Malware Unpacking With Memory Dumps - Intermediate
Methods (Pe-Sieve, Process Hacker, Hxd and Pe-bear)

Matthew November 1, 2023

Intermediate
Demonstrating three additional methods for obtaining unpacked malware samples. Using
Process Hacker, Pe-sieve, Hxd and Pe-bear.

B aspnet_compiler.exe (5876) Properties

General Statistics Performance Threads Token Modules Memory

Name Base address

aspnet_compiler.exe 0x400000 72

apphelp.dil 0x6afb0000 640 kB Application Compa :wcaoes o o 6 41 o2 e & = o0
berypt.dil 0x76df0000 100 kB Windows Cryptogri [ioooe; +
beryptprimitives.dil 0x76c50000 380 kB Windows Cryptogr:

dr.dil 0x74740000 8.28 MB Microsoft .NET Rur co00:

drjit.dll 0x6f2a0000 552 kB Microsoft .NET Rur cosozor

combase.dll 0x75eb0000 2.5MB Microsoft COM for ' 222

aypt32.dil 0x75780000 1 MB Crypto API32

In a previous post, we demonstrated a method for uh'p'a'ckivng an Asyncrat malware sample
by utilising Process Hacker and Dnspy.

We leveraged Process Hacker to identify a suspicious process, then utilised Dnspy to attach
to the process and enumerate loaded modules. From there we were able to open a
suspicious module from memory, which ultimately obtained the unpacked Asyncrat malware
sample.

In this post, we'll go over some additional methods for obtaining the same unpacked payload.

1. Pe-sieve - Directly obtaining the unpacked payload

2. Process Hacker - Monitoring modules and directly dumping memory

3. Process Hacker + X32dbg - Monitoring threads and obtaining the payload using a
debugger (x32dbg)

1/7

https://embee-research.ghost.io/unpacking-malware-using-process-hacker-and-memory-inspection/
https://embee-research.ghost.io/tag/intermediate/
https://embee-research.ghost.io/unpacking-net-malware-with-process-hacker/

Analysis

We will assume that you have downloaded and unzipped the file from the previous post. You
can also obtain the file here.

SHA256: 05¢2195aa671d62b3b47ff42630db25f39453375de9cffa92fc4a67fa5b6493b

We will also assume that you have executed the file inside of a safe virtual machine, which
will result in a running process of aspnet_compiler.exe. (This is the file which the malware
has injected itself into)

v ggjavaw.exe 3236 099 906.07 MB DESKTOP-TLPNIJG\Lenny OpenJDK Platform binary
v [m] decompile.exe 6464 2.31 MB DESKTOP-TLPNIJG\Lenny
B conhost.exe 4052 1.24 MB DESKTOP-TLPNIG\Lenny Console Window Host
[W7] aspnet_compiler.exe 5876 16.4 MB DESKTOP-TLPNIJG\Lenny aspnet_compiler.exe

CPU Usage: 12.52% Physical memory: 4.51 GB (46.18%) Processes: 149

Recap of Initial Post

In the initial post, we monitored for the creation of aspnet_compiler.exe using process
hacker.

We then used Process Hacker to view loaded .NET assemblies, which resulted in the

identification of a suspicious vik module, which appeared to have overwritten the original
aspnet_compiler.exe

[W] aspnet_compiler.exe (5876) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles .NET assemblies NET performance GPU Disk and Network Comment

Structure ID Flags Path
v CLR v4.0.30319.0 7 CONCURRENT_GC, ... "C:\Windows\Microsoft.NET\Framework\v4.0.30319\aspnet_compiler.exe"
v AppDomain: aspnet_compiler.exe 6019864 Default, Executable
System 6223488 Native C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System\v4.0_4.0.0.0__b77a5c561934e089\Syst:
System.Configuration 75914... Native C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Configuration\v4.0_4.0.0.0__b03f5f7f11
System.Core 6259144 Native C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Core\v4.0_4.0.0.0__b77a5c¢561934e089
Cusctom Mool Z5270—habiy C:\Windows\Microsoft.Net\assembly\GAC_MSIL\System.Xml\v4.0_4.0.0.0__b77a5c561934e089\
vik 6204960 C:\Windows\Microsoft. NET\Framework\v4.0.30319\aspnet_compiler.exe
" TO6207"Shared

mscorlib 6157840 DomainNeutral, Native C:\Windows\Microsoft.Net\assembly\GAC_32\mscorlib\v4.0_4.0.0.0__b77a5c561934e089\mscoi

We then used Dnspy to attach to the suspicious aspnet _compiler.exe process.

This enabled us to view all loaded modules and open the aspnet_compiler.exe file from
memory.

