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The Malware-as-a-Service (MaaS) model, and its readily available scheme, remains to be
the preferred method for emerging threat actors to carry out complex and lucrative
cyberattacks. Information theft is a significant focus within the realm of MaaS, with a
specialization in the acquisition and exfiltration of sensitive information from compromised
devices, including login credentials, credit card details, and other valuable information. This
illicit activity represents a considerable threat that can lead to substantial financial losses for
both organizations and individuals.

In this blogpost, we will take a deep dive into a new Anti-Sandbox technique LummaC2 v4.0
stealer is using to avoid detonation if no human mouse activity is detected. To be able to
reproduce the analysis, we will also assess the packer and LummaC2 v4.0 new Control
Flow Flattening obfuscation (present in all samples by default) to effectively analyze the
malware. Analysis of the packer is also relevant, as the threat actor selling LummaC2 v4.0
strongly discourages spreading the malware in its unaltered form.

LummaC2 v4.0 updates

LummaC2 is an information stealer written in C language sold in underground forums since
December 2022. KrakenLabs previously published an in-depth analysis of the malware
assessing LummaC2’s primary workflow, its different obfuscation techniques, and how to
overcome them to effectively analyze the malware with ease. The malware has since gone
through different updates and is currently on version 4.0.

Some of these significant updates include:

Some of these functionalities have been covered in recent publications.

Packer

The malware that is going to be analyzed during these lines comes from the sample
b14ddf64ace0b5f0d7452be28d07355c1c6865710dbed84938e2af48ccaa46cf. The initial
component within the sample is the Packer, which serves as the outer layer of LummaC2
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v4.0. Its primary function is to obfuscate the malicious payload and facilitate its execution
during runtime without the need for spawning additional processes in the system (using
CreateThread instead). The packer’s architecture consists of two distinct layers.

We will now delve into the steps the malware takes to execute the payload through these
layers, as well as the various techniques it employs to hinder and slow down the analysis
process.

Figure 1. b14ddf64ace0b5f0d7452be28d07355c1c6865710dbed84938e2af48ccaa46cf
Packer layers

Layer 1

The first layer uses a lot of assembly junk instructions, they differ between packed samples
but do not execute any relevant action. Then it will use obfuscation techniques like push+ret
and jz+jnz to break disassembly and complicate the analysis, as it can be seen in the
following figure:
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Figure 2. Example of push+ret and jz+jnz obfuscation techniques present in Layer 1 of the
Packer
The malware then executes a lot of junk instructions that do not alter the functionality of the
program and proceeds to enter in a big and useless loop; which could be considered as an
“anti-emulation” technique. It also checks that the value calculated at the end of the loop is
the one expected to ensure the loop is actually performed. It then continues by creating a
Mutex to ensure no more copies of the malware run at the same time in the infected
machine. The Mutex name varies between samples.
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Figure 3. Example of useless code present to difficult analysis, and Mutex creation present in
Layer 1 of the Packer
After this initial logic, the packer starts by decrypting a 15 characters API from kernel32.dll.
The string is encrypted and built in the stack byte per byte. The API being resolved is
“VirtualProtect” used to give PAGE_EXECUTE_READWRITE protections to a fixed address
that will contain the second layer.
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Figure 4.

Decryption of “VirtualProtect” to resolve Windows API without exposing clear string
After VirtualProtect is successfully executed, it proceeds to decrypt the second stage with
fixed hardcoded size of 6556 bytes. Once the layer has been decrypted, execution is
transferred via call instruction with the fixed address of the second layer. The following
picture shows the decryption algorithm for the next layer:

Figure 5. Decryption algorithm for the second

Layer of the Packer

Layer 2
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This layer is very similar to the first one as it uses the same obfuscation techniques to break
disassembly and slow down analysis. However, this second stage will eventually extract,
decrypt and execute LummaC2 v4.0. This is accomplished by loading a resource using
LoadResource and LockResource. The Resource Name is hardcoded as “3” and contains
the final stage (encrypted).

