A deep dive into Phobos ransomware, recently deployed by 8Base group

C'] blog.talosintelligence.com/deep-dive-into-phobos-ransomware/

Guilherme Venere November 17, 2023

Phobos

%

By Guilherme Venere

Friday, November 17, 2023 08:01
Threat Spotlight

» Cisco Talos has recently observed an increase in activity conducted by 8Base, a ransomware group that uses a variant of the Phobos
ransomware and other publicly available tools to facilitate their operations.

» Most of the group’s Phobos variants are distributed by SmokeLoader, a backdoor trojan. This commodity loader typically drops or
downloads additional payloads when deployed. In 8Base campaigns, however, it has the ransomware component embedded in its
encrypted payloads, which is then decrypted and loaded into the SmokeLoader process’ memory.

» 8Base’s Phobos ransomware payload contains an embedded configuration which we describe in this blog. Besides this embedded
configuration, our analysis did not uncover any other significant differences between 8Base’s Phobos variant and other Phobos samples
that have been observed in the wild since 2019.

» Our analysis of Phobos’ configuration revealed a number of interesting capabilities, including a user access control (UAC) bypass
technique and reporting victim infections to an external URL.

« Notably, in all samples of Phobos released since 2019 that we analyzed, the same RSA key protected the encryption key. This led us to
conclude that attaining the associated private key could enable decryption of all these samples.

SmokeLoader’s three stage process to deliver the Phobos payload

We won't use this space to provide a full overview of SmokeLoader (Malpedia has the basics), but we would like to show how reverse-
engineers can reach the final payload. In this example, we’ll use the sample
518544e56e8ccee401ffalb0a01a10ce23e49ec21ec441c6c7¢3951b01c1b19c, but any recent 8base sample will have the same ransomware
binary payload in the end. This process requires the execution of the malware in a controlled environment under a debugger like x32dbg.

SmokeLoader malware decrypts its payload in three stages. The first contains many random API calls to obfuscate the execution flow, while
the other two involve shellcode stored in allocated memory. The final binary is exposed in the third stage, where a binary copy of the PE
(Windows Portable Executable) data in that memory block gives the final payload in its original form.

1/13

https://blog.talosintelligence.com/deep-dive-into-phobos-ransomware/
https://blog.talosintelligence.com/author/guilherme-venere/
https://blog.talosintelligence.com/category/threat-spotlight/
https://malpedia.caad.fkie.fraunhofer.de/details/win.phobos
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://malpedia.caad.fkie.fraunhofer.de/details/win.smokeloader
https://www.virustotal.com/gui/search/behaviour_files%253A%2522.8base%2522/files

Decryption process for Smokeloader
embedded payload

3rd Stage:
Loader Shellcode

sub_4@851F@ proc near loc_AB5@94:
eax, dwSize push edi .
40h ; '@’ i FIPrROTact call dw?rd ptr [esi+3eh]
1208h ; flallocationType pop Ed%
eax ; dwsize pop esi
e ; lpAddress pop ebx
ds:VirtualAlloc leave

tn
allocated_memory, eax e
= ¥ sub_ABS@3E endp

retn
sub_4851F@ endp

sub_4@4D60 sub_AB489E proc near
eax, allocated_memory
dword_3906118, eax var_3C= dword ptr -3Ch
eax ; allocated_memory]|
ecx, [esp+2Dseh+var_C] ebp
edi ebp, esp
large fs:0, ecx eax, [ebp+var_3(]
esp, 3Ch
eax
sub_AB48BA
eax, [ebpt+var_3(C]
eax ; int
sub_ABS@3E
ecx
ecx

sub_AB489E endp

Decryption process for SmokeLoader embedded payload.
In the first stage, enabling a breakpoint at VirtualAlloc or VirtualProtect and checking its arguments should reveal the address where the next
stage will be decrypted. This memory location will then be called at the end of the entry point (EP) function, as shown above.

On the second-stage shellcode, following the second call in the function called from the entry point leads to the call to the second allocated
memory with the third stage. Once the third stage is reached, that memory area should contain the unpacked binary (PE) which can then be
exported to a file and analyzed.

The final payload hash extracted by this method is 32a674b59c3f9a45efde48368b4de7e0e76¢c19e06b2f18afb6638d1a080b2eb3.

Overview of features included in the Phobos ransomware

Our analysis of Phobos uncovered a number of features that enable operators of the ransomware to establish persistence in a targeted
system, perform speedy encryption, and remove backups, amongst other capabilities. Phobos is a typical ransomware capable of encrypting
files both in local drives as well as network shares. In our FY23 Q2 Talos Incident Response Quarterly Report, we detailed how the 8Base
group used their Phobos variant after installing AnyDesk to enable remote access to the machine as well as perform credential dumping via
LSASS. These stolen credentials were later used to elevate privileges, exfiltrate data and run the ransomware module.

