
1/14

2023年11月1日

New DarkGate Variant Uses a New Loading Approach
netskope.com/jp/blog/new-darkgate-variant-uses-a-new-loading-approach

Nov 01 2023

Summary

In the past month, the Netskope Threat Labs team observed a considerable increase of
SharePoint usage to deliver malware caused by an attack campaign abusing Microsoft
Teams and SharePoint to deliver a malware named DarkGate.

DarkGate (also known as MehCrypter) is a malware that was first reported by enSilo (now
Fortinet) in 2018 and has been used in multiple campaigns in the past months. Since its
recent update announcement in an underground forum, several campaigns have been
conducted to deliver the malware using different methods, such as phishing and SEO
poisoning.

DarkGate appeals to many attackers because of its broad feature set, which includes HVNC,
keylogging, information stealing, and downloading and executing other payloads. DarkGate
can be used as a starting point for bigger attacks, including Ransomware infections.

Netskope Threat Labs recently identified a new DarkGate variant delivered via MSI using a
loading approach based on Cobalt Strike Beacon’s default shellcode stub. Correlating the
analyzed samples with findings from other researchers, we could determine that this is part
of a new version of the DarkGate malware. Let’s take a closer look:

Infection analysis

The infection starts via a fake invoice email delivering a PDF document to the victim. The
PDF file contains a DocuSign template that is used as an attempt to lure the user to open a
document to be reviewed:

https://www.netskope.com/jp/blog/new-darkgate-variant-uses-a-new-loading-approach
https://www.netskope.com/jp/blog/netskope-threat-labs-stats-for-september-2023
https://www.truesec.com/hub/blog/darkgate-loader-delivered-via-teams
https://malpedia.caad.fkie.fraunhofer.de/details/win.darkgate
https://decoded.avast.io/janrubin/complex-obfuscation-meh/
https://www.fortinet.com/blog/threat-research/enter-the-darkgate-new-cryptocurrency-mining-and-ransomware-campaign
https://www.zerofox.com/blog/the-underground-economist-volume-3-issue-12/
https://0xtoxin.github.io/threat%20breakdown/DarkGate-Camapign-Analysis/
https://www.malwarebytes.com/blog/threat-intelligence/2023/08/darkgate-reloaded-via-malvertising-campaigns
https://twitter.com/TheDFIRReport/status/1693599745049022727
https://www.malware-traffic-analysis.net/2023/10/25/index.html


2/14

Example of the malicious document sent to the victim
Once the user clicks on the fake document a CAB file is downloaded. The CAB file contains
an internet shortcut that once executed downloads an MSI file to the infected machine:



3/14

Internet shortcut leading to the MSI download
Once the user executes the MSI file a whole chain of loading mechanisms starts using the
files presented in another CAB file inside the MSI:

CAB file content

Stage 1 – DLL Side-Loading

The chain starts via the execution of the windbg.exe binary present in the CAB file. The DLL
side-loading technique is used here in order to execute a fake version of the dbgeng.dll DLL
file. Since windbg.exe imports functions from dbgeng.dll, this DLL will be included in its

https://attack.mitre.org/techniques/T1574/002/


4/14

import table, causing the Windows loader to map the DLL into windbg.exe’s address space
and then execute the DllMain function:

View of Windbg.exe dependencies in the Import Table using DIE
The dbgeng.dll is written in the Delphi programming language and has the internal name of
SideLoader.dll, a common name observed in several DarkGate DLLs. It also contains export
functions required for different binaries, such as windbg.exe and KeyScramblerLogon.exe,
which was also observed being abused to side-load malicious DLLs. 

In the KeyScramblerLogon.exe case, the side-loaded DLL is named KeyScramblerIE.dll and
that is also written in Delphi. The loading methods and decoding algorithm are slightly
different from the version presented in this blog, which abuses the WinDbg binary.

General overview and Export Table view from the fake dbgeng.dll
Upon execution of its DllMain function dbgeng.dll reads the content of a file named data.bin,
present in the same directory, and decodes it using a custom base64 approach using the
“zLAxuU0kQKf3sWE7ePRO2imyg9GSpVoYC6rhlX48ZHnvjJDBNFtMd1I5acwbqT+=”
alphabet. This approach is the same used in other variants of DarkGate.

The decoded content results in a PE file (also written in Delphi) with a shellcode at the end of
the file. The execution flow will then be redirected to the base address (first byte of the DOS
header) of the decoded file.

https://twitter.com/0xToxin/status/1711366118353305738
https://twitter.com/crep1x/status/1716853977709490295
https://securelist.com/emotet-darkgate-lokibot-crimeware-report/110286/


5/14

The DOS Header bytes of this file contains a tiny snippet that is responsible for calculating
the base address of the current decoded file, adding the RVA of the decoded shellcode to the
base address and then calling it via a “call eax” instruction:

Example of the execution being redirected to the decoded file DOS Header using x64dbg



6/14

Call to the decoded shellcode entry
The technique employed here is very similar to the Cobalt Strike Beacon’s default shellcode
stub, which is usually employed to call the Beacon’s ReflectiveLoader export function.

