
1/6

Shayan Ahmed Khan April 20, 2024

Decrypting the Mystery of MedusaLocker
medium.com/@shaddy43/decrypting-the-mystery-of-medusalocker-7128795cf9f0

Shayan Ahmed Khan

--

In this analysis, I will not cover the stage1 and stage2 of MedusaLocker which includes initial
access using a maldoc and execution using a batch script that further calls a powershell to
initiate the attack. I will analyze the Ransomware executable only which is the stage3 of
MedusaLocker.

The MedusaLocker ransomware executable covers most of the MITRE ATT&CK tactics. The
MITRE mapping provided by a sandbox of public report is given below:

This variant of MedusaLocker ransomware has a large number of steps in its execution. It
follows a number of techniques from initial access to impact that we are going to explore one
by one below:

Mutex

https://medium.com/@shaddy43/decrypting-the-mystery-of-medusalocker-7128795cf9f0
https://medium.com/@shaddy43?source=post_page-----7128795cf9f0--------------------------------
https://medium.com/@shaddy43?source=post_page-----7128795cf9f0--------------------------------


2/6

Let’s start with one of the most common techniques used by ransomware which is creating a
unique mutex to avoid running multiple instances of same malware. This is especially helpful
in case of the ransomware that have worm like capabilities and can propagate and infect
other systems. It is also helpful in case of a persistent malware that automatically starts
execution if a time or an event has been triggered.

Check Mutex

Above code is disassembled from a stripped MedusaLocker ransomware executable. First
function is a simple log subroutine that says “[Locker] Is running”. Second function is the
string format function called to format the unique mutex and then it is passed to the 3rd
function which Creates the mutex.

Privilege Escalation

Before any critical operation, MedusaLocker tries to escalate privileges on the local system.
It does so by abusing COM objects to bypass UAC (User Account Control) which is a built-in
security measure. There is a known UAC bypass of CMSTPLUA COM interface.

Privilege Escalation by abusing COM objects

This code above is escalating privileges using CMSTPLUA COM object interface. These
CLSIDs are referring to wshell exec object that is used to execute the command provided in
the screenshot above. Since this is a stripped binary therefore the functions don’t make
much sense. However, if i rename the functions and parameters then it would be much
easier to understand as in screenshot provided below:

Reformed Privilege Escalation Code

I have just extracted a TTP from real world malware. The next step is to emulate this
procedure by recreating these malicious behaviors. Here for example, the behavior is
mapped as a TTP like:

1. 
2. 
3. 

Defacement

One unique characteristic by MedusaLocker ransomware is that it adds a marker registry key
that shows that a particular system has been infected by MedusaLocker. The purpose of this
procedure is not known but it looks like a defacement strategy or just leaving a mark in the
system. Harmful or not, it’s an important behavior followed by a very dangerous ransomware.

MedusaLocker marker



3/6

The path for registry key is “HKEY_CURRENT_USER\SOFTWARE\MDSLK\Self”. The
abbreviation of MDSLK might be MedusaLocker. This tactic is mapped on MITRE as:

1. 
2. 
3. 

Persistence

MedusaLocker uses a different way of achieving persistence. It uses official Microsoft
Documented Code for achieving persistence by scheduling a task with repetition of 15
minutes indefinitely. Typically, malware uses either at.exe or schtasks.exe which are official
Microsoft apps for scheduling tasks, but in this case the malware scheduled task
programmatically in c++ using official code from MSDN page of Microsoft.

Persistence using task scheduling

The malware creates a copy of itself with the name of “svhost.exe” in %APPDATA% of the
system and registers itself in task scheduler to be executed after every 15 minutes
indefinitely. Here comes the use of mutex, when its executed again, it first checks if another
instance is already running in the system. If it does, then malware exits and let the previous
instance continue. The MITRE mapping for this behavior would be:

1. 
2. 
3. 

Defense Evasion

There are multiple defense evasion techniques used by the malware, one of which is to
disable UAC (User Account Control) altogether. Since malware achieved elevated privileges
using CMSTPLUA bypass. Now it can make critical changes to the system, one of which is
to disable the UAC. It does so by changing registry values as shown in the code below:

Disable UAC

It sets the value of “EnableLUA” to 0, which means the administrator prompt will not be
shown and everything would be executed with elevated privileges. The author of this
malware tried another extra step to disable UAC by setting the value of
“ConsentPromptBehaviorAdmin” to 0 as well. By any chance, if the first didn’t work then
the second technique would make sure that UAC is disabled but it would only work after
system restart. Their MITRE behavioral mapping is as follow:

1. 



4/6

2. 
3. 

Service Stop

Another highly critical impact this malware has is that it stops and deletes a set of pre-
defined services and processes to avoid any interruption for its encryption process. These
sets of services can be found in simple static analysis of strings from the binary.

