
1/25

November 23, 2023

ParaSiteSnatcher: How Malicious Chrome Extensions
Target Brazil

trendmicro.com/en_us/research/23/k/parasitesnatcher-how-malicious-chrome-extensions-target-brazil-.html

Figure 1. Verifying chrome installation and AppData path presence

Our investigations on potential security threats uncovered a malicious Google Chrome
extension that we named “ParaSiteSnatcher.” The ParaSiteSnatcher framework allows threat
actors to monitor, manipulate, and exfiltrate highly sensitive information from multiple
sources. ParaSiteSnatcher also utilizes the powerful Chrome Browser API to intercept and
exfiltrate all POST requests containing sensitive account and financial information before the
HTTP request initiates a transmission control protocol (TCP) connection.

Our research shows that the malicious extension is specifically designed to target users in
Latin America, particularly Brazil; it exfiltrates data from Banco do Brasil- and Caixa
Econômica Federal (Caixa)-related URLs. It can also initiate and manipulate transactions in
PIX, a Brazilian instant payment ecosystem, and payments made through Boleto Bancario,
another payment method regulated by the Bank of Brazil. We also observed that it can
exfiltrate Brazilian Tax ID numbers for both individuals and businesses, as well as cookies,
including those used for Microsoft accounts.

Once installed, the extension manifests with the help of extensive permissions enabled
through the Chrome extension, allowing it to manipulate web sessions, web requests, and
track user interactions across multiple tabs using the Chrome tabs API. The malware

https://www.trendmicro.com/en_us/research/23/k/parasitesnatcher-how-malicious-chrome-extensions-target-brazil-.html

2/25

includes various components that facilitate its operation, content scripts that enable
malicious code injection into web pages, monitor Chrome tabs, and intercept user input and
web browser communication.

It is worth noting that while ParaSiteSnatcher specifically targets Google Chrome browsers,
the malicious extension will also work on browsers that support Chrome extension API and
runtime, such as Chromium-based browsers like newer versions of Microsoft Edge, Brave,
and Opera. These extensions could potentially be compatible with Firefox and Safari as well,
but changes such as the browser namespace are necessary.

The ParaSiteSnatcher downloader

ParaSiteSnatcher is downloaded through a VBScript downloader hosted on Dropbox and
Google Cloud and installed onto an infected system.

Our analysis has identified three distinct variants of the VBScript downloader, which are
characterized by differing levels of obfuscation and complexity:

Variant 1. This variant presents a straightforward approach where the payload is not
obfuscated, making it relatively easier to analyze and understand.
Variant 2. In this iteration, critical strings within the payload are obfuscated using a
Reverse String technique. This adds a layer of complexity to the code, requiring a
reverse operation to decipher the original content.
Variant 3. This variant incorporates additional obfuscation techniques. It includes junk
code that serves to confuse the analysis process, anti-debug and anti-tamper
protections, alongside the use of randomly generated names for variables and
functions to prevent easy pattern detection. It also utilizes Reverse String obfuscation
to further conceal the payload, presenting a more challenging structure for analysts to
decipher.

Upon execution, the downloader performs an initial check for the presence of the
%ProgramFiles%\Google\Chrome\Application\chrome.exe file, and the
%APPDATA%\%USERNAME% folder. If found not present, the script will terminate its
process.

The malware establishes communication with the attacker’s C&C by constructing and
sending a GET request to hxxps[:]//storage.googleapis[.]com/98jk3m5azb/-. The response
from the server is an obfuscated list of URLs.

The malware then de-obfuscates this list with a series of string manipulations performed on
the C&C response that reverses the string back to its original order. It then replaces specific
characters with their correct counterparts to reconstruct the URLs:

"[h]" is replaced with "https://", specifying the protocol part of the URL.

3/25

"-" is replaced with ".", reconstructing the domain names.
"_" is substituted with "/", fixing the path structure.
">" is replaced with ":", correcting port specifications.

Figure 2. De-obfuscating URLs from the C&C response

Once the actual URLs are retrieved, they are used to download additional malicious modules
masquerading as Google Chrome extensions.