The called shellcode then prepares the file to be executed performing actions such as
resolving its Import Address Table. The LoadLibraryA and GetProcAddress Windows API
functions are resolved by hash using the CRC32 algorithm and then used to resolve the IAT.

The execution flow is then transferred to the stage 2 entry point:

https://securityintelligence.com/x-force/defining-cobalt-strike-reflective-loader/


7/14

Stage 2 file entrypoint

Stage 2 – Another Delphi loader

The actions performed by this stage is very similar to the first one. The difference here is that
the file read and decoded is the data2.bin file. Also, instead of being decoded all at once the
malware first tries to find the occurrence of the “splitres” string in the file and then splits it in
two parts. After the malware obtains the two parts it decodes both using the same custom
base64 approach.

The first decoded part results in the AutoIt.exe binary and the second part is an AutoIt script
that will be named script.au3. The use of AutoIt files is a well-known approach used by
DarkGate actors.

A directory named “tmpa” is created under “C:\”, both files are written to it, and then the
CreateProcessA function is called to execute the AutoIt script using AutoIt.exe:

C:\tmpa directory content



8/14

AutoIt.exe being used to run the script.au3 script

Stage 3 – The AutoIt script

The executed AutoIt script is responsible for constructing a PE file and executing it via the
same DOS header approach. The DOS header shellcode is executed by using a callback
function passed to the EnumWindows API function. 

Once we decode the AutoIt script, we can see the commands responsible for the loading
process are encoded in hexadecimal. The decoded commands were added as comments in
the screenshot below to demonstrate the mentioned actions:

AutoIt script content with the important commands commented
Once the callback function is called, the same loading process occurs and the loader
shellcode transfers the execution to another Delphi binary. The small difference in this case
is that instead of going directly to the DOS header snippet, the callback function first goes to
a kind of gate that would jump to the DOS header:



9/14

DOS Header snippet transferring the execution to the loader shellcode

Stage 4 – Again a Delphi loader

Decoded Delphi file overview



10/14

Stage 4 entrypoint
Like the stage 2 payload, this payload will also look for a specific pattern in a file, but instead
of an external file it searches in the script.au3 script content. It looks for the “AU3!EA06”
string (a known AutoIt script signature).

Usually this signature would be in the beginning of the file but in this case there’s another
occurrence in the file. Once this string is found, the first 8 bytes next to the signature will be
collected and saved for usage later:



11/14

Occurrence of the AutoIt signature followed by a 8 bytes key value
The content next to the saved 8 bytes buffer is read and a multi-byte XOR operation is
performed against it using the buffer as a XOR key. The result of this operation is the
DarkGate final payload:

Multi-byte operation resulting in the final Darkgate payload
During the investigation we observed different XOR keys used for different payloads. The
following is a list of some of the obtained keys:

SHA256 XOR key



12/14

SHA256 XOR key

1fb6b8bed3a67ee4225f852c3d90fd2b629f2541ab431b4bd4d9d9f5bbd2c4b7 vJDAbKIz

567d828dab1022eda84f90592d6d95e331e0f2696e79ed7d86ddc095bb2efdc8

99f25de5cc5614f4efd967db0dae50f20e2acbae9e98920aff3d98638b9ca1f1

de3f49e68c45db2f31d1cc1d10ff09f8cfce302b92a1f5361c8f34c3d78544e5



ELkMtLfA

68952e8c311d1573b62d02c60a189e8c248530d4584eef1c7f0ff5ee20d730ab RmDbBDsf

d4e766f81e567039c44ccca90ef192a7f063c1783224ee4be3e3d7786980e236 xfNwSUCl

5e94aa172460e74293db106a98327778ae2d32c6ce6592857a1ec0c581543572 tCFMLSBD

Exactly like the other stages, the execution flow will be transferred to the decoded file DOS
header which will call the loader shellcode entry, and then the shellcode will call the
DarkGate payload entry point:

DarkGate final payload entrypoint
The following is an example of the configuration extracted from the DarkGate payload:



13/14

DarkGate configuration example

In order to facilitate the final DarkGate payload extraction Netskope Threat Labs created a
script to automate this process.

Netskope Detection

Netskope Threat Protection
Win32.Trojan.TurtleLoader
Win32.Trojan.DarkGate

Netskope Advanced Threat Protection provides proactive coverage against this threat.
Gen.Malware.Detect.By.StHeur indicates a sample that was detected using static
analysis
Gen.Malware.Detect.By.Sandbox indicates a sample that was detected by our
cloud sandbox

Conclusions

Although DarkGate is a threat created years ago it has been very active recently. Several
campaigns involving different delivery and loading methods have been used, as well as new
malware features being added, which requires a lot of action from the security community.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/blob/main/Malware/DarkGate/Scripts/extract_darkgate_payload.py


14/14

Netskope Threat Labs will continue to track how the DarkGate malware evolves and its TTP.

IOCs

All the IOCs related to this campaign, scripts, and the Yara rules can be found in our GitHub
repository.

https://github.com/netskopeoss/NetskopeThreatLabsIOCs/tree/main/Malware/DarkGate

