
1/15

Matthew November 27, 2023

Building Advanced Threat Intel Queries Utilising Regex
and TLS Certificates - (BianLian)

embee-research.ghost.io/building-advanced-censys-queries-utilising-regex-bianlian/

Advanced
Creating Regex Signatures on TLS Certificates with Censys.

In this post we will investigate a Bianlian C2 address and use TLS certificates to obtain
another ~50 servers.

Our primary focus will be building a regex query that matches the unique TLS structure used
by recent BianLian.

Regex and TLS Certs present a great opportunity to build queries without introducing
geographic limitations like ASN numbers and hosting providers. By using TLS Certificates,
we can also avoid limiting searches to specific port numbers or port counts. Effectively
catching actors that avoid patterns demonstrated in previous posts. (Eg here and here)

Our final query will look something like this.

services.banner_hashes="sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934

ca495991b7852b855" and services.tls.certificates.leaf_data.subject_dn:/C=.
{16}, O=.{16}, OU=.{16}/

https://embee-research.ghost.io/building-advanced-censys-queries-utilising-regex-bianlian/
https://embee-research.ghost.io/tag/advanced/
https://embee-research.ghost.io/combining-pivot-points-to-identify-malware-infrastructure-redline-smokeloader-and-cobalt-strike/
https://embee-research.ghost.io/identifying-risepro-panels-using-censys/
https://search.censys.io/search?resource=hosts&sort=RELEVANCE&per_page=25&virtual_hosts=EXCLUDE&q=services.banner_hashes%3D%22sha256%3Ae3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855%22+and+services.tls.certificates.leaf_data.subject_dn%3A%2FC%3D.%7B16%7D%2C+O%3D.%7B16%7D%2C+OU%3D.%7B16%7D%2F&ref=embee-research.ghost.io


2/15

Note that regular expression searches are a paid feature of Censys. But for the
purposes of demonstrating interesting concepts I thought this blog would be
useful

At the end of this blog, there is a query that will catch the same certificates without
utilising Regex. This can be used if you don't have a paid Censys account.

Performing an Initial Search

We can begin the search by looking up the initial IP of 185.248.100[.]118 which was
obtained on ThreatFox.

Note that we can prepend ip: if we want an overview before jumping directly to the IP
page.

Clicking on the IP Address takes us to the full page, where we can see an interesting TLS
certificate on port 443.



3/15

If we click on the "view all data" tab in the top right of the above screenshot, we can view the
full information for port 443.

This enables us to see all available information for a given port, which is typically
significantly more than what is available within the default summary view.

The first thing that stands out is the empty services.banner field. A lack of service banner
(although boring at initial glance) could be a great pivot point.

We can click on the blue search box next to the services.banner field to perform a pivot.
This will pre-build the query and save us time finding the exact field to search.



4/15

It's often better to use the banner hash when we want an exact match, this will avoid
any issues where a value might be incorrectly typed when searching. This also
ensures an exact match is queried.

Performing a basic pivot from the banner hash, we have an initial result of 14,605,188
servers. An admittedly huge number, But we'll improve this later.

If we go back to the initial summary view, we can see that the service was identified as
"Unknown".



5/15

We can again use the "view all data" to find the "Unknown" field and perform a pivot with the
search box.

This returns a lot of results, so we can take the resulting query and add it to our initial empty
banner search.



6/15

Sadly this doesn't actually reduce the hits to any useful degree (in this case), but it's a useful
technique to know so I wanted to include it in the post.

Since the addition of `UNKNOWN1 only reduced the hits by a very very small degree, it
doesn't matter whether we include it or not for the remainder of this search.

For the remaining queries we can leave it out.

Moving on, we can go back to the field details page and observe the certificate information in
more detail.

Of particular interest here is that only the C=,O= and OU= fields are present in the subject
and issuer fields.

Typically there are additional values like Location L , State ST and others. The absence
of these values is an additional indicator that can be used.

For example, a "normal" certificate should look more like this.

We can also note that all of the C=,O=,OU= values are exactly 16 characters in length.

The lack of "regular" fields and presence of exactly 16 characters is itself a pattern worth
signaturing.



7/15

We can use the blue search box again (right side of the detailed fields view) to automatically
build an exact query.

Converting a Field to Regex

The initial pre-built query is an exact string search. (Indicated by the presence of = and the
entire thing encased in quotes)

services.tls.certificates.leaf_data.subject_dn="C=ID5hgJb31CGtxS3R,

O=NgOiQK7LZP5nKyTE, OU=fcr8shEwbsebOGQc"

We can turn this into a regex by adjusting the equals = to a colon : and changing the double
quotes " to forward slashes /

We can then validate the syntax by modifying the query and ensuring the same result is
returned.



8/15

After validating the syntax, we can remove the main values and replace them with .{16}.

This ensures that exactly 16 characters are present following any of the C=, O= or OU=
values.

In a real example you would probably want to avoid the . wildcard and use a more
specific query like [a-zA-Z0-9]{16} ,[^,]{16} or \w{16} . But for this example we will
keep it simple with a .

Adjusting the query returns 56 results for matching certificates.