4/25

Figure 3. The list of obfuscated URLs from the threat actor’s C&C response

The first URL from above list (hxxps[:]//rezumdolly[.]com:8443/api/alert) is used to register an
infected system and notify the attacker. The malware first utilizes the Windows Management
Instrumentation (WMI) service to perform a query against the Win32_OperatingSystem
class, which retrieves details about the operating system that are subsequently sent to the
attacker’s C&C server.

Figure 4. ParaSiteSnatcher gathers the victim’s system information upon arrival

It then constructs a .json-formatted string that encapsulates several pieces of system
information as follows:

comp. The computer's name, which can be used to uniquely identify the system on a
network.
user. The registered user's name, providing insights into who uses or owns the system.
version. The operating system version, indicating the specific build and potential
vulnerabilities.
arch. The architecture of the operating system (e.g., 32-bit or 64-bit), which is useful for
tailoring further attacks to the system's specifications.

5/25

caption. A descriptive label for the operating system, often including the edition (e.g.,
Windows 10 Pro).

Figure 5. Registering an infected system with the attacker's command and control server

The malware uses the down() function to download and save ParaSiteSnatcher malicious
extension modules on an infected system’s %APPDATA%\%USERNAME% directory.

Figure 6. The ParaSiteSnatcher download function

The malware then attempts to locate and delete Chrome shortcuts by searching for any
shortcuts that contain "chrome.lnk" in the Desktop, Public Desktop, and Quick Launch
folders.

6/25

Figure 7. ParaSiteSnatcher removing Chrome shortcuts from the victim’s Desktop and Quick
Launch folders with VBScript

To achieve persistence on the victim’s system and load malicious execution on every
execution, the malware creates a Google Chrome shortcut on the desktop, which is
configured to launch the browser with custom startup parameters. These parameters include
the specification of a default user profile directory and the initiation of a malicious browser
extension housed within the user's application data folder. This process is engineered to
ensure that the malicious extension is loaded each time Chrome is started via the created
shortcut.

Figure 8. The malware’s persistence

Extension and C&C communication

7/25

Figure 9. A diagram showing how the different components of the ParaSiteSnatcher Chrome
extension communicate.

The communication mechanism employed by ParaSiteSnatcher Chrome extensions rely
heavily on using the Chrome sendMessage API to communicate with various extension
components when specific conditions are met.

When messages are received, the malicious Chrome extension executes internal functions
on these events: some components pass along the targeted and processed and targeted
data directly to the attacker C&C, while most of the other components contain logic that can
receive and update commands directly from the threat actor.

The extension’s service worker, which we will discuss further into this blog, leverages the
chrome.windows and chrome.tabs API for navigating and focusing the document object
model (DOM) that other ParaSiteSnatcher components rely on.

Analyzing ParaSiteSnatcher Chrome extension files

8/25

In this section we explore the various files that comprise the ParaSiteSnatcher Framework's
malicious Chrome extension.

Figure 10. Properties of the malicious Chrome extension we investigated

manifest.json

Every Google Chrome extension includes a manifest.json file in its root directory. This
background manifest key contains essential information, such as the extension’s name,
version, permissions, and any scripts associated with the Chrome extension. The extension

9/25

uses a service worker (yyva.js) as part of its background processes for handling tasks,
orchestrating modules and data synchronization in the background.

Figure 11. The manifest.json file in the ParaSiteSnatcher’s root directory

The manifest.json file contains the following:

Basic metadata. This includes the name, description, version, and author key of the
browser extension.
Service workers. These are JavaScript files that act as the extension's primary event
handler. These events include more than just servicing web requests and can respond
to events like navigating a new page, clicking notifications, and opening or closing tabs.
Not that Chrome makes the critical distinction between a web service worker and
an extension service worker to highlight that the extension service worker is more than
just a web request proxy service. The service worker specified in the background key is
the extension service worker.
Content scripts. These allow developers to statistically load JavaScript files when
webpages are opened that match a specific URL pattern.
 Permissions. These determine which capabilities are exposed to their respective
extension.

