Exploring C2 Communication of a New Version
RisePro is a malware-as-a-service info-stealer, first identified in 2022. Recently, we’ve detected a spike in it’s activity and decided to conduct
an investigation, which led to interesting findings.

RisePro is a well-documented malware, but we quickly realized that the network traffic patterns of our samples did not match the existing
literature. It seemed like we had a new version on our hands.

Further analysis revealed that RisePro changed the way it communicates with C2 and that it has gained new capabilities — in particular,
remote-control functions, making it capable of operating as a RAT.

This article will focus on this malware’s new network communication patterns, but first, a quick refresher about what RisePro malware is.

What is RisePro malware?

RisePro, an information-stealing malware, was first detected by cybersecurity firms Flashpoint and Sekoia. It is distributed through fake cracks
sites operated by the PrivateLoader pay-per-install (PPI) malware distribution service. It is designed to steal credit cards, passwords, and
crypto wallets from infected devices.

RisePro is potentially based on the Vidar password-stealing malware and it employs a system of embedded DLL dependencies. RisePro’s
modus operandi includes fingerprinting the compromised system, writing stolen data to a text file, taking screenshots, and then bundling and
sending this data to the attacker’s server.

The PrivateLoader service, which distributes RisePro, is known for disguising malware as software cracks, key generators, and game
modifications. It was first spotted by Intel471 in February 2022. Sekoia’s findings indicate that RisePro shares significant code overlaps with
PrivateLoader, suggesting a deeper connection between the two.

Like we said earlier, our analysis focuses on the recent changes in RisePro’s C2 communication and network traffic patterns of its latest
version, which differ drastically from previous iterations.

Traffic analysis of the new RisePro malware sample

There’s a big change to highlight right of the bat. Our sample uses custom protocol over TCP for communication. This indicates a
complete overhaul of the communication method, which previously transmitted instructions over HTTP.

Let’s start our deep dive into this variant’s communication patterns. Here’s a screenshot of a network packet from ANY.RUN online malware
sandbox, which was the starting point of our investigation:

https://any.run/cybersecurity-blog/risepro-malware-communication-analysis/
https://any.run/cybersecurity-blog/
https://any.run/cybersecurity-blog/category/malware-analysis/
https://blog.sekoia.io/new-risepro-stealer-distributed-by-the-prominent-privateloader/
http://any.run/?utm_source=blog&utm_medium=article&utm_campaign=risepro_analysis&utm_content=linktolanding&utm_term=281123

2/33

Comparing encrypted (left) and decrypted (right) packet content
Upon examining the packet bytes (right column), it’s evident that the traffic is encrypted, making it indecipherable. The first task, then, was to
decrypt it.

Sekoia researchers have already cracked this encryption, so, to start, we decided to try and apply their decryption algorithm. Surprisingly, it
successfully decrypted the data. This means the same encryption is still used.

The encryption algorithm is a basic substitution cipher followed by XOR with key 0x36. By Testing it with different ports we were able to find
multiple keys. For example, the key for port 50500 is 0x36, and for port 50505 it is 0x79. Interestingly, opcodes take on different meanings
depending on the port. In this article we will provide examples for port 50500.

Diving deeper in the packet analysis

But let’s get back to the traffic analysis. Since we decrypted the TCP stream, we can begin to understand the structure of each packet.

https://blog.sekoia.io/new-risepro-stealer-distributed-by-the-prominent-privateloader/

3/33

Each packet has 3 blocks that follow a set pattern
In the image above, we see several packets (the first being the initialization packet). Three distinct blocks are noticeable, following a clear
pattern. We can represent this structure as follows:

4/33

Packet structure
The first 4 bytes, labeled as magic, are always repeated and determine the beginning of the packet.
The next 4 bytes define the length of the data attached to the packet, labeled as payload_len.
And, as you can see from the screen above, immediately following is packet_type.