Figure 6. Last Layer is contained in the packed PE resources
The resource is decrypted using a very similar algorithm from the first layer, constants
change but the algorithm remains the same.

Figure 7. Decryption algorithm for last Layer

(LummaC2 v4.0)
Once the resource has been decrypted, the packer will check if this resource is a PE file, (it
checks if “PE” magic is present at offset 0x3C from the base address of the decrypted
resource). If the check fails, the program finishes abruptly. This shows how the packer is only
expecting a PE in its resources.

A copy of the decrypted resource is then made into an allocated buffer. At this point, we can
safely dump the unpacked memory just after it has been written decrypted in the allocated
buffer (and before relocations are made). We will have now the unpacked LummaC2 v4.0
stealer, which we can dump for further analysis.

The packer finally loads this new PE in its process virtual address space by copying the
payload and applying relocations. Finally, it will execute its Original EntryPoint via
CreateThread using NTHeaders->OptionalHeader.AddressOfEntryPoint as the
ThreadRoutine parameter.

Figure 8. Entry Point of LummaC2 v4.0 is executed via CreateThread
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This will transfer execution to the unpacked LummaC2 v4.0. The following figure shows the
main routine of the malware:

Figure

9. LummaC2 v4.0 main routine
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Control Flow Flattening

Control Flow Flattening is an obfuscation technique aimed at breaking the original flow of the
program and complicating its analysis. Furthermore, it makes use of opaque predicates and
dead code to complicate analysis and make identification of relevant blocks more difficult.

Opaque predicates are employed to introduce intricacy into the primary program logic.
Typically, this is achieved by creating additional branches within the control flow, often
through the utilization of conditional jumps. Even though these conditional jumps are present,
the overall behavior of the program remains deterministic.

Dead code refers to parts of the malicious code that are inactive or unreachable during the
execution of the malware. Dead code may include obsolete functions, unused variables, or
entire blocks of instructions that do not contribute to the malware’s intended functionality. In
LummaC2 v4.0 some dead code blocks can be recognized by the use of calls to other
identified routines of the analyzed malware with invalid parameters, for instance.

The following picture represents the control flow of a program before and after Control Flow
Flattening has been applied. As can be seen, this obfuscation technique is used to break the
flow of a program by flattening it.

Figure 10. Example of program flow after applying Control Flow Flattening obfuscation
This detailed depiction of Qarkslab provides a more in-depth exploration of the distinct
elements within a control flow graph that has been subjected to Control Flow Flattening
obfuscation.

https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
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Figure 11. Schematic representation of the different elements in a control flow graph
subjected to CFF
When dealing with this form of obfuscation, the initial step involves identifying the main
dispatcher, the relevant blocks, and the predispatcher.

The main dispatcher represents the program block where execution always returns after
completing one of its branches.

The relevant blocks encompass those blocks integral to the functional program, as evident
in the initial representation, such as Block 1 and Block 2, etc.

The predispatcher holds the responsibility of altering the parameter’s value, which the main
dispatcher evaluates to determine the redirection of the execution flow toward a specific
branch.
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We will now delve into the initial routine executed by the unpacked LummaC2 v4.0, which
incorporates an anti-sandboxing technique that we will examine in more detail shortly.

Control structure on stack

Trying to identify relevant blocks is not easy when CFF has been applied. We are going to
analyze how this routine manages its control flow in order to make analysis easier.
LummaC2 v4.0 will mostly store the value needed for the control flow dispatchers
(sometimes more than one value is used to redirect the flow of the program) either in a local
variable or at an offset to a memory location pointed to by a register.

The following picture shows the first instructions executed in the routine, (which is the
responsible for executing anti-sandbox protection), the “prologue”. As can be seen, an extra
stack space of 0xD8 bytes is reserved and assigned to ESI register. This register will be
used throughout the entire routine accessing at offsets relative to it.