List of services to stop

Image above shows all the services and processes that it tries to enumerate and kills them
off. It uses Windows Service Control Manager APIs to interact with services to stop and even
delete the services. For processes, it uses famous process enumerator APIs
“CreateToolhelp32Snapshot, Process32First and Process32Next”. MITRE mapping for this
behavior is given below:

1. 
2. 

Inhibit System Recovery

Like most of the ransomware, MedusaLocker also tries to delete ways of recovering data
from the victim system. However, unlike most ransomware, it does so by deleting multiple
recovery options instead of just deleting shadow copies. It uses both vssadmin and
wbadmin to delete shadow copies from the system. It also deletes other recovery options
using bcdedit.exe to prevent the system from being rebooted into the recovery mode. As an
additional step, it also empties the recycle bin just to make sure.

Deleting recovery options

Every single command listed above is executed by CreateProcessW API, which takes the
first whitespace as an indicator for process name and rest as an argument to that process.
Highlighted sub-routine named sub_41E9A0 creates these processes as follows:

Create process for deleting recovery files

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. 
2. 

Encryption



5/6

Like most of the ransomware, MedusaLocker also uses symmetric encryption for fast
processing. It uses AES-256 for encrypting all files on the system. However, it uses a
combination of both RSA and AES in the malware process. The encryption key is encrypted
with the pre-defined public key embedded into the malware which could only be decrypted
with the attacker’s private key. The malware authors wrote code in such a way that every file
is encrypted with random generated AES key which is in turn encrypted using RSA public
key and saved on the system along with multiple ransom notes.

Encryption Routine

In the above screenshot, it can be seen that the a base64 encoded public key has been
embedded into the malware. I have extracted the strings from the malware using floss utility.
The base64 encoded key is then converted to binary format using “CryptStringToBinaryA”
API for use in cryptographic functions. Finally, the symmetric key is generated using
“CryptGenKey” API which is encrypted with public key and saved in the html ransom note.
After that the encryptor is started which establishes important folders and extensions to skip
during encryption as shown in the extracted strings just below the public key.

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. 
2. 

To recreate this test-case, I can write a c++ code that starts an asynchronous thread for
encryptor function that constantly searches and encrypts the files. Meanwhile, also saving
the ransom html note that includes encrypted symmetric key in it.

Discovery and Lateral Movement

The malware possesses a networking module that enables it to establish connections to
remote systems within the local network and scan for SMB shares. The initial step involves
sending an ICMP “Ping” to each system in a sequential order and verifying if a response is
received. After that, the malware will proceed to examine the system for any open SMB
shares, excluding shares with a “$” in their name, which indicates hidden shares. The
malware will then accumulate the remaining shares in a list, which will be encrypted at a later
stage.

Ping systems

The MITRE mapping for this malware behavior can be mapped on the Impact as follows:

1. 
2. 
3. 



6/6

I have covered most of the major attack paths or malicious behaviors from MedusaLocker
ransomware. In the next part of this report, I will discuss how to emulate these behaviors for
thorough security testing and reporting.

Behavior Emulation

We call every phase of attack cycle as a malicious behavior and every behavior is mapped
on one MITRE tactic, technique, or sub-technique. Since, I have extracted all the major
behaviors from MedusaLocker Ransomware therefore, the next step is to recreate these
behaviors in safe exploitation manner for complete APT emulation. I use a combination of
techniques to recreate these behaviors, like tracing API calls used by malware or coding the
exact way the malware has achieved a certain behavior or contacting the same malicious
urls as used by the malware. I have also incorporated chatGPT in this behavior recreation
phase, I analyze the malware, understand its practices and APIs used by malware and
recreate those behaviors using chatGPT.

For example, I am going to recreate the behavior of Impact tactic with Inhibit System
Recovery as the technique. The behavior used by malware is to execute a number of
commands from an array using CreateProcessW to delete shadow copies and other
recovery options from the system. I queried chatGPT with the commands to be executed and
the API by which they must be executed and as a result it recreated the whole behavior
itself.

Behavior recreation with ChatGPT

As can be seen in the screenshot above, chatGPT recreated fairly similar code to what we
saw in the binary during our reverse engineering of the malware sample. I can recreate most
of the behaviors with little tweaking using this methodology.

Once all the behaviors have been recreated, we then launch all behaviors in a sequential
manner and then evaluate where a security control is weak against a particular APT
campaign or attack path. This methodology of dividing and testing against individual
behaviors provides us in-depth analysis of security controls and their weaknesses. One
problem with running exploit as a whole is that we do not know on what basis the security
control or system policies have been able to detect and quarantine the malware. Hence, the
mitigation could not be accurate.

Check out my Github Repo of Malware Analysis Series!!!

Sample hash: 26af2222204fca27c0fdabf9eefbfdb638a8a9322b297119f85cce3c708090f0

https://github.com/shaddy43/MalwareAnalysisSeries/tree/main/MedusaLocker