During the analysis, we discovered the following packet_types, which represent various opcodes:

Packet type Value Payload Description

SERVER_PING 0x2710 (OPTIONAL) text string Default response, Keep-Alive (heartbeat)

CLIENT_PING 0x2711 Keep-Alive (heartbeat)

SERVER_INIT 0x2712 24 bytes string Server Hello

SET_TIMEOUT 0x2713 Number string Server/client timeout for action (e.g. upload)

CLIENT_REQUEST_FILE 0x2714 File name (string) Request file from server

SERVER_SEND_FILE 0x2715 File name, compressed file (zlib) Used by server to send additional libraries

5/33

Packet type Value Payload Description

CLIENT_CONFIRM_IP 0x2716 Response string IP receive confirmation

SERVER_SEND_MARKS 0x2717 JSON string List of marks configs

CLIENT_CONFIRM_MARKS 0x2718 Response string Marks receive confirmation

SERVER_SEND_GRAB_CONFIG 0x2719 JSON string Settings and grabbers

CLIENT_CONFIRM_GRAB_CONFIG 0x271A Response string Settings receive confirmation

SERVER_SEND_LOADER_CONFIG 0x271B JSON string List of loader configs, includes urls and
execution conditions

CLIENT_CONFIRM_LOADER_CONFIG 0x271C Response string Loader configs receive confirmation

SERVER_SET_FILE_FILTER 0x271D JSON string List of file filtration rules

CLIENT_CONFIRM_LOADER_EXECUTION 0x271E Name from loader config Confirmation of execution load target from
particular config

CLIENT_SEND_FILE 0x271F File name, response string, build
id, compressed file (zip)

Exfiltrated files in archive with name
representing geolocation and IP address

CLIENT_INIT 0x2720 (OPTIONAL) text string Client Hello, optional authentication in format
“{HWID}|{response string}”

SERVER_SEND_IP 0x2721 IP string Used by server to send client’s public IP

CLIENT_SEND_UNKNOWN 0x2722 Mentioned in code, not used

SERVER_SEND_UNKNOWN 0x2723 Mentioned in code, not used

SERVER_SEND_HWID 0x2724 HWID string Used by server to send HWID as step of
HVNC maintenance

SERVER_SEND_FORCE_QUIT 0x272B Force client to call ExitProcess(0)

It is evident that this is a client-confirmed protocol, as most messages include a CONFIRM response. From the table above we can see that
the protocol supports functionalities like loading configuration settings, sending files, and more.

Examining various packets reveals that the payload is typically an encrypted UTF-8 encoded string. However, it’s worth noting that the payload
length can be zero.

Moreover, there are two distinct packet types that deviate from the usual string payload: CLIENT_SEND_FILE and SERVER_SEND_FILE.

Packet_type 0x271F (CLIENT_SEND_FILE) has this payload structure, represented here:

6/33

packet_type 0x271F (CLIENT_SEND_FILE)
And here’s representation of packet_type 0x2715 (SERVER_SEND_FILE):

7/33

packet_type 0x2715 (SERVER_SEND_FILE)
As you can see from the images above, these packets contain substructures in place of strings to handle file data.

ANY.RUN Enterprise plan at a discount

Use promo: SANDBOXSAVER

Book a call

Packet order

Having established the packet structure, we can now observe the typical sequence in which they arrive. If we were to illustrate the entire
communication sequence in a flowchart, it would be represented as follows:

https://calendly.com/svasiliev/

8/33

Communication flow of RisePro illustrated in a flow chart

The communication protocol with the Command and Control (C2) server is broken down into three main stages:

Initialization: This is the first step where the client establishes a connection with the server and initializes the communication session.
Getting the configuration: In this stage, the client retrieves configuration details from the server, which may include commands,
operational parameters, or target information.
Performing stealer and loader functions: Here, the client executes its intended malicious activities such as stealing data (stealer
function) and confirming receipt of payloads (loader function).

There’s also an optional 4th Stage – HVNC launch: it involves the initiation of Hidden Virtual Network Computing (HVNC), allowing for remote
control without detection.

Let’s delve into each stage one by one for a detailed understanding.

Stage 1: Initialization

The default initialization flow for the communication with the C2 server is as follows, with the dotted line indicating an optional packet:

9/33

Initialization flow
1. Communication begins with a SERVER_INIT packet following the establishment of the connection.