Figure 12. LummaC2 v4.0

assigning extra stack space to ESI. Other routines use alloca_aprobe instead
To ease analysis, we can create a Structure that will hold a maximum of the extra stack
space allocated and fill its values while we are reverse engineering the sample.
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Figure 13. After

applying structure type, we can see the angle of 45.0 is assigned to a member of the
structure

Figure 14.

Naming structure fields while reverse engineering will help determine the routine’s
functionality

Relevant blocks

Unit42 researchers published an IDA Python script to help reverse engineering complex
code. The following code is a slightly modified version of the one presented so that it runs in
IDA Python 7.4+ and allows to execute in a running debugging session providing an
end_address.

https://unit42.paloaltonetworks.com/using-idapython-to-make-your-life-easier-part-4/


12/25

   

def init_heads(start_addr=None, end_addr=None): 

   if not start_addr or not end_addr: 

       start_addr = idc.get_segm_start(idc.get_screen_ea()) 

       end_addr = idc.get_segm_end(idc.get_screen_ea()) 



   heads = Heads(start_addr, end_addr) 

 
   for i in heads: 

       idc.set_color(i, CIC_ITEM, 0xFFFFFF) 

 
 
def get_new_color(current_color): 

   colors = [0xffe699, 0xffcc33, 0xe6ac00, 0xb38600] 

   if current_color == 0xFFFFFF: 

       return colors[0] 

   if current_color in colors: 

       pos = colors.index(current_color) 

   if pos == len(colors)-1: 

       return colors[pos] 

   else: 

       return colors[pos+1] 

   return 0xFFFFFF # Default color 

 


def main_debug(end_addr): 

   if not end_addr: 

       print("[!] Error, end_addr for main_debug not specified.") 

       return 



   idc.enable_tracing(TRACE_STEP, 1) 

   event = ida_dbg.wait_for_next_event(WFNE_ANY|WFNE_CONT, -1) # Continue the 
debugger, now configured for step tracing 



   while True: 

       event = ida_dbg.wait_for_next_event(WFNE_ANY, -1) 

       addr = idc.get_event_ea() 



       if end_addr: 

           if addr == end_addr: 

               print("[.] End address reached.") 

               break 



       current_color = idc.get_color(addr, CIC_ITEM) 

       new_color = get_new_color(current_color) 



       idc.set_color(addr, CIC_ITEM, new_color) 



       if event <= 1: 

           print("[.] Finished debugging.") 

           break 
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   ida_dbg.suspend_process() # Wait for debugger to reach this point. PROGRAM 
FINISHED after this 

 


if __name__ == '__main__': 

   start_addr = None 

   end_addr = 0x011D21B8 

   init_heads(start_addr, end_addr)    # Set white color (default) 

   main_debug(end_addr) 


With this script, we can (in a debugging session) select an end_address and let the
debugger execute until this address is reached (or the debugging session is finished by other
means). As the debugger runs, it will color the instructions it executes. The darker the
instruction looks, the more times the debugger executed it.

As a result, we can easily identify those code blocks that got executed multiple times (they
may be pre-dispatcher blocks), those that got executed only once and even detect dead
code blocks that never get executed. This can significantly improve the reversing experience
of the malware sample, especially if we can avoid looking at dead code.

Figure 15. Routine with CFF obfuscation before running IDAPython script
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Figure 16. Routine with CFF obfuscation after running IDAPython script

New Anti-Sandbox technique: Using trigonometry to detect human
behavior

LummaC2 v4.0 makes use of a novel anti-sandbox technique that forces the malware to
wait until “human” behavior is detected in the infected machine. This technique takes into
consideration different positions of the cursor in a short interval to detect human activity,
effectively preventing detonation in most analysis systems that do not emulate mouse
movements realistically.

The malware first starts by getting the initial position of the cursor with GetCursorPos() and
waits in a loop for 300 milliseconds until a new capture of the cursor position is different from
the initial one.