10/25

In the sample of the ParaSiteSnatcher extension we investigated, we saw some critical
content_script keys that determine what scripts are injected, where they are injected, and
how they behave:

matches. This type of key specifies the pattern to be used for matching.
The <all_urls> value matches any URL that starts with a permitted scheme, such as
http, https, and file.
run_at. This key specifies when the script should be injected into the page, where
the document_end value injects the script while the page resources are still loading.
all_frames. This is a Boolean value. When set to true, the extension will inject scripts
into all <iframe> elements even if the frame is not the topmost in the tab.
persistent. When the persistent Boolean value is true, the extension developer can
access the chrome.webRequest API to block or modify network requests. This is the
only use case for setting the persistent boolean to true; by default, this value is set to
false for performance reasons.

Additionally, the malicious extension contained host_permissions among the permissions in
its manifest file. The host_permission key grants extra permissions for the extension’s API to
read and modify host data such as accessing the API cookies, receiving events using the
webRequest API, programmatically injecting scripts, bypassing tracking protections, and
reading tab-specific metadata. It can also access XMLHttpRequest and fetch access to
origins without cross-origin restrictions.

If an extension uses the host_permissions key, the user could be prompted to grant these
permissions to the extension. As of June 2023, Safari, Firefox, and some Chromium-based
browsers don't prompt the user during installation. In this malicious sample,
the host_permissions allow the extension to read and modify all URLs using
the <all_urls> value.

ParaSiteSnatcher also contains the permissions JSON key, which contains specific
WebExtension API keywords that the extension requests to use. The malicious extension
requests the following WebExtension JavaScript APIs:

webNavigation. This API adds an event listener for various stages of navigation, such
as in response to a user action, like clicking a link or adding a URL in the location bar.
 notifications. This API allows extensions to create and display notifications to users in
the system tray.
declarativeNetRequest. This API allows extensions to specify conditions and actions on
handling network requests, allowing extensions to block and upgrade network requests
without explicit host permissions.
declarativeNetRequestFeedback. This API allows extensions to access functions and
events that return information on declarative rules, such as those through
the declarativeNetrequest API.

11/25

scripting. The scripting API allows the insertion of JavaScript into websites, such as
through the scripting.executeScript() and scripting.registerContentScripts() methods.
webRequest. The webRequest API grants access to add event listeners to HTTP and
WebSocket requests. These event listeners can receive detailed information about
such requests, including the ability to modify and cancel these requests.
 storage. The storage API allows extensions to store and receive data and listen for
changes in stored data.
tabs. The tabs API allows extensions to interact with the Chrome browser’s tab system,
including creating, modifying, and rearranging browser tabs. This powerful API also
includes taking screenshots and communicating with a tab’s content scripts.
activeTab. This API permits access to the currently active tab when users execute
browser and page actions.
cookies. The cookies API allows the extension to query and modify cookies and be
notified of cooking changes.

It is important to note that many other API permissions exist in Chrome for developers API
Reference. From a security perspective, it is essential to understand that web browser
extensions can declare many permissions, and not all extensions will request the user to
grant explicit access. This highlights the essential need to understand what any downloaded
extension does and its declared permission levels.

yyva.js

This component is an Extension Service Worker or Service Worker, the central event handler
for Google Chrome extensions that handles web events and messages from other extension
components. The extension service worker can respond to standard service worker events in
addition to extension events, such as navigating to a new page, clicking a notification, or
closing a tab. This service worker is declared with the service_worker key.

In our research, all extension components are highly obfuscated, but after deobfuscating
each component and cleaning up the code, we uncovered the following important extension
service worker features working with the Chrome API:

Event listening and handling. The yavvy.js service worker is tasked with listening for
events using the chrome.runtime.onMessage.addListener API. Within Chrome
extensions, various components can leverage the Chrome API to message each other
using the sendMessage API. The service worker is specifically tasked with listening for
navigation, focus, and getcookies messages.
Listening and intercepting POST requests. The yavvy.js service worker uses the
Chrome.webRequest.onBeforeRequest.addListener to create a callback function to
listen for web request events containing a POST request, as well as gather tab
information using the chrome.tabs.get API, which it uses for analysis.

https://developer.chrome.com/docs/extensions/reference/
https://developer.mozilla.org/docs/Web/API/ServiceWorkerGlobalScope#events

12/25

Figure 12. ParaSiteSnatcher uses chrome.runtime.onMessage.addListener to listen for
specific events.