1. The client may send a CLIENT_INIT packet right after connecting, before the server sends its packet. If the client initiates with
CLIENT_INIT, the server responds with a SERVER_PING by default.

1. The SERVER_INIT packet includes a session token, which is used to uniquely identify the session.

1. Subsequently, the server sends the public IP address of the victim to the client.

1. The client acknowledges the IP address by sending back a confirmation along with an additional string in its response.

With these steps, the connection initialization between the client and the server is completed.

Stage 2: Getting the configuration

The configuration stage involves the server sending configurations in a particular order, and the client sending back confirmations with
additional payload.

10/33

Getting the

configuration
The server sends the marks_config, grab_config, and loader_config in a strict sequence to set the malware’s behavior. Having received the
configurations, we can now examine what they entail.

A deeper look at the config

The first thing that comes from the server is marks config, shown below:

11/33

Screenshot of the marks_config
The configuration we’re looking at likely dictates how the domain-related data, as presented, will be color-highlighted. This seems to
correspond to the color coding of data within the admin panel. It’s an unusual feature — the purpose of which is not completely clear for the
client.

Moving on, the server always sends a grab_config, which is illustrated in the screenshot below:

12/33

Screenshot of the grab_config
The grab_config specifies the data collection scope, the destination for the collected information, and the functions the malware will utilize.

For instance, it enables the malware to configure a proxy server on the victim’s computer, initiate HVNC, and transmit data to Telegram (with
tg_ids specifying the recipients of the message and tg_token being the bot token within Telegram). Additionally, the malware is capable of
capturing a screenshot at the time of execution (grab_screen) and exfiltrating data from applications like Telegram and Discord.

Following this, we have the loader_config, as seen below:

13/33

Screenshot of the loader_config
Here are some noteworthy details from the configuration:

ld_geo: This setting likely activates a geographical filter. If set, it probably checks for a specific country code, allowing the loader to
execute only if there’s a match.
ld_marks: These are additional conditions that determine when the loader should be activated.
ld_name: This is the identifier for the specific configuration.
ld_url: This specifies the source URL from which the payload will be downloaded.

This configuration structure differs in new and old samples of this malware. It is noteworthy, that when the server is updated, older versions of
the malware, such as earlier iterations of RisePro, will continue to function. However, they might ignore some of the new data or configuration
values introduced in the updates.

Stage 3: Performing stealer and loader functions

At this stage in the process, the server issues a command specifying the data to be collected, and in response, the client compiles and sends
back a .zip archive containing all the stolen data.

14/33

Network communication for performing stealer and loader functions
The server essentially sets the type of data to be collected.

15/33

Setting exfiltration scope and stealing data
Here’s an example of the rules for data exfiltration:

16/33

An example of data exfiltration rules
Here are some key aspects to note in these rules:

rule_collect_recursv: This indicates that the malware will search through folders recursively, delving into subfolders to locate files.
rule_exceptions: This defines specific locations or files that the malware should avoid.
rule_files: This is a pattern or set of file extensions that the malware targets for theft.
rule_folder: This specifies the path from which files, as defined by the environment configurations, will be extracted.
rule_name: This is the internal identifier for the rule. There can be multiple such rules, as observed.
rule_size_kb: This likely sets a maximum file size limit. Files larger than this specified value will not be collected.

Exfiltrated data

Upon receiving the configuration, the client steals specific data and sends it back in a zip archive. In our case, the contents of this archive were
as displayed on the screenshot below:

17/33

Contents of the archive containing exfiltrated data
Packets that transmit this data have a set structure, which we can express as follows:

18/33

Structure of packets that transmit data
The structure of the packet for sending stolen data includes the country code, followed by an underscore (_), then the IP address, and finally
the .zip extension. For instance, “DE_127.0.0.1.zip“.

An additional name, formatted as described, accompanies the archive. This includes the response code and the build identifier, which specify
which client is to process or merge the data.

This stage involves actions that are contingent on the specified configuration, like loader functions.

