
1/7

Matthew November 1, 2023

Malware Unpacking With Memory Dumps - Intermediate
Methods (Pe-Sieve, Process Hacker, Hxd and Pe-bear)

embee-research.ghost.io/unpacking-malware-using-process-hacker-and-memory-inspection/

Intermediate
Demonstrating three additional methods for obtaining unpacked malware samples. Using
Process Hacker, Pe-sieve, Hxd and Pe-bear.

In a previous post, we demonstrated a method for unpacking an Asyncrat malware sample
by utilising Process Hacker and Dnspy.

We leveraged Process Hacker to identify a suspicious process, then utilised Dnspy to attach
to the process and enumerate loaded modules. From there we were able to open a
suspicious module from memory, which ultimately obtained the unpacked Asyncrat malware
sample.

In this post, we'll go over some additional methods for obtaining the same unpacked payload.

1. Pe-sieve - Directly obtaining the unpacked payload
2. Process Hacker - Monitoring modules and directly dumping memory
3. Process Hacker + X32dbg - Monitoring threads and obtaining the payload using a

debugger (x32dbg)

https://embee-research.ghost.io/unpacking-malware-using-process-hacker-and-memory-inspection/
https://embee-research.ghost.io/tag/intermediate/
https://embee-research.ghost.io/unpacking-net-malware-with-process-hacker/


2/7

Analysis

We will assume that you have downloaded and unzipped the file from the previous post. You
can also obtain the file here.

SHA256: 05c2195aa671d62b3b47ff42630db25f39453375de9cffa92fc4a67fa5b6493b

We will also assume that you have executed the file inside of a safe virtual machine, which
will result in a running process of aspnet_compiler.exe. (This is the file which the malware
has injected itself into)

Recap of Initial Post

In the initial post, we monitored for the creation of aspnet_compiler.exe using process
hacker.

We then used Process Hacker to view loaded .NET assemblies, which resulted in the
identification of a suspicious vik module, which appeared to have overwritten the original
aspnet_compiler.exe

We then used Dnspy to attach to the suspicious aspnet_compiler.exe process.

This enabled us to view all loaded modules and open the aspnet_compiler.exe file from
memory.

By opening the file from memory, we were able to obtain the Asyncrat sample that had
overwritten the "real copy" of aspnet_compiler.exe

https://embee-research.ghost.io/unpacking-net-malware-with-process-hacker/
https://bazaar.abuse.ch/sample/05c2195aa671d62b3b47ff42630db25f39453375de9cffa92fc4a67fa5b6493b/?ref=embee-research.ghost.io


3/7

With the recap covered, we will now go over some additional methods that could have been
used to obtain the unpacked sample.

These methods work equally as effectively on this particular sample, and also work on
samples that are not based on .NET (and hence where Dnspy would not be able to work).

Obtaining the Unpacked Sample Using Pe-sieve

Pe-sieve is one of the quickest and most effective ways to obtain an unpacked sample.

Pe-sieve works by scanning a running process for any suspicious modules that may have
been injected or overwritten into memory. If a suspicious module has been identified, pe-
sieve will obtain it and save it for you.

Pe-sieve is an extremely effective and easy-to-use tool.

In the previous screenshot, we identified the suspicious process aspnet_compiler.exe, and
we can see that it's process id (pid) is 5876.

https://github.com/hasherezade/pe-sieve?ref=embee-research.ghost.io


4/7

To scan the process and obtain the unpacked payload, we can run pe-sieve and pass the pid
parameter of 5876 (or whichever the pid is in your situation).

To pass the parameter, we can run the command pe-sieve /pid 5876

After running the command, you may see a bunch of text come up on the screen. You can
largely ignore the text and skip straight to the end.

Here we can see the scan summary, indicating that 52 modules were scanned and 1
"implanted PE" was identified.



5/7

A new folder process_5876 will be created from where you ran the command.

Inside this folder contains a series of files that pe-sieve obtained from memory.

One of these files corresponds to aspnet_compiler.exe. Which we previously identified as
potentially being overwritten by malware.



6/7

By opening the 40000.aspnet_compiler.exe inside of Dnspy, we can see the unpacked
payload.

This is the same vik file as identified in the initial post. In this case, we have obtained the
same file by using pe-sieve.

Additional Methods for Analysis - Members Section

If you enjoyed this section, you may enjoy the next two sections which are available for paid
members of the site.



7/7

Becoming a paid member grants you access to all future bonus content. And helps support
the creation of more blogs. You will also get access to a discord server where you can ask
questions and receive guidance and help.

In the next two sections, you can learn how to

Perform a memory dump with Process Hacker
Identify a broken memory dump using a hex editor
Identify and Correct a broken memory dump using pe-bear
Identify a suspicious thread with Process Hacker
Map a thread to a memory region and obtain it using X32dbg.

This post is for paying subscribers only

Subscribe now
Already have an account? Sign in