Talos has observed the following features present in the malware code:

o Full encryption of files below 1.5MB and partial encryption of files above this threshold to improve the speed of encryption. Larger files
will have smaller blocks of data encrypted throughout the file and a list of these blocks is saved in the metadata along with the key at the
end of the file.

o Capability to scan for network shares in the local network.

» Persistence achieved via Startup folder and Run Registry key.

» Generation of target list of extensions and folders to encrypt.

* Process watchdog thread to kill processes that may hold target files open. This is done to improve the chances the important files will be
encrypted.

2/13

https://blog.talosintelligence.com/talos-ir-q2-2023-quarterly-recap/

o Disable system recovery, backup and shadow copies and the Windows firewall.
» Embedded configuration with more than 70 options available. This configuration is encrypted with the same AES function used to
encrypt files, but using a hardcoded key.

Based on the analysis of this configuration data, we were able to uncover additional features present in the malware binary which can be
enabled by setting specific options. These features have not been documented or have only been superficially mentioned in open source
reporting to date:

* UAC bypass using a .NET profiler DLL loading vulnerability.

* The existence of a debugging file that enables additional features in the malware, illustrated in the following section.
» List of blocklisted file extensions that point to names of other groups using the Phobos malware.

+ Dynamically imported API calls to avoid behavioral detection by security products.

o A hardcoded RSA key used to protect the per-file AES key used in the encryption.

» Reporting of victim infection to an external URL.

» OS check for Cyrillic language to prevent the malware from running in unwanted environments.

We also examined the encryption methodology used by Phobos. Versions of Phobos released after 2019 use a custom implementation of
AES-256 encryption, with a different random symmetric key used for each encrypted file, instead of using the Windows Crypto API like earlier
variants. Once each file is encrypted, the key used in the encryption along with additional metadata is then encrypted using RSA-1024 with a
hardcoded public key, and saved to the end of the file. This algorithm has been documented before, for example in this Malwarebytes post
from 2019, and the process still remains the same.

This makes it extremely unlikely the files can be decrypted by brute force, as each file uses a different key, even though attempts at brute-
forcing it have been made in the past. It implies, however, that once the private RSA key is known, any file encrypted by any Phobos variant
since 2019 can reliably be decrypted. This fact is supported by an analysis of over a thousand unpacked Phobos samples available on
VirusTotal since 2019, where the same public RSA key mentioned above is used.

RSA key used in all variants of Phobos since 2019

analyzed by Talos.
Next, we are going to take a deeper look at the configuration file and some of the features it enables.

Decrypting the Phobos configuration file

In order to understand how the configuration data is used in Phobos, we analyzed the malicious code in IDA Pro. This allowed us to interact
with the configuration data using IDA Python and to decrypt all the configuration data at once. But first, we are going to look at how the
configuration data looks in the binary. Once the file is loaded in IDA Pro, one of the first operations we observe being executed by the code is
to check its payload and load it into memory:

3/13

https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware
https://cert.pl/en/posts/2023/02/breaking-phobos/
https://hex-rays.com/ida-pro/
https://hex-rays.com/products/ida/support/idapython_docs/

L]

FF 35 BC B4 40 @@ push size ; check if payload data is intact

88 CE mov ecx, esi ; ESI contain base of .cdata section with payload data
33 Ce xor eax, eax

EB 33 5B o0 00 call Crypt_CRC32Checksum

59 pop ecx

3B @5 3@ B4 42 o cmp eax, payload_hash

@F 85 3B @5 00 @@ jnz loc_4@82F9E

68 18 B4 40 60 push offset AES_Init_Key ; hardcoded AES key to decrypt Config
8B (6 mov eax, esi ; payload addr
E3 37 33 @0 o0 call mal_LoadConfigInHeap
59 pop ecx
33 9 xor ecx, ecx
3B C3 cmp eax, ebx
BF 95 (1 setnz ¢l i) i
A3 40 B4 48 80 mov payload_struct_addr, eax A snippet of code at the entry point with Phobos
3B (B cmp ecx, ebx
BF 84 1A @5 8@ 88 jz loc_4@2F9E
FIZE
53 push ebx ; buffer
GA 31 push MAL_CHECK_LOCALE_FLAG ; index
E3 BE 33 @0 @9 call mal_GetDecryptedConfigVar
59 pop ecx
8B F@ mov esi, eax
59 pop ecx
89 74 24 13 mov [esp+1@@h+1lpMem], esi
FF 15 84 A@ 4B @@ call ds:GetTickCount
Bl push eax 3 tick_count
E8 S5E GA B8 28 call save_curr_ticks
F6 86 81 test byte ptr [esi], 1
59 pop ecx
74 2E jz short get log_config

configuration data setup in memory.

In the code above we see the malware initially checking the CRC32 hash of the data in the last section of the PE file. In the case of our
sample, this section is named “.cdata” although different samples may use a variation of this name. We have observed samples using “.cdata”
and “.sdata”.

The data is then loaded into a heap-allocated memory and a structure with pointers to this data is saved to a global variable, named
“payoad_struct_addr’ in the image above. This structure will be used by the decryption function in order to load requested configuration
entries later throughout the code. Each entry has a specific index which is passed as a parameter to the decryption function as we can see in
the last code block.