19/33

Performing loader functions is optional
If a loader config is provided, the client will download a file and execute it using scheduled tasks (schtasks). This indicates that the malware
has loader functions.

Further details are encompassed in the “CLIENT_CONFIRM_LOADER_EXECUTION” packet. Following the execution, the client sends a
confirmation back to the server, including the value of “ld_name.” Above is an example illustrating how the client communicates with the server
to download additional malicious code and the corresponding server response.

Referring to the flowchart above, the first packet contains the number 9. This corresponds to LD-name, which is the identifier for the first
loader configuration.

Stage 4: Optional HVNC launch

This new version of RisePro also possesses remote control capabilities, which means it can now function as a Remote Access Trojan. The
ability to enable HVNC is included in the grab_config, as shown in the screenshot provided.

20/33

Use of HVNC is set to true in the grab_config
If HVNC is enabled, RisePro initiates another instance of itself, specifically to download a DLL and run a server for the remote control
functionality.

21/33

Multiple TCP streams as seen in ANY.RUN
The screenshot above reveals an interesting aspect of the malware’s operation: communication occurs across multiple TCP streams.

22/33

Network communication involved in HVNC

First connection (process 2600): This includes all the previously discussed stages, such as initialization, configuration, and data
exfiltration.
Two connections from process 2612: These represent two distinct activities:

The first connection is for receiving a DLL module.

The second connection is for maintaining an HVNC server, which facilitates remote connections.

Stage 4.1: Requesting HVNC module

To understand how the HVNC connection is established, let’s examine the process as it occurs in the second TCP stream. This will provide
insights into the steps and communications involved in initiating an HVNC connection. Using a flowchart, the process can be described as
follows:

23/33

Initial stage of HVNC launch
Let’s explain what actually takes place step-by-step:

Client’s file request: The client sends a request for a DLL file, including a string that specifies the file name.
Server’s response and file transmission: The server acknowledges the request, sends a token for the session, and then transmits the
requested file.

Having established the sequence, let’s examine the structure of these packets in pseudocode:

24/33

Packet structure in the HVNC communication sequence

Stage 4.2: Third connection

In the third connection, if the server initiates the communication, the process generally unfolds as follows:

25/33

Data

transmission during the second stage of HVNC launch and maintaining conneciton
During the third connection, the communication involving HVNC is characterized by two main stages:

1. Data transmission from server: Initially, the server sends specific data related to the HVNC operation.

1. Cyclic pinging: Subsequently, to maintain the connection, the server periodically sends ping messages to the client.

Unfortunately, we weren’t able to analyze the packet structure when someone connects to the victim using this system, so we can’t provide
specific details about that aspect of the communication process.

Data exfiltration

Having explored network communication patterns of RisePro, we can move on to examine the contents of the files sent by the malware. This
will help us understand what data the malware is designed to collect and transmit.

We’ll examine a file called information.txt first, shown below:

26/33

Information.txt file
This file contains various details. Here are some of the higlights:

Malware version: Specifies the version of the malware.
Launch date: The date when the malware was activated.
GUID: Likely used to uniquely identify the computer.
Hardware ID: A unique identifier for the hardware of the infected system.
Launch path: The file path from where the malware was executed.
Temporary data storage folder: A folder created by the malware to temporarily store stolen data.
Victim’s computer data: Information like IP address, locale, system details, and other typical computer specifications.
Hardware information: Details about the video card, processor, RAM, etc.
Running processes: Names and IDs of system processes, likely used to check if any antivirus software is active.
Registered software: Lists software registered in the machine’s registry.

In addition, the malware sends out stolen passwords in a separate file named passwords.txt. It is formatted rather elaborately:

27/33

passwords.txt file
Immediately noticeable is a conspicuous link to a Telegram support group associated with the malware’s operation, likely provided for further
assistance or instructions. The file also lists passwords that have been extracted from databases of browsers, email clients, and other
software.

For each set of credentials, the following details are included:

1. URL of the Site: The web address for which the credentials are used.

1. Login: The username or login ID.

1. Password: The corresponding password.

Wrapping up: a look at the known versions

There are numerous versions of RisePro, and we have only analyzed one specific variant. Consequently, the details may vary across different
versions.