Validating a Regex Query with the "Build Report" Feature



9/15

By using the "report" button in the top-right corner, we can view a specific field for all of our
returned results.

This can be extremely useful for validating that results are matching as intended.

Note in the screenshot below, that the "build report" function will show results for other
services running on returned servers.

For example, a server with a matching hit on port 443, may also have a non-matching
hit on port 8080. If both services contain a relevant field, they both will be displayed.
Hence the additional results that don't match our query.

Either way this function is still useful for validating results.

With the query now validated further, we can add it to our initial empty banner search.

services.banner_hashes="sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934

ca495991b7852b855" and services.tls.certificates.leaf_data.subject_dn:/C=.

{16}, O=.{16}, OU=.{16}/

This results in 53 returned servers.



10/15

Investigating Hits With VirusTotal

Investigating the first 2 hits (that aren't our initial IP) with VirusTotal, we can see that both
have been marked as BianLian trojan.



11/15

To save time scrolling through the page, we can use the Build Report feature again to
obtain an easy list of all returned IP's.



12/15

We can also scroll down to the JSON output and combine it with CyberChef to obtain a text-
based list.



13/15

Taking that list and validating servers with VirusTotal, we can that every result was marked
malicious, and all had at least one comment referencing BianLian.

Final Results Checked Against Virustotal



14/15

2[.]58[.]14[.]41 - BianLian 8/88 VT

3[.]76[.]100[.]131 - BianLian 11/88 VT

13[.]59[.]168[.]154 - BianLian 11/88 VT

13[.]215[.]227[.]78 - BianLian 11/88 VT

13[.]215[.]228[.]73 - BianLian 11/88 VT

23[.]152[.]0[.]64 - BianLian 11/88 VT

34[.]207[.]174[.]202 - BianLian 11/88 VT

34[.]219[.]121[.]232 - BianLian 9/88 VT

43[.]139[.]241[.]58 - BianLian 13/88 VT

45[.]45[.]219[.]141 - BianLian 6/88 VT

45[.]56[.]165[.]27 - BianLian 12/88 VT

45[.]56[.]165[.]30 - BianLian 11/88 VT

45[.]80[.]151[.]49 - 4/88 BianLian

45[.]86[.]163[.]188 - 9/88 BianLian

45[.]86[.]163[.]224 - 13/88 BianLian

54[.]193[.]91[.]232 - 11/88 BianLian

65[.]109[.]3[.]80 - 6/88 BianLian

66[.]29[.]155[.]44 - 6/88 BianLian

85[.]13[.]118[.]11 - 6/88 BianLian

87[.]247[.]185[.]109 - 6/88 BianLian

91[.]102[.]162[.]229 - 9/88 BianLian

94[.]131[.]98[.]34 - 14/88 BianLian

94[.]198[.]50[.]195 - 11/88 BianLian

103[.]57[.]250[.]152 - 14/88 BianLian

104[.]36[.]229[.]15 - 13/88 BianLian

104[.]194[.]11[.]252 - 6/88 BianLian

104[.]238[.]34[.]130 - 6/88 BianLian

104[.]238[.]35[.]163 - 11/88 BianLian

104[.]238[.]60[.]64 - 9/88 BianLian

104[.]238[.]61[.]150 - 9/88 BianLian

104[.]243[.]32[.]53 - 5/88 BianLian

104[.]243[.]33[.]83 - 6/88 BianLian

104[.]243[.]33[.]84 - 7/88 BianLian

108[.]174[.]60[.]151 - 8/88 BianLian

120[.]48[.]110[.]233 - 5/88 BianLian

139[.]59[.]40[.]48 - 8/88 BianLian

143[.]198[.]46[.]29 - 9/88 BianLian

149[.]154[.]158[.]34 - 10/88 BianLian

149[.]154[.]158[.]199 - 11/88 BianLian

149[.]248[.]14[.]201 - 6/88 BianLian

168[.]119[.]88[.]236 - 6/88 BianLian

173[.]254[.]235[.]30 - 10/88 BianLian

185[.]240[.]103[.]195 - 9/88 VT BianLian

185[.]248[.]100[.]118 - 6/88 BianLian

188[.]34[.]130[.]46 - 4/88 BianLian

192[.]52[.]166[.]233 - 6/88 VT BianLian

192[.]236[.]192[.]207 - 6/88 VT BianLian

194[.]213[.]18[.]45 - 9/88 VT BianLian

195[.]128[.]235[.]20 - 7/88 VT BianLian

198[.]199[.]76[.]216 - 6/88 VT BianLian

Note on Searching Without Regex



15/15

The regular expression (Regex) feature is only available within the Paid version of Censys.

If you wish to obtain the same results on the free version. You can use the following query to
obtain the same results. This works if you know the specific length of each field you want to
search.

It won't work in other cases where you want to specify a length range (eg something like .
{14,16}. But for hardcoded lengths, it can work and is functionally equivalent to .{16}
services.banner_hashes="sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934
ca495991b7852b855" and

services.tls.certificates.leaf_data.subject_dn:"C=????????????????,
O=????????????????, OU=????????????????"