The structure used to handle the configuration data has 48 bytes and is defined as follows:

derBuff
erkntri

tedBufferSize; Structure storing pointers to configuration data.
//4 dwords
// always zero

The headers and the actual data are loaded in different buffers allocated in heap memory and pointers to these buffers are saved in the
structure, as well as the number of entries in the configuration. The data is followed by a 16-byte AES key used to decrypt the configuration.
This key is hardcoded in the binary.

The header contains information to find the encrypted data for each index in the configuration. The structure has 12 bytes and is defined as
follows:

Structure for header entries in configuration data.

4/13

The offset above is relative to the start of the encrypted data buffer starting at 0x00. The index also starts at 0x00 and each index is relatively
static for the type of data it contains, which means that for a given index, every sample should have the same type of configuration data in
them.

We have, however, observed that some samples show small changes in the content of their indexes. Since Phobos has been used by many
groups in the past, these variations could indicate they are using a different builder or variant. In our analysis of the public samples available
in VirusTotal, we found that around 88% of them have 64 configuration entries, while some have as little as 40 and as many as 72 entries.

Based on our code analysis, we were also able to infer the existence of three additional options used for setting the reporting URL and
custom message to be sent back to the attacker. These options were not observed in any sample we analyzed, but the code to handle them
is present in all samples. A better look at this feature is shown later in this blog.

The decryption function accepts two parameters: an index to the desired entry and a pointer to a buffer that's used if the entry contains more
than four bytes of data. Otherwise, the buffer parameter must be zero.

r(int index,undefined4 xretbuffer)

int %ent
int entr
int entr

*(int *)(payload_struct_addr + 4);
r # 0) {

(int *)(index_counter * 0xc + x(int *)payload_struct_addr);

8 + index_counter);

Decryption function showing the call to AES_Init and

ruct_addr + 4 +

er)+x(int *)(paylo truct_addr + 8),entry
0);

H
truct_addr + 10,local_140);
ta,entry_data);

8 + id

AES_Decrypt using the key present in the payload structure.

The code scans the header buffer for an entry matching the requested index. It then allocates enough memory to store the encrypted data
and copies the data to that space, and calls the AES_Init function with the key present at “payload_struct_addr + 0x10”, which is hardcoded in
the sample data section. The function AES_Decrypt is then called with the encrypted data and this AES object as a parameter.

Automating the configuration decryption with IDA Pro

Once the decryption algorithm is understood, it is easy to automate the decryption of every entry in the configuration and output the details to
a file. IDA Pro allows the use of Python to automate tasks inside the application, and we decided to use the Flare-Emu Python module to
emulate the malware’s AES routines instead of re-implementing the code in Python.

Since the decryption function requires only two parameters and is therefore fairly independent, we decided to start the emulation from that
point, creating a structure similar to what the malware does for the payload data:

eh=flare_emu.EmuHelper()
conf_struct=eh.allocEmuMem(0x30)
header_data=eh.allocEmuMem(header_size)
config_data=eh.allocEmuMem(config_size)

Then populating this structure with the appropriate values:

5/13

https://github.com/mandiant/flare-emu

e

>

.writeEmuPtr(conf_struct,header_data)
eh.writeEmuPtr(conf_struct+4,config_entries)
eh.writeEmuPtr(conf_struct+8,config_data)
eh.writeEmuPtr (conf_struct+0xc,config_size)
eh.writeEmuMem(conf_struct+0x10,AES_Init_key_struct)

load buffers

eh.writeEmuMem(header_data, eh.getEmuBytes(enc_data_start+0x8, header_size))
eh.writeEmuMem(config_data, eh.getEmuBytes(config_start,config_size))

write addr of struct back to code
eh.writeEmuPtr(eh.analysisHelper.getNameAddr (CFG_STRUCT_NAME), conf_struct)

Once the structure is created, we can walk through each entry in the header and prepare the emulator stack and call the emulation starting at
the decryption function:

if entry_size<=4:

buffer=0

else:

buffer=eh.allocEmuMem(entry_enc_size)

myStack = [Oxffffffff, entry_idx, buffer]
eh.emulateRange(eh.analysisHelper.getNameAddr (DECRYPT_FN), stack = myStack, skipCalls=False)