Despite its extensive listening, it is worth noting that ParaSiteSnatcher excludes local
network addresses and C&C domain from its monitoring.

Figure 13. ParaSiteSnatcher excludes local network addresses and C&C domain from its
monitoring.

It also intercepts and monitors user activity, and handles the following messages received
from other modules:

messageDetails.type == 'focus'
messageDetails.type == 'navigate'
messageDetails.type == 'getcookie'

The functions that handle the navigate and focus events use the chrome.windows and
chrome.tabs API for navigating and focusing the document object model (DOM). Other
components of this malicious Chrome extension leverage these messages extensively.

jsync.js (Jquery 3.3.1)

This file is injected as a Chrome extension dependency and is a content script used primarily
for Asynchronous JavaScript and XML (AJAX) communication with the attacker C&C to
exfiltrate sensitive data from infected users.

13/25

sovvy.js

This primary content script in the malicious Chrome extension periodically monitors specific
forms and elements on a webpage and sets up event listeners on certain buttons every two
seconds. It leverages the Chrome runtime API using the
chrome.runtime.onMessage.addListener API method to listen for the custom messages
passed between various extension events with the types, “lixo,” “cookie,” and “timer.” When
events with these message types are initiated, they in turn trigger ParaSiteSnatcher to run
these specific functions:

Intercepting POST requests. The lixo message is a catch-all event and does not look
for specific URL patterns. Instead, it tracks all POST requests in which the attackers
search for sensitive information such as usernames, passwords, emails, and credit
card information.

14/25

Figure 14. ParaSiteSnatcher tracks all POST requests

Stealing cookies and user sessions. The cookie message sends a POST request to the
attacker C&C for cookie and session theft.

15/25

Figure 15. ParaSiteSnatcher also gathers data related to cookies.

Stealing Microsoft cookies. When cookies matching Microsoft live.com exist, the
sovvy.js file sends a message using the chrome.runtime.sendMessage API to send this
data to the service worker, which processes this data to filter and extract the found
Microsoft account cookies. These can be leveraged for account theft and pass-the-
cookie attacks as well as pivoting to the cloud.

Figure 16. ParaSiteSnatcher uses the chrome.runtime.sendMessage API to get a victim’s
user information related to Microsoft accounts.

16/25

Stealing Banking Details. Our investigation of ParaSiteSnatcher revealed that the
malicious extension conducts multiple URL checks related to Brazilian online banking
companies, including Banco do Brasil and Caixa Econômica Federal. When the victim
interacts with URLs related to these financial institutions, the malicious Chrome
extension begins processing the data, looking for items such as usernames,
passwords, and credit cards numbers, and sending the data with a POST request to
the attacker’s C&C.

Figure 17. ParaSiteSnatcher looks out for communication with banking sites and get
password entries by victims

Fetching commands from the attacker’s C&C. Within this the sovvy.js script is the
ability for the malicious Chrome extension to retrieve commands from the attacker C&C
server with a standard HTTP GET request.

17/25

Figure 18. sovvy.js contains script that retrieves commands from the threat actor’s C&C
server.

33nhauh.js

The 33nhuah.js file contains business logic to monitor bank account details and perform PIX
instant payment actions. PIX is an instant payment platform created and regulated by the
Banco Central do Brasil (Central Bank of Brazil).

Some key features of this content script include HTML templates for password input forms,
definitions for enum type data representing command types, account information, PIX key
types, and parameters for PIX transactions. This content script also contains functions to
monitor bank account balances and perform PIX transactions. Additionally, there are
functions that manipulate the user interface, such as setting and resetting forms, clicking on
menu items, and hiding or loading process indicators.