By opening the file from memory, we were able to obtain the Asyncrat sample that had
overwritten the "real copy" of aspnet_compiler.exe

2/7

https://embee-research.ghost.io/unpacking-net-malware-with-process-hacker/
https://bazaar.abuse.ch/sample/05c2195aa671d62b3b47ff42630db25f39453375de9cffa92fc4a67fa5b6493b/?ref=embee-research.ghost.io

=l

File Edit View Debug Window Help @ & c#

ly Explc ¥ X System.Runtime (6.0.0.0)

System;

g System.Buffers;
m.CodeDom.Compiler;
m.Collections;
em.Collections.Generic;

tem.Collections.ObjectModel; U B "
) npacked Asyncrat sample after using "Open Module
g System.ComponentModel; "
ystem.Configuration.Assemb3i€s; From Memory
tem.Diagnosticss
tem.DiggnoStics.CodeAnalysis;
fi.Globalization;

fvvvvvvvovvwvowoww »

Process Al v £ Search
Name Optimized Dynamic InMemory Order Version Timestamp
1 4.8.464%.0 built by: NETA8REL1LAST B ¢
TTT4g
Ctrl+C
Ctrl+A

= Go To Module Enter

= Open All Modules

Y=L L AL H =T

2 Open Module from Memory
Show in Memory Window Memory 1 Ctrl+1
v Hexadecimal Display Memory 2 Ctrl+2

Memory 3 Ctrl+3

Total suspicious: 4 ontaining Folder

. Memory 4 Ctrl+4
FLARE Tue 31/10/2023 21:19:54.61 M) Sl
sarc) ov\Dackiop\maluarala yod

With the recap c.overed; we i‘I now go over some additional methods that could have been
used to obtain the unpacked sample.

These methods work equally as effectively on this particular sample, and also work on
samples that are not based on .NET (and hence where Dnspy would not be able to work).

Obtaining the Unpacked Sample Using Pe-sieve

Pe-sieve is one of the quickest and most effective ways to obtain an unpacked sample.

Pe-sieve works by scanning a running process for any suspicious modules that may have
been injected or overwritten into memory. If a suspicious module has been identified, pe-
sieve will obtain it and save it for you.

Pe-sieve is an extremely effective and easy-to-use tool.

In the previous screenshot, we identified the suspicious process aspnet compiler.exe, and
we can see that it's process id (pid) is 5876.

v & javaw.exe 3236 099 906.07 MB DESKTOP-TLPNIJG\Lenny OpenJDK Platform binary
v [B decompile.exe 6464 2.31 MB DESKTOP-TLPNUG\Lenny
B conhost.exe 4052 1.24 MB DESKTOP-TLPNIG\Lenny Console Window Host
[W] aspnet_compiler.exe 5876 16.4 MB DESKTOP-TLPNUG\Lenny aspnet_compiler.exe

CPU Usage: 12.52% Physical memory: 4.51 GB (46.18%) Processes: 149

3/7

https://github.com/hasherezade/pe-sieve?ref=embee-research.ghost.io

To scan the process and obtain the unpacked payload, we can run pe-sieve and pass the pid
parameter of 5876 (or whichever the pid is in your situation).

To pass the parameter, we can run the command pe-sieve /pid 5876

Microsoft Windows [Version 10.0.19045.3324]
(c) Microsoft Corporation. All rights reserved.

FLARE Tue 31/10/2823 21:45:02.17

C:\Users\Lenny\Desktop\malware\async_exe\pesieve>pe-sieve /pid 5876_

After running the command, you may see a bunch of text come up on the screen. You can
largely ignore the text and skip straight to the end.

Here we can see the scan summary, indicating that 52 modules were scanned and 1
"implanted PE" was identified.

47

SUMMARY :

Total scanned:
Skipped:
Hooked:
Replaced:

Hdrs Modified:
IAT Hooks:
Implanted:
Implanted PE:
Implanted shc:
Unreachable files:
Other:

= O 0 = = ® ® = W

0)]

Total suspicious:

FLARE Tue 31/16/2023 21:46:52.70
C:\Users\Lenny\Desktop\malware\async_exe\pesieve>

A new folder process_5876 will be created from where you ran the command.
Inside this folder contains a series of files that pe-sieve obtained from memory.

One of these files corresponds to aspnet_compiler.exe. Which we previously identified as
potentially being overwritten by malware.

5/7

Name Date modified Type

B 76d00000.kernel32.dll 31/10/2023 9:46 PV Application extension 616 KB
[| 76d00000.kernel32.dll.tag : /2023 9 / TAG File 1 KB
B 76e20000.KERNELBASE.dII : 23 / Application extension 2,280 KB
I 762c0000.KERNELBASE.dll.tag 31/ 023 6 PV TAG File 1 KB
CE 400000.aspnet_compiler.exe 31/10 33 / Application 45 KB

B 74740000.clr.dll 31/10/2023 6 PNV Application extension 8,480 KB
B 74740000.clr.dil tag 3 23 9:46 TAG File 1 KB
0] dump_report.json 10/2023 JSON Source File 2 KB

. scan_report.json 31/10/2023 9:46 JSON Source File 3 KB

By opening the 40000.aspnet_compiler.exe inside of Dnspy, we can see the unpacked
payload.

This is the same vik file as identified in the initial post. In this case, we have obtained the
same file by using pe-sieve.

4 (J vik (1.0.0.0)
A

p PE

P o0 Type References
References
Client
Client.Algorithm
Client.Connection
Client.Handle Packet
Client.Helper

Client.Install

MessagePackLib.Mes:

b (I mscorlib (4.0.0

Additional Methods for Analysis - Members Section

If you enjoyed this section, you may enjoy the next two sections which are available for paid
members of the site.

6/7

Becoming a paid member grants you access to all future bonus content. And helps support
the creation of more blogs. You will also get access to a discord server where you can ask
questions and receive guidance and help.

In the next two sections, you can learn how to

e Perform a memory dump with Process Hacker

Identify a broken memory dump using a hex editor

Identify and Correct a broken memory dump using pe-bear
Identify a suspicious thread with Process Hacker

Map a thread to a memory region and obtain it using X32dbg.

This post is for paying subscribers only

Subscribe now
Already have an account? Sign in

7/7