The resulting decrypted data will be present in the EAX register if it's four bytes or less, or in the allocated buffer if larger. After our analysis of
the samples found in the wild, we found the following types of configuration entries:

mal_ConfigIndexEnum = {
MAL_CONFIG_HASH?
MAL_CONFIG_SIZE?
MAL_EMBEDDED_RSA_KEY
MAL_FLAGS
MAL_RANSOM_FILE_EXTENSION
MAL_RESERVED
MAL_TARGET_EXTENSIONS
MAL_BLACKLIST_EXTENSIONS
MAL_BLACKLIST_FILES
MAL_BLACKLIST_FOLDERS
MAL_PROCESS_KILL_LTIST
MAL_RANSOM_NOTE_NAME_HTA
MAL_RANSOM_NOTE_NAME_TXT
MAL_RANSOM_NOTE_HTA
MAL_RANSOM_NOTE_TXT
MAL_TARGET_FOLDER_DESKTOP
MAL_TARGET_FOLDER_APPDATA
MAL_REG_PERSIST_KEY
MAL_TARGET_FOLDER_STARTUP
MAL_RESERVED_HASH1
MAL_MSG_ALPHABET
MAL_API_RUNAS
MAL_API_OPEN
MAL_TARGET_FOLDER_SYSDRIVE
MAL_TARGET_FOLDER_TEMP
MAL_MUTEX_NAME
MAL_API_KERNEL32_DISABLEWOW64FSREDIR
MAL_API_KERNEL32_GETFINALPATHNAMEBYHANDLEW
MAL_API_SEDEBUGPRIVILEGE
MAL_API_SEBACKUPPRIVILEGE
MAL_API_QUERYINFORMATIONPROCESS
MAL_EXPLORER_EXE
MAL_API_SHCREATEITEMFROMPARSINGNAME
MAL_UAC_ELEVATION_CLSID

A

6/13

MAL_HKEY CURRENTBUILD
MAL_HKEY_UAC_CONSENTPROMPTBEHAVIORADMIN
MAL_API_ISWOW64PROCESS
MAL_API_COMPMGMT
MAL_API_CREATEPROCESSWITHTOKENW
MAL_TARGET FOLDER_USERSHELL
MAL_FOLDER_COMSPEC
MAL_CMD_DELETE_BKP
MAL_CMD_OPEN_FIREWALL
MAL_CMD_ADDITIONAL1
MAL_RESERVED
MAL_PE_EMBEDDED_32BIT
MAL_PE_EMBEDDED 64BIT
MAL_FEATURES_FLAG
MAL_RESERVED_HASH2
MAL_VERSION_ID
MAL_MSG_LOCAL_THREAD_START
MAL_MSG_LOCAL_THREAD_STOP
MAL_MSG_USER_THREAD_ START
MAL_MSG_USER_THREAD_ STOP
MAL_MSG_DRIVE_SCAN_START
MAL_MSG_DRIVE_SCAN_STOP
MAL_MSG_NETWORK_SCAN_START
MAL_MSG_NETWORK_SCAN_STOP
MAL_MSG_NETWORK_SCAN_COMPLETE
MAL_MSG_PROC_WATCHDOG_START
MAL_MSG_PROC_WATCHDOG_STOP
MAL_MSG_INSTANCE_SYNC_START
MAL_MSG_INSTANCE_SYNC_STOP
MAL_MSG_PLUS

MAL_MSG_MINUS
MAL_DEBUG_FILE_NAME
MAL_CFG_SERVERNAME
MAL_CFG_HTTP_PATH
MAL_CFG_HTTP_OPT_DATA

Malware configuration index.

UAC bypass technique

To execute its main objective of encrypting as many files from the victim machine as possible, a ransomware needs to be executed with
elevated privileges so it can access all files on disk as well as disable important system services which may hinder its objective. Elevating

process privileges usually causes a warning to be displayed to the user and may prevent the malware from running. To bypass that message,

many malicious programs use an UAC bypass or exploits to elevate its own process privileges.

The Phobos binary contains code that performs UAC bypass using a vulnerability in the .Net Profiler DLL loading process while executing
“‘compmgmt.msc”. This technique has been documented since at least 2017 but still works in the latest version of Windows 10.

Note: Even though the malware contains code to bypass UAC and the exploit works when executed, this only happens once we force the
execution to follow that specific code branch and is not being actively used by the malware. The code path leading to this specific function
seems to be reachable only when specific parameters are present in the malware configuration. Since Phobos is generally distributed along
other malware and only after the actors are able to extract all the information they need, it’s possible the UAC code is not used because it’s
not needed at the point in time the actors decide to encrypt the files.

In this method, a DLL is dropped to a user-writable folder and the environment variables are modified to make the .Net profiler load the file
even in elevated processes. In the case of Phobos, the configuration file stores a small 2KB DLL file that only contains code to create a new
process with the malicious binary. Both 32- and 64-bit files are embedded in the configuration.

7/13

https://offsec.almond.consulting/UAC-bypass-dotnet.html

EG 2B @e 0@ ee call sub_4818A3

43 8D 88 B7 @@ 20 88 lea rcx, [rax+@887h] ; read addr for filename string to CreateProcess
45 31 @ xor r8d, r8d

31 D2 xor edx, edx

C7 45 E7 63 @@ 20 8 mov [rbp+57h+var_7@], 68h ; 'h’

Ed 13 e o@ ee call sub_4818A3

48 8D 48 48 lea rax, [rax+48h] ; offset to CreateProcessW import Code used to start the malicious binary from the
FF 1@ call qword ptr [rax]

31 C9 xor ecx, ecx

EG 85 a2 0@ ae call sub_4@18A3

43 8D 48 33 lea rax, [rax+33h] ; offset to ExitProcess import

FF 1@ call word ptr [rax

elevated process.