This content script uses the standard HTML DOM selector to find specific elements
containing sensitive PIX elements such as receiving PIX institution names, and user account
information such as:

CPF/CNPJ (Brazilian Individual & Business Taxpayer Registration) details
Email addresses

18/25

Cellphone numbers
PIX Keys

19/25

Figure 19. ParaSiteSnatcher monitors activity related to PIX transactions, gathers victim data
from these transactions, and performs actions such as navigating the PIX menu and
selecting buttons within its interface.

unpgp2.js

The content script unpgp2.js is designed to navigate, focus, and interact with the internet
banking interface of the Caixa Econômica Federal’s web interface. This content script
performs various actions such as navigating pages, fetching account details, focusing on
elements, executing financial transactions and initiating PIX transactions.

20/25

Figure 20. ParSiteSnatcher specifically looks for activity with URLs related to Caixa
Econômica Federal.

s12ih0a.js

This content script primarily contains logic that is used to periodically monitor windows and
tabs content specifically those that contain or are related to the following:

Boleto Bancário
The CPF (Cadastro de Pessoas Físicas or Natural Persons Register) numbers of both
the payer and receiver in transactions
The CNPJ (Cadastro Nacional da Pessoa Juridica or Taxpayer Identification) number
of both the payer and receiver in transactions
Bank payment slips

The logic contained in this content script is called during specific intervals to monitor the
DOM and user-input through the sovvy.js content script. The s12ih0a.js content script will
also POST elements such as telephone numbers and email addresses to the attacker C&C.

21/25

Figure 21. The ParaSiteSnatcher data exfiltration to its C&C server

In the following table, we summarize the functions of each ParaSiteSnatcher extension
component:

Module Name Functions

yyva.js async function timerMonitor()

function getCookies()

async function navigate()

async function setFocusTab()

function addLog()

async function analyzeRequest()

22/25

sovvy.js function setCommandRetorno()

function updateCmd()

function timerMonitor()

function postSession()

function postLixo()

function getCmd()

function updateCmd()

function updateStatusOn()

function getVersion()

function getUser()

function getElement()

function addlog()

function trim()

function toLowerCase()

function extractDigits()

function getForm()

function preparePostData()

function buildInputMap()

function checkElementClick()

function checkInputPost()

function ValidateEmail()

function GenerateToken()

function SetToken()

function updateUserId()

23/25

33nhauh.js function monitorBB()

function resetCommand_BB()

function getSaldo_BB()

function clickMenuSaldo()

function focoTab_BB()

function hideProcesso()

function action_pix_BB()

function checkComprovante()

function setSConta()

function setValor()

function setChave()

function clickMenuPix()

function clickMenu()

function setAccountPasswordForm()

function getAgencyAndAccountNumber()

function resetAccountPasswordForm()

24/25

s12ih0a.js function monitor2Via()

function setEventDesco()

function setEventBB()

function click_isPagina()

function setMessageDesco()

function setMessageBB()

function setHtmlBB()

function setHtmlDesco()

function getDadosSegundaVia()

function post2Via()

function checkDebugging()

function innerFunction()

unpgp2.js function monitorAzul()

function get_azul_ass()

function get_azul_Saldo()

function focoTab_Azul()

function resetCommand_Azul()

function get_azul_agcc()

function azul_pedidos_automaticos()

Conclusion

The use of malicious Google Chrome extensions by leveraging the powerful Chrome API in
ways specifically designed to intercept, exfiltrate, and potentially modify sensitive user data
underscores the importance of being vigilant when granting permissions to extensions and
when using web browsers. ParaSiteSnatcher’s multifaceted approach to obfuscate its arrival
onto victim’s systems also ensures persistence and stealth, making detection and removal
efforts challenging, so users should be doubly watchful of the specific extensions they
download and install onto their browsers.

25/25

Despite our investigations showing that ParaSiteSnatcher specifically targets Google
Chrome browsers, users who utilize other browsers that are Chromium-based and that
support various APIs used by Chrome extensions should be equally wary.

Indicators of Compromise (IoCs)

You can find the full list of ParaSiteSnatcher IoCs here.

https://documents.trendmicro.com/assets/txt/20231121_ParaSiteSnatcher_IoCsl7nn42H.txt