28/33

As of November 22, 2023, the current version is labeled as 1.0. It appears that the versioning was reset to the beginning when the
communication protocol underwent significant changes.

Additionally, it is noted on the malware’s Telegram support channel that there are two main versions of this stealer: one written in C# and
another in C++. The C++ version of the stealer is usually protected with VMProtect and is obfuscated to evade detection and analysis.

C++ version of the stealer is usually protected with VMProtect
This C# malware is obfuscated, potentially using Confuser.Core. You can see the C# version of RisePro in this sample.

https://app.any.run/tasks/88f133ad-338b-43bb-a2fd-e093616219d5/?utm_source=blog&utm_medium=article&utm_campaign=risepro_analysis&utm_content=linktoservice&utm_term=281123

29/33

C# version of RisePro is obfuscated, potentially using Confuser.Core
С++ version of RisePro can inject into processes. This behavior is evident in this task.

https://app.any.run/tasks/d34ad531-7b30-46cb-922a-718e4bd6a9d8/?utm_source=blog&utm_medium=article&utm_campaign=risepro_analysis&utm_content=linktoservice&utm_term=281123

30/33

Injection behaviour
As usual, we’ll leave you with some essential resources for detecting this malware and IOCs we’ve collected during our research:

IOCs

RisePro v0.9, C++ build, HVNC

Sample: https://app.any.run/tasks/01a74cc5-b571-4879-9104-e3f2383ba391/

SHA256: e95d8c7cf98dc1ed3ec0528b05df7c79bae2421ba2ad2b671d54d8088238f205

Files:

C:\Users\admin\AppData\Local\MaxLoonaFest1\MaxLoonaFest1.exe e95d8c7cf98dc1ed3ec0528b05df7c79bae2421ba2ad2b671d54d8088238

IP: 194[.]169.175.128

URL: http://91[.]92.245.23/download/k/KL.exe

https://app.any.run/tasks/01a74cc5-b571-4879-9104-e3f2383ba391/

31/33

RisePro v0.7, C++ build, loader

Sample: https://app.any.run/tasks/992ee8b9-b53a-489f-a97a-49798b125183/

SHA256: 973867150fd46e2de4b3d375d9c2d59eeda808a9dd1d137bd020b2f15c155ede

Files:

C:\Users\admin\AppData\Local\Microsoft\Windows\Temporary
Internet Files\Content.IE5\K78MRVB5\KL[1].exe

f327c2b5ab1d98f0382a35cd78f694d487c74a7290f1ff7be53f42e23021e599

IP: 194[.]169.175.123

URL: http://91[.]92.245.23/download/k/KL.exe

RisePro v0.6, C# build

Sample: https://app.any.run/tasks/88f133ad-338b-43bb-a2fd-e093616219d5

SHA256: ba7f4474a334d79dd16cfb8a082987000764ff24c8a882c696e4c214b0e5e9cf

Files:

C:\Users\admin\AppData\Local\Temp\tempAVS1DYR2zldnwaG\sqlite3.dll 0c7cd52abdb6eb3e556d81caac398a127495e4a251ef600e6505a813

IP: 194[.]169.175.128

RisePro v0.9, C++ build, C# injector

Sample: https://app.any.run/tasks/d34ad531-7b30-46cb-922a-718e4bd6a9d8/

SHA256: D440EEB8FD204EF2B3845894FE4E256E6505796B75FE5201CFFA7F5453C2FB5F

Files:

C:\Users\admin\AppData\Local\LegalHelper130\LegalHelper130.exe D440EEB8FD204EF2B3845894FE4E256E6505796B75FE5201CFFA7F5

IP: 194[.]49.94.53

RisePro botnet version, communication over TCP:50505

Sample: https://app.any.run/tasks/f841e850-d97a-4395-93cb-c2dff7e7bf7e/

SHA256: 4435DA81D8BC840408AFED9E993B3F0CC1AA08FF1CD03BBEC609379517EC1379

Files:

C:\ProgramData\WinTrackerSP\WinTrackerSP.exe 7F17D3D47F053498A3EFECAB532932DCC8018E3EE0DA60FB090BE0AB

C:\Users\admin\AppData\Local\Temp\tmpSTLpopstart\stlmapfrog (encrypted json, contains start timestamp and IP)

C:\Users\admin\AppData\Local\Temp\tmpSTLpopstart\todelete (json with file paths)

IP: 194[.]169.175.128

SIGMA

https://app.any.run/tasks/992ee8b9-b53a-489f-a97a-49798b125183/
https://app.any.run/tasks/88f133ad-338b-43bb-a2fd-e093616219d5
https://app.any.run/tasks/d34ad531-7b30-46cb-922a-718e4bd6a9d8/
https://app.any.run/tasks/f841e850-d97a-4395-93cb-c2dff7e7bf7e/

32/33

title: RisePro Rule

id: aba15bdd-657f-422a-bab3-ac2d2a0d6f1c

status: experimental

description: Detects RisePro malware

author: ANY.RUN

date: 2023/11/17

tags:

 - windows

 - RisePro

logsource:

 category: file_event

 product: windows

detection:

 selection:

 TargetFilename|regex:

 - "(?i)\\\\AppData\\\\Local\\\\Temp\\\\.*\\\\passwords\\.txt$"

 - "(?i)\\\\AppData\\\\Local\\\\Temp\\\\.*\\\\information\\.txt$"

 condition: selection

level: medium

YARA

We’ve created a YARA rule to detect these updated versions of RisePro. You can find it in our GitHub.

TCP stream decoder (python script)

For further investigation, we’ve prepared for you a script, that can be used to decrypt and parse the TCP stream to a JSON file. This allows for
easier visualization and processing of RisePro communication. The script can be found in our GitHub

SURICATA Rule structure

After detecting RisePro traffic in our sandbox environment, we shared our insights on network rule configurations with the Emergency Threats
community. You can view the thread discussing these network rules with the ET community here.

The Suricata rules are defined by multiple conditions:

Conditions in the rule Value Description

tcp $HOME_NET any -> $EXTERNAL_NET !
[80,443,445,5938]

tcp TCP protocol

$EXTERNAL_NET Direction to external network

![80,443,445,5938] Unused port exceptions

dsize:>1100; 1100 TCP packet payload size

content:"|00 1F 27 00 00|"; offset:7; depth:5 00 Limit uploaded file length values to three
bytes

1F 27 00 00; Packet type
CLIENT_SEND_FILE

Suricata IDS rules for detecting RisePro are available at Emerging Threats — Suricata Rules. Relevant rule IDs include 2046267, 2046269,
2046268, 2046266, 2046270, and 2049060.

https://github.com/anyrun/YARA/blob/main/RisePro.yar
https://github.com/anyrun/blog-scripts/tree/main/Scripts/RisePro/risepro_tcp_decoder.py
https://community.emergingthreats.net/t/risepro-tcp-v-0-1/647
https://rules.emergingthreats.net/open/suricata/rules/emerging-malware.rules

33/33

Maksim Mikhailov

Malware Analyst
at ANY.RUN
| + posts
Maksim is a developer and malware researcher focused on reverse engineering and malware analysis. He has a 2-year background in
development and 4 years of experience in reverse engineering and analysis, including 2 years working commercially. Presently, he is
approaching his first full year dedicated to malware analysis.

maksim-mikhailov
Maksim Mikhailov
Malware Analyst
Maksim is a developer and malware researcher focused on reverse engineering and malware analysis. He has a 2-year background in
development and 4 years of experience in reverse engineering and analysis, including 2 years working commercially. Presently, he is
approaching his first full year dedicated to malware analysis.
View all posts
What do you think about this post?

3 answers

Awful
Average
Great

No votes so far! Be the first to rate this post.

0 comments

https://any.run/cybersecurity-blog/risepro-malware-communication-analysis/
https://any.run/cybersecurity-blog/authors/maksim-mikhailov