The DLL is written to the % TEMP% folder using the machine serial number as its name like this:
C:\Users\User\AppData\Local\Temp\1E41F172.

The DLLs embedded in the configuration data do not represent a complete PE, containing only the data up to the import table present right
after the “CALL [EAX]’ shown above. The PE file is extracted from the configuration and fixed in memory before it is written to disk. The path
to the malware binary is written to the file right after the import table, and will be used by the code as one of the parameters to
“CreateProcessW’. The section is then finalized until the section alignment with the bytes 0OxBAADFOOD:

WA comparative view of the 64-bit sample before and

after being fixed in memory. The PE file in the configuration ends right after the import table.

The code will then call ShCreateltemFromParsingName using “Elevation:Administratorinew:{3ad05575-8857-4850-9277-11b85bdb8e09}” as
a parameter in order to create an elevated shell object which will later be used to initialize the .Net environment before executing the
Computer Management tool via mmc.exe.

Once the exploit is successful, a new instance of the malware binary is started with high privileges:

[Bbaseexe 32 001 32 Limited Medium
| (v Bbaseexe 3/ 72 312 Ful High
fully elevated privileges.

The process tree is also worth noting, as it is not typical to have MMC.EXE starting unknown binaries, as shown in the example below:

Process information showing the new process with high integrity and

- iy, e exe (6244) |hluudl Manage... C\Windows'system32\mmc exe | |
o) # Spase_naked_sample exe (2160) C\Usersyohnstud \ Desktop'\8base_naked_sample exe []
{54 Corhost exe (2508) Console Window ... C:\Windowa'System32\Conhast exe [}
=) g emd exe (3324) Windows Comma_.. C\Windows'system32\cmd exe []
Wi vasadin.exe (4668) Command Line k... C\Windowa'aystem32\vasadnin exe B _ Process tree shows the ransomware process started
£ WMIC exe (468) WMI Commandin... C.\Windows\System32\Woem \WMIC exe |]
=l g emd exe (1632) Windows Comma... C\Windows system32\cmd exs -
& netsh.exe (E520) Network Comman... C:\Windows'system32\netsh exe]
netsh exe (2568) Netwark Comman... C\Windows'system32\netsh.exe | |

from mmc.exe.

Phobos’ hidden debug file feature

One of Phobos’ hidden abilities we found in the configuration data is support for a debug file which can be used to enable additional features
in the binary. At the beginning of the code, Phobos checks for the presence of a file name at index 0x43 in the configuration. If the setting is
present, it will then check if the file exists in the same folder and if it contains valid arguments:

vy v

il) =
get_log_config:
8D 74 24 34 lea esi, [esp+100h+buffer]
E8 99 FD FF FF call HeapClearMem
53 push ebx ; buffer
6A 43 push MAL_DEBUG_FILE_NAME ; index
ES 62 38 00 00 call mal_GetDecryptedConfigVar ; config option with name of external config file
8B F8 mov edi, eax
59 pop ecx
59 pop ecx
3B FB cmp edi, ebx i A
2 14 o Short. Toc_402801 Phobos checking for the presence of debug file.
L
il s &=
8B (6 mov eax, esi
50 push eax ; buffer
57 push edi ; name
E8 25 FC FF FF call mal_CheckIfDebugFileExists
59 pop ecx
59 pop ecx
85 (0 test eax, eax
75 85 jnz short loc_402B@1

8/13

If the debug file exists, Phobos will parse each line to see if they contain valid commands and will create a structure containing the flags and
string parameters found after the commands. In the 8Base campaign, the name of this file is “suppo” but other groups use different names for
the debug file or don’t have one set up at all.

Based on our code analysis, the following commands are available for debugging:

e ‘C’ or ‘c’: Shows a console to print debug strings.

o ‘L’: Outputs a log file name. This name will be prefixed by "e-" to indicate the process is running elevated. For a typical process tree
with a low privilege malware running an elevated process, two files will be created: “filename” and “e-filename”.

o ‘M’ or ‘m’: Does not run the encryption loop. This option disables the malicious actions and causes the malware to jump to the end of
the code.

e ‘n’: Sets a flag in the buffer.
‘e’ Accepts a string of values separated by ';' and stores a pointer to the data in the buffer structure.

» ‘s’ Sets a flag in the buffer.
‘x’: Sets a flag in the buffer.

While some of these commands can be derived from analysis of the code, Talos never found an actual sample of these debug files to
compare with our analysis, so some of the commands are not yet completely understood.

When the options for showing the console are present in the debug file, this is what is output by the malware during typical execution:

Debug console and log files created by Phobos

e-Bbaselog

debug file setting.

