
1/10

Matthew October 20, 2023

Cobalt Strike Loader Deobfuscation Using CyberChef
and Emulation (.hta files)

embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/

Last updated on 
Nov 8, 2023

In this post. I will demonstrate a process for decoding a simple .hta loader used to load
cobalt strike shellcode. We will perform initial analysis using a text editor, and use CyberChef
to extract embedded shellcode. From here we will validate the shellcode using an emulator
(SpeakEasy) and perform some basic analysis using Ghidra.

Hash: 2c683d112d528b63dfaa7ee0140eebc4960fe4fad6292c9456f2fbb4d2364680

Malware Bazaar Link:

Analysis

Analysis can begin by downloading the zip file into a safe virtual machine and unzipping it
with the password infected

This will reveal a .hta file. A .hta file is essentially an html file with an embedded script. Our
aim is to locate and analyse the embedded script.

Since .hta is a text-based format, we can go straight to opening the file inside of a text editor.

https://embee-research.ghost.io/malware-analysis-decoding-a-simple-hta-loader/
https://gchq.github.io/CyberChef/?ref=embee-research.ghost.io
https://www.sentinelone.com/blog/malicious-input-how-hackers-use-shellcode/?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/2c683d112d528b63dfaa7ee0140eebc4960fe4fad6292c9456f2fbb4d2364680/?ref=embee-research.ghost.io
https://github.com/k4sth4/Malicious-HTA-File?ref=embee-research.ghost.io


2/10

Analysis with a Text Editor

Opening the file inside of a text editor will reveal a small piece of obfuscated code followed
by a large base64 blob.

For the purposes of this blog, we don't need to decode the initial pieces as it's safe to
assume that it just executes a PowerShell command containing the base64 blob.

We can tell this by the presence of a PowerShell command and a broken-up wscript.shell.
Which is commonly used to execute commands from javascript.

Using the theory that the initial script just executes the base64 blob, we can go straight to
decoding the base64.

If the base64 blob does not decode, we can always return to the initial pieces to investigate
further.

Decoding the Base64

We can proceed by highlighting the entire base64 blob and copying it into cyberchef, from
here we can attempt to decode it.

https://stackoverflow.com/questions/201479/what-is-base-64-encoding-used-for?ref=embee-research.ghost.io


3/10

Copying the base64 content into CyberChef, we can see plaintext with null bytes in-between
the characters.

This generally indicates utf-16 encoding, which is very simple to remove with "decode text"
or "remove null bytes"


By adding a "remove null bytes" into the recipe, we can obtain the decoded content which
looks like a PowerShell script.



4/10

The use of "decode text" and "utf-16" would also have worked fine.

Either of these options will result in a decoded powershell script, which we can highlight and
copy into a new text editor window.



5/10

Analysis of The PowerShell Script

With the PowerShell script now placed into a text editor, we can go ahead and scan for
keywords or anything that may indicate where we can go next.

For me, there are two primary things that stand out. That is the large blob of hex bytes in the
middle of the script, as well as numerous references to api's that can be used to allocate
(VirtualAlloc), write (memset) and execute (CreateThread) something in memory.

There are a few small things at the bottom of the script but these aren't as important.
The script sleeps for 60 seconds and appears to attempt to switch to a 64 bit version of
Powershell if the initial script fails.

For now, let's go on the assumption that the hex bytes contain something that is going to be
executed.

Decoding The Hex Bytes Using CyberChef

To analyse the hex bytes, we can copy them out and try to decode them using CyberChef.

We can do that by copying out the following bytes and moving them to CyberChef.

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc?ref=embee-research.ghost.io
https://www.tutorialspoint.com/c_standard_library/c_function_memset.htm?ref=embee-research.ghost.io
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread?ref=embee-research.ghost.io


6/10

Once copied, the bytes can be decoded with a simple "from hex" operation. In this case the
commas , and 0x were automatically recognized.

We can also see that the although the content was "decoded", it still doesn't look good. It
looks like a blob of junk that failed to decode.



7/10

Validating ShellCode With CyberChef

At this point, we need to validate our assumption that the decoded content is shellcode. At
first glance it looks like a blob of junk.

One common way is to look for plaintext values (ip's, api names) inside of shellcode,
but this won't help us here. We'll need to do additional analysis

Using CyberChef, we can validate our theory that the content is shellcode by attempting to
disassemble the bytes.

To do this, we need to convert the values to hex and then use the Disassemble x86
operation of CyberChef.

https://www.csnp.org/post/cyberchef-data-decoding-made-easy?ref=embee-research.ghost.io


8/10

Here we can see that the bytes have successfully disassembled, we can primarily tell this
since there are.

no glaring red sections indicating a failed disassembly
CLD - (Clear Direction) - Which is common first command executed by shellcode.

There are some other indicators like an early call operation and a ror 0D operation which
are common to Cobalt Strike shellcode. These are patterns that are strange but become
easily recognizable after you've seen a few shellcode examples.

For now, we can assume with higher confidence that the data is shellcode and do further
validation by attempting to execute it.

At this point you could continue to analyse the disassembled bytes for signs of
something "interesting", but this is generally difficult and requires some familiarity with
x86 instructions. It is often much easier to try and execute the code. Especially for
larger shellcode samples.

Validating ShellCode By Executing Inside an Emulator

To further validate that the data is shellcode and attempt to determine it's functionality, we
can save it to a file and try to run it inside an emulator or debugger.

In this case, I will be using the SpeakEasy tool from FireEye. You can read about SpeakEasy
here and Download it from GitHub

https://c9x.me/x86/html/file_module_x86_id_29.html?ref=embee-research.ghost.io
https://www.mandiant.com/resources/blog/emulation-of-malicious-shellcode-with-speakeasy?ref=embee-research.ghost.io
https://www.mandiant.com/resources/blog/emulation-of-malicious-shellcode-with-speakeasy?ref=embee-research.ghost.io
https://github.com/mandiant/speakeasy?ref=embee-research.ghost.io


9/10

Before running SpeakEasy, we can first download the raw bytes of our suspected shellcode.
(make sure to remove the to hex and disassemble x86 operations)

You can name the file anything you like, I have named it shellcode.bin.

From here, a command prompt can be opened at the SpeakEasy tool executed with the
following commands.

-t - Target file to emulate
-r - Tells SpeakEasy that the file is shellcode
-a x86 - Tells SpeakEasy to assume x86 instructions. (This will almost always be x86
or x64. If either fails, try the other one)

Hitting enter, SpeakEasy is successfully able to emulate the code. Here we can see that
numerous api calls were made in an attempt to download something from
51.79.49[.]174:443



10/10

Conclusion

At this point, it would be safe to assume that the primary purpose of the entire script and
shellcode is to act as a downloader.

At this point, I would investigate connections to that IP address and identify if anything was
successfully downloaded and executed. You could also investigate any recent malware alerts
for Cobalt Strike, or perform some hunting on the initial execution of .hta (mshta.exe parent
process) to powershell.exe (child process).

https://www.mandiant.com/resources/blog/defining-cobalt-strike-components?ref=embee-research.ghost.io