Once it has detected some mouse movement (as the cursor position has changed) it will
save the next 5 positions of the cursor executing GetCursorPos() with a small Sleep of 50
milliseconds between them.

After these 5 cursor positions have been saved, (let’s name them for now on P0, P1, …, P4),
the malware checks if every captured position is different from its preceding one. For
instance, it checks if ((P0 != P1) && (P1!= P2) && (P2 != P3) && (P3 != P4)). If this condition
is not met, LummaC2 v4.0 will start again capturing a new “initial position” with a Sleep of
300 milliseconds until mouse movement is found and save new 5 cursor positions. This
process will repeat forever until all consecutive cursor positions differ.



15/25

At this point we know the malware ensures that detonation will not occur until mouse is
moved “quickly”. (Sandbox solutions that emulate mouse with less frequency will never
detonate the malware).

After checking that all 5 captured cursor positions meet the requirements, LummaC2 v4.0
uses trigonometry to detect “human” behavior. If it does not detect this human-like behavior,
it will start the process all over again from the beginning. The following lines explain the logic
the malware follows.

Let’s assume here we have our 5 captured cursor positions (with a gap of 50 milliseconds
between them) named P0, P1, …, P4.

Figure 17. Representation of 5 captured mouse positions with a Sleep(50) between them
LummaC2 is going to treat these coordinates points as Euclidean vectors. As a result,
captured mouse positions form 4 different vectors: P01, P12, P23, P34.
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Figure 18. Representation of vectors formed by consecutive points from previous captured
mouse positions
LummaC2 v4.0 then calculates the angle that is formed between consecutive vectors P01-
P12, P12-P23 and P23-P34 sequentially. Here we can see an example of the different
angles that are calculated:

Figure 19. Representation of angles between previous vectors being calculated using dot
product of vectors
To get the magnitude of a vector (shortest distance between two points), the Euclidean
distance formula is used. To calculate the angle between two Euclidean vectors, it makes
use of the dot product of vectors and transforms the result from radians to degrees. This
can be seen in the following figures:

https://www.cuemath.com/geometry/angle-between-vectors/
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Figure 20. LummaC2 v4.0 uses Euclidean Distance formula to calculate the magnitude of
vectors

Figure 21. LummaC2 v4.0 uses dot product of vectors to calculate the angle between two
vectors
The result is finally converted to degrees and compared against a threshold of 45.0º
degrees, which is hardcoded in the malware sample and initialized at the beginning of the
anti-sandbox routine (as it can be seen in previous Figure 13).
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Figure 22. The angle calculated between vectors is converted from radians to degrees
If all the calculated angles are lower than 45º, then LummaC2 v4.0 considers it has detected
“human” mouse behavior and continues with its execution. However, if any of the calculated
angles is bigger than 45º, the malware will start the process all over again by ensuring there
is mouse movement in a 300-millisecond period and capturing again 5 new cursor
positions to process.

In the following figure we can see how the anti-sandbox check is performed, once obtained
the angle between two vectors in angle_between_vectors_degress. The difference_threshold
is initialized at the beginning of the routine (which can be seen in Figure 13).

Figure 23. The angle calculated between vectors is compared against a hardcoded threshold
of 45.0 degrees

How to bypass LummaC2 v4.0 Anti-Sandbox technique

As we have seen, this technique allows the malware to delay detonation until “human”
mouse movement is detected. Moreover, this mouse movement must be continuous and
smooth. Moving the cursor tortuously, quickly to random positions, circles or changing
abruptly the direction of the cursor movement, etc., will most likely result in the malware
never detonating.

In order to detonate LummaC2 v4.0, mouse movement must be continuous (5 different
positions will be captured in approximately 0.25 seconds) and it must be a smooth
movement (without changing directions abruptly), given that angles between the vectors
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formed by these positions cannot exceed 45 degrees.

Forcing threat-actors to use a crypter for their builds

As we saw in earlier LummaC2 advertisements in underground forums, protecting the
malware with a crypter was recommended to avoid leaking the malware anywhere in its
pure form.