In the example above, we have enabled the Console display (command ‘c’) and log file (command ‘L) and we can see the messages printed
to the console. It shows the victim identification (the string “[1E41F172-3483]") as well as the build number “v2.9.7”. All the strings shown in
the output are also present as settings in the configuration, which indicates these messages can be customized by the threat actors behind
each campaign.

Phobos’ infection reporting capabilities

While Phobos does not typically demonstrate reporting a new infection to the attacker, our analysis indicates the capability to do so is present
in the code, hidden behind a configuration setting which enables this feature and the creation of a custom URL and message chosen by the
attacker.

The configuration setting with index “0x31” is a flag used throughout the code to check if various features are enabled or not. If the reporting
capability is enabled, the malware will attempt to extract the server name, URI path and custom message from indexes 0x44, 0x45 and 0x46
respectively:

9/13

; int _ stdcall R_mal_GeneratePOSTUrlFromConfig()
R mal GeneratePOSTUrlFromConfig proc near
var_28= dword ptr -28h
var_24= dword ptr -24h
var_20= dword ptr -20h
var_1C= dword ptr -1Ch
var_18= byte ptr -18h
pwszObjectMame= dword ptr -@Ch
pswzServerName= dword ptr -8
IpMem= dword ptr -4
NULL = esi
55 push ebp
8B EC mov ebp, esp
83 EC 2C sub esp, 2Ch
53 push ebx
26 push NULL Phobos code checking if the reporting URL is present
57 push edi
E8 26 13 00 08 call mal_GetVolumeSerialNumber
33 F6 xor NULL, NULL
56 push NULL ; buffer
6A 44 push MAL_CFG_SERVERMAME ; index
8B F8 mov edi, eax
E8 E7 39 00 00 call mal_GetDecrylptedConfigVar
56 push NULL ; buffer
6A 45 push MAL_CFG_HTTP_PATH ; index
89 45 F8 mov [ebp+pswzServerName], eax
E8 DC 39 00 08 call mal_GetDecryptedConfigVar
56 push NULL ; buffer
6A 46 push MAL_CFG_HTTP_OPT DATA ; index
89 45 F4 mov [ebp+pwszObjectName], eax
E8 D1 39 00 00 call mal GetDecryptedConfigVar
89 45 FC mov [ebp+1pMem], eax
83 C4 18 add esp, 18h
8D 45 E8 lea eax, [ebp+var_18]

in the configuration.

If these options are present, the malware will then attempt to communicate an alert of the infection back to the specified server. The custom
message mentioned above is a string parameter which may contain the tag “<</D>>" in its body. This tag will then be replaced by the victim
ID before submitting the request. As shown in the example below, the original message extracted from the binary still has the tag and the
parsed message with the victim ID is passed as parameter to the HTTP Post function:

i com
= Excerpt of code showing the parameters to the HTTP

53
FF7S 4

FF7s Fs
E8 F2120000

833 10
929CE| FE7S F8

POST requeét after parsing the ID.
The request is sent with almost no headers, as seen in this example:

op-ell

POST /badserver.html HTTP/1.1
Connection: Keep-Alive

ﬁﬁ?ienﬁxﬁﬁﬁﬁ-“mﬁs POST request sent back to attacker if enabled in the

Embedded template may use the tag 1E41F172 which will be replaced by victim ID before reporting

configuration.
It is worth noting, however, Talos has not seen any threat actor use this feature in any sample analyzed thus far.

Analysis of code changes in Phobos binaries over time

Since 8Base group is known to operate with characteristics similar to previous Phobos campaigns, we compared the code in an 8Base
sample with previous Phobos variants and determined there are no differences between the code at the binary level at all. As we mentioned
above, this 8Base sample, 32a674b59c3f9a45efde48368b4de7e0e76c19e06b2f18afb6638d1a080b2eb3, was extracted from a
SmokelLoader binary deployed in a recent 8Base campaign seen between June and August 2023.

In their February 2023 post about brute-forcing Phobos encryption, the Computer Emergency Response Team from Poland (Cert-PL) looked
at sample 2704e269fb5cf9a02070a0ea07d82dc9d87f2cb95e60cb71d6c6d38b01869f66 which was first observed in VirusTotal in 2020. Their
observations about how the encryption works had many similarities with the 8Base sample we analyzed, and our analysis revealed that there
were no changes in the code at all, with 100% carryover of samples’ functions and basic blocks.

The only thing that changes between these two binaries is the configuration data in the last PE section:

10/13

https://blogs.vmware.com/security/2023/06/8base-ransomware-a-heavy-hitting-player.html
https://cert.pl/en/posts/2023/02/breaking-phobos/
https://www.virustotal.com/gui/file/2704e269fb5cf9a02070a0ea07d82dc9d87f2cb95e60cb71d6c6d38b01869f66/details

8Base

Configuration 64
Entries

Encryption 0xea73000e61c749e5287a2407e44c8679

key

File .id[<>-3483].[support@rexsdata.pro].8base

extension
(IDX 0x4)

Debug file suppo
(IDX 0x43)

Extension 8base;actin;DIKE;Acton;actor;Acuff;FILE;Acuna;fullz;MMXXII;6y8dghklp; SHTORM;NURRI;GHOST;FF6 OM6;MNX;BACKJOHN;(
Blocklist (IDX STARS;faust;unknown;STEEL;worry;WIN;duck;fopra;unique;acute;adage;make;Adair; MLF;magic;Adame;banhu;banjo;Banks;Be

0x7)

The same holds true for other samples found since 2020. The differences in code start to appear when we compare the 8Base sample with
Phobos variants created in 2019. We analyzed the sample fc4b14250db7{66107820ecc56026e6be3e8e0eb2d428719156¢f1c53ae139c6 first
seen in VirusTotal in August 2019. The current 8Base sample shares 89.6% of its code with the 2019 sample, according to our analysis.

There are several functions present in the current 8Base sample that did not exist in 2019:

List of functions present in 8Base sample but not in

the 2019 sample.

Address Name Type /
B04625F3 mal_ParseSuppoFile Normal
8848271B mal_CheckIfSuppoFileExists MNormal
B84828CA mal_InitDebugMsg Normal
88482946 R_mal_GeneratePOSTUrlFromConfig Normal
00403020 mal_CheckFileExtension Normal
808483585 str_strlenW Normal
88483772 mal_CreateDebuglLogFile Normal
00483848 mal_WriteTolLog MNormal
B84838DA mal_WriteDebugMsg Normal
68483948 mal_WriteDebugHeaderMsg Normal
B884863CBD R_mal_HttpPostRequest Normal
ae483DCe mal_AdjustTokenPrivileges Normal
08485828 mal_GetAppBaseFolderName MNormal
00405BF7 mal_CheckIfPathIsUNC Normal
004092B4 str_strcat Normal
oe4eA084 LookupPrivilegeValueW Imported
BB46AB1C AdjustTokenPrivileges Imported
Be48A878 SetFilePointer Imported
B848AB9C MultiByteToWideChar Imported
BB46ABCSE AllocConsole Imported
ge48A8D8 WideCharToMultiByte Imported
oe48A8D4 WriteConsoleW Imported
Be48ABDE GetStdHandle Imported
ge48A17C WinHttpReceiveResponse Imported
Be48A188 WinHttpOpenRequest Imported
Be48A184 WinHttpConnect Imported
0848A188 WinHttpCloseHandle Imported

There is now support for debug files and infection report capabilities, which are not present in the old samples. This implies these features
were added to Phobos source code at some point in 2019 or 2020, likely the last time the Phobos source code was updated.

Another sample that caught our attention was first described by Malwarebytes in 2019. The sample,
a91491f45b851a07f91ba5a200967921bf796d38677786deb1a4a8fe5ddeafd2, was first observed in the wild in May 2019. This sample is
considerably different from other samples from the same time frame, only sharing 47.2% of their code.

11/13

https://www.malwarebytes.com/blog/news/2019/07/a-deep-dive-into-phobos-ransomware

Basic Blocks 47.2% Jumps 28.2% Instructions -326.5% Similarity 0.52

120

/——@ — —— g 100
[l 4 R
= 8base sample compared to 2019 sample from
&5 -
0
DNUAH LA D o
VOV TIITOVTAONY
Malwarebytes blog.

The main difference we observed in this sample is the usage of Windows Crypto APl instead of the custom cryptographic code from recent
samples. Looking at the functions present in the 2019 sample, we can see the Crypto API imported by this sample:

BB4BABEC RtlUnwind Thunk
BB4BEBBS CryptDestroyKey Imported
684BEB6C CryptEncrypt Imported
6B84BEB18 CryptImportKey Imported
684086814 CryptGenRandom Imported
BB4BEB18 CryptSetKeyParam Imported
884BEB1C CryptAcquireContextW Imported
004880ED IsbebuggerPresent mported) ;¢ of imported functions from 2019 sample analyzed by Malwarebytes.
B8B48BBEC TerminateThread Imported
BB4BEBFB HeapSize Imported
884688188 LoadLibraryW Imported
884881180 __imp_RtlUnwind Imported
B8848B118 UnhandledExceptionFilter Imported
B8848B11C GetSystemTimeAsFileTime Imported
884688138 GetCommandLineA Imported
884088134 HeapSetInformation Imported

We observed these APIs being used in some critical functions throughout the code. The code block below is related to the
encryption/decryption function in 8Base, which uses the custom cryptographic library, versus the code in the 2019 sample which uses
Windows Crypto API

0804086432 AES_Encrypt sub_86483FBD 6084083FBD
primary secondary
00406432 AES_Encrypt 00403FED sub_00403FED
00406432 push ss:lesprbuffer2] /7 AES_Encrypt 00403FED push eb
@88403FBE mov ebp, esp
06486436 push ssi[esprbuffer1) /1 buffer1 88483FCE push
8486434 push b1 1 /f flag CryptDecrypt 8463FC1 push esi /1 size
08486430 push ss:[esprkey] 1F key 8463FC2 push ss:[ebpesre] /1 sre
B8403FC5 mov ss:[ebprpdwDatalen], esi
80403FC8 push ss:[ebp+pbbata] I void
00406440 call AES_CryptDecrypt B0403FCB call _memc|
00406445 add esp, b1 Bx18 80403FD8 add esp, bl exC
00406448 neq eax
00406444 sbb eax, eax