Figure 24. Dark Web Post for LummaC2 Stealer. Lines in red show threat actor encouraging
to use a crypter
Newer versions of the malware added a new feature to avoid leaking the unpacked samples.
In the case in which the sample being executed is not packed, the infected user will be
presented with the following alert that allows them to prematurely finish the execution of the
malware without any harm being caused to the infected machine.

This shows the lengths at which the malware developer is willing to go to avoid leaking
unpacked samples.

Figure 25. Alert message shown to the user

when executing LummaC2 v4.0 in its unpacked form
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LummaC2 v4.0 detects if the running executable is crypted by searching for a specific
value at certain offset from the PE file. If this value is found, then the sample is not crypted.
As we have previously seen, the packer sample does not create a new process to run the
malware but uses a thread instead. Analyzing or executing the unpacked sample will result in
this message box being displayed.

It will start by executing GetModuleFileNameW with hModule parameter 0 (to retrieve the
path of the executable file of the current process) and obtaining a handle to the file for future
reading via CreateFileW with dwDesiredAccess parameter set to GENERIC_READ. Then, it
will get the size of the file with GetFileSizeEx and allocate a buffer of the obtained size using
malloc. Following, a call to ReadFile is executed to fill the buffer with the contents of the
executable file of the current process, as shown in the following Figure:

Figure 26. LummaC2 v4.0

reading the executable file of the current process to check if the malware is unpacked
Afterwards, it will check using memcmp if a hardcoded mark is present at a hardcoded
offset plus 8 bytes. If the contents match, the user is presented with the alert preventing
detonation via NtRaiseHardError.
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Figure 27. LummaC2 v4.0 checks if the malware is unpacked looking for a hardcoded value
at a certain offset
This hardcoded mark (which changes between samples) has been previously hashed to
check for file integrity. If this integrity check does not match, the malware ends abruptly.
However, this should not be any issue if the unpacking of the malware was successful.

The following picture shows the hardcoded mark and the hardcoded offset. As well as the
contents of the unpacked version of the malware, which would show the alert upon
execution.
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Figure 28. LummaC2 v4.0

hardcoded mark and offset used to check if the executing malware is unpacked
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Figure 29. LummaC2 v4.0 unpacked sample contains the hardcoded_mark at
hardcoded_offset+8

Conclusion

Information Stealers such as LummaC2 v4.0 pose significant risks and have the potential to
inflict substantial harm on both individuals and organizations, including privacy breaches and
the unauthorized exposure of confidential data. As our analysis has revealed, LummaC2
v4.0 appears to be a dynamic malware strain that remains under active development,
constantly enhancing its codebase with additional features and improved obfuscation
techniques, along with updates to its control panel. The ongoing usage of this malware in
real-world scenarios indicates that it will likely continue to evolve, incorporating more
advanced features and security measures in the future. This evolution is further facilitated by
an open channel for customers to request bug fixes and propose enhancements.

Outpost24’s KrakenLabs will continue to analyze new malware samples as part of our Threat
Intelligence solution, which can retrieve compromised credentials in real-time to prevent
unauthorized access to your systems.

https://outpost24.com/products/cyber-threat-intelligence/
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IOCs

Hashes

LummaC2 v4.0 (sample 1)

b14ddf64ace0b5f0d7452be28d07355c1c6865710dbed84938e2af48ccaa46cf (packed)
4408ce79e355f153fa43c05c582d4e264aec435cf5575574cb85dfe888366f86
(unpacked)

LummaC2 v4.0 (sample 2)

de6c4c3ddb3a3ddbcbea9124f93429bf987dcd8192e0f1b4a826505429b74560
(packed)
976c8df8c33ec7b8c6b5944a5caca5631f1ec9d1d528b8a748fee6aae68814e3
(unpacked)

C&Cs

curtainjors[.]fun

gogobad[.]fun

superyupp[.]fun
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