0948644C inc eax
89486440 retn

80403FD3 push ss:[ebprpdwbatalen] /1 dwBufLen
80463FD6 lea eax, ss:[ebppdwDatalen]

80403FD9 push eax /1 pdwbDatalen
oo e S B File encryption function comparison between 8Base
B0403FDD xor X
@0403FE2 mov eax, ssi[ebptarg_e]
@88483FES push ds:[eax /1 hKey
80463FE7 call ds:[CryptEncrypt] /1 CryptEncrypt
B0483FED test eax, eax
B0403FEF bE3 Bx403FFB
T T
| ‘\\\
v Y
00403FBD sub_00403FBD 00403FBD sub_00403FBD

BB403FF1 xor eax, eax BB403FFB xor eax, eax
08403FF3 cnp ss: [ebp+pdwDataLen], esi 0B403FFD Leave
BB403FF6 setz b1 al BB4B3FFE retn
BO403FF9 leave
BB403FFA retn

and old 2019 Phobos sample.
There are similar differences in the function used to decrypt the configuration file, which behaves in a related fashion but using different
cryptographic APls.

These changes observed in early samples support the assumption that Phobos went through a development phase in 2019 but has remained
unchanged since then.

In our second post titled "Understanding the Phobos affiliate structure and activity ", we will have additional information on the data we found
in the blocklist extensions and how this is mapped to different actor groups, as well as the behavior of such groups once they get into a
victim’s network.

Coverage

Cisco Secure Endpoint 5 g Cisco Secure Firewall/Secure IPS
(AMP for Endpoints) (Al G S EE (Network Security)

v N/A N/A N/A

Cisco Secure Malware Analytics
(Threat Grid)

Cisco Secure Web Appliance

Cisco Umbrella DNS Security Cisco Umbrella SIG (Web Security Appliance)

v N/A N/A N/A

12/13

https://blog.talosintelligence.com/understanding-the-phobos-affiliate-structure

Cisco Secure Endpoint (formerly AMP for Endpoints) is ideally suited to prevent the execution of the malware detailed in this post. Try Secure
Endpoint for free here.

Cisco Secure Web Appliance web scanning prevents access to malicious websites and detects malware used in these attacks.

Cisco Secure Email (formerly Cisco Email Security) can block malicious emails sent by threat actors as part of their campaign. You can try
Secure Email for free here.

Cisco Secure Firewall (formerly Next-Generation Firewall and Firepower NGFW) appliances such as Threat Defense Virtual, Adaptive
Security Appliance and Meraki MX can detect malicious activity associated with this threat.

Cisco Secure Malware Analytics (Threat Grid) identifies malicious binaries and builds protection into all Cisco Secure products.

Umbrella, Cisco's secure internet gateway (SIG), blocks users from connecting to malicious domains, IPs, and URLs, whether users are on or
off the corporate network. Sign up for a free trial of Umbrella here.

Cisco Secure Web Appliance (formerly Web Security Appliance) automatically blocks potentially dangerous sites and tests suspicious sites
before users access them.

Additional protections with context to your specific environment and threat data are available from the Firewall Management Center.

Cisco Duo provides multi-factor authentication for users to ensure only those authorized are accessing your network.
ClamAV detections are available for this threat:

Win.Packed.Zusy
Win.Ransomware.8base
Win.Downloader.Generic
Win.Ransomware.Ulise

I0Cs

Indicators of Compromise associated with this threat can be found here.

13/13

https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html
https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/free-trial.html?utm_medium=web-referral?utm_source=cisco&utm_campaign=amp-free-trial&utm_term=pgm-talos-trial&utm_content=amp-free-trial
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security/index.html
https://www.cisco.com/c/en/us/products/security/cloud-mailbox-defense?utm_medium=web-referral&utm_source=cisco&utm_campaign=cmd-free-trial-request&utm_term=pgm-talos-trial
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/collateral/security/firepower-ngfw-virtual/datasheet-c78-742858.html
https://www.cisco.com/c/en/us/products/security/adaptive-security-appliance-asa-software/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/products/security/threat-grid/index.html
https://umbrella.cisco.com/
https://signup.umbrella.com/?utm_medium=web-referral?utm_source=cisco&utm_campaign=umbrella-free-trial&utm_term=pgm-talos-trial&utm_content=automated-free-trial
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firepower-management-center/index.html
https://signup.duo.com/?utm_source=talos&utm_medium=referral&utm_campaign=duo-free-trial
https://github.com/Cisco-Talos/IOCs/tree/main/2023/11/deep-dive-into-phobos-ransomware.txt

