Ghidra Tutorial - Using Entropy To Locate a Cobalt Strike
Decryption Function

. embee-research.ghost.io/ghidra-entropy-analysis-locating-decryption-functions/

Matthew October 18, 2023

Last updated on Oct 18, 2023

Lots of bitwise operators (>> / shr) and
(*/ xor).

A strong indicator that this function is

doing some Kind of
Encryption/Decryption.

Usig Ghidra to analyse malware can be a difficult and daunting task. This task is often
complicated through the use of encryption and the general complexity of using Ghidra for the
first time.

In this blog, | will demonstrate a simple workflow that you can use to speed up this process.

By using the entropy view within Ghidra, you can quickly hone in on functions related to
encryption, and use this to identify areas that you can analyse in a debugger or develop into
Yara rules.

In this short blog, | will be using the sample
480c5f297ec7d30d21449ab950f6dd3cdfeb78c591b5e3450c2d6027f8be2e72

Link to File Here

1/11

https://embee-research.ghost.io/ghidra-entropy-analysis-locating-decryption-functions/
https://ghidra-sre.org/?ref=embee-research.ghost.io
https://twitter.com/embee_research/status/1592067841154756610?ref=embee-research.ghost.io
https://bazaar.abuse.ch/sample/cfaecfea53a947e1d3f1e56aa7f62b2507e1b785df789ddb5619f025f8dd954a/?ref=embee-research.ghost.io

Initial Analysis

The initial file I'll be using is a 64-bit dll file that was initially marked as cobalt strike.

Detect It Easy v3.01 - O X

File name

C:\Users\Lenny\Desktop\malware\Cobalt\480c5f297ec7d30d21449ab950f6dd3cdfeb78c591b5e3450c2d6027f8be2e72

File type Entry point Base address MIME

PE64 000000018001c33c > Disasm 0000000180000000 Memory map —
as
PE Export Import Overlay it

Sections TimeDateStamp SizeOfImage

Entropy
0005 > 2021-08-03 05:45:38 00042000

Hex
Scan Endianness Mode Architecture

Detect It Easy(DiE) LE 64 AMD64

compiler Microsoft Visual C/C++(2012 update 4)[-]
linker Microsoft Linker(11.0)[DLL64]

Options

Signatures D Deep scan About

237 msec Exit

During initial analysis, | typically view use the entropy view of Detect-it-easy to identify if
there are any large areas of high entropy, which typically indicates encrypted content. These
areas are something that | tend to hone in on in my next step of analysis.

In this case, there are no indications of high entropy or packing.

2/11

https://github.com/horsicq/Detect-It-Easy?ref=embee-research.ghost.io

m Entropy

Type
PE64

Entropy Bytes
Regions

PE Header
Section(0)[".text']
Section(1)[.rdata’]
Section(2)[".data’]
Section(3)[".pdata’]

Total
5.49924

Status

not packed

Offset
0000000000000000
0000000000000400
000000000002b200
000000000003ac00
000000000003d200

Offset
00000000

Size
0000000000000400
000000000002ae00

000000000000fa00
0000000000002600
0000000000002200

Reload

0004000

Entropy Status
3.03326 not packed
6.34505 not packed
5.72027 not packed
2.65624 not packed
1.28125 not packed

50,000 100,000 150,000 200,000 250,000 300,000 350,000

‘ Save

Close

Since there are no significant sections of high-entropy, | will instead use_Ghidra to hone in
further.

The lack of large high-entropy areas suggests that there are no embedded payloads.
However, there may be smaller areas of high entropy that contain configuration data (c2's,
url's) or otherwise useful information.

We can try and use Ghidra to determine this further.

Cobalt Strike Analysis With Ghidra

After loading the file inside of Ghidra, a screen like this is presented. This is a lot of
information and generally a difficult place to start.

3/11

https://ghidra-sre.org/?ref=embee-research.ghost.io

There are lots of things you can do from here, but for the purpose of this blog | will be honing

=
4.
4 =
4
)
1s
B
i\
ir
|
-
I,J
- 22

in on Entropy, and using the entropy to identify decryption functions that can be used in a
Yara rule.

To achieve this, a few steps need to be taken

Enable the entropy view

Locate any areas of High-entropy (typically indicated by red blobs)

Use the "most recent label" to locate the beginning of high-entropy areas

Observe any cross-references to the start of the high-entropy area (This shows any
function that is acting on the entropy, typically this will be a decryption method)

If a decryption method is found, look for unique instructions that can be used in a Yara
rule.

Additionally - Use a debugger (like x64dbg) to analyse the decryption function.

Enabling the Entropy View in Ghidra

Enabling the entropy view is simple. You can use the top-right box to enable a dropdown
menu that contains the "Show Entropy" setting.

4/11

https://yara.readthedocs.io/en/stable/writingrules.html?ref=embee-research.ghost.io
https://x64dbg.com/?ref=embee-research.ghost.io

ption ~ Search select ools

1 I DU L F
fi&| Listing: cobalt_480.bin Rl L =M S| B X

Enabling the Entropy View

,,,,,,,,,

With the entropy view enabled, a small window shows up that enables yo o view entropy
within the file.

High Entropy Areas are indicated by Red blobs. The red blobs can be clicked to jump
straight to the high-entropy section.

5/11

& Listing: cobalt_480.bin P2 *l 7 Decompile: entry -

X
1
ulonglong entr
R This is the entropy view. You can 7 longlong 1va
I) ' ' hone in on entropy using the red 8 uint uvarz;
sections | .
ir; ?i:’ji:‘ . I “”:-, »
: . i 2| FIL
10V ,dword p RD : :
14| undefined uV
thunk ulonglong fastcall entry(uint param 1, undefin... ’ 7?7 : n‘ff
unction: FUN_18001c343 i . i
=

.

& Listing: cobalt_480.bin X i« Function Graph X Decompile: entry

Locating A Decryption Function With Ghidra

| tend to start with the largest red blob first. Clicking on the larger red blob shows the
following view.

Initially this is just a blob of encrypted bytes. More information can be extracted by jumping to
the beginning of the blob area.

f& Listing: cobalt_480.bin Rk L =M S B~

A&l Listing: cobalt_480.bin X . Function Graph X

To locate the start of the encrypted blob, we can use the "Go To Previous Label" button,
making sure to set the arrow direction to "UP".

Graph Navigation Search Select

BEhb|t . D WL |F

M 5% X \E Lsting: cobalt 430.bin

To identify the start of the encrypted blob. We want to
use the "Label" button with a direction of "UP"

This will jump to the start of the encrypted blob.

This will move the screen to the beginning of the encrypted blob, in this case the beginning
was found at DAT_1800373a0. We can also see that this location is referenced 8 times by the
function FUN_180027a80.

In most cases, this is a very strong indicator that FUN_180027a80 is the function responsible
for decrypting the blob.

7/11

T I D U L |F
X A&/ Listing: cobalt 480.bin Rl L =M = !I -

Cross references

Using "go to previous label”, the beginning
of the encrypted blob has been identified.

This blob is referenced 8 times by
"FUN_180027a80".

1

|7 S| Listing: cobalt 480.bin X zZ. Function Graph X

Clicking on any of the references takes us to the responsible function.

Decompile: FUN_180027a80 - (cobalt_480.bin)

Likely function for decrypting the high
-entropy blob

Scrolling down slightly reveals a significant number of bitwise operators such as XOR » and
SHR >>.

This is generally a strong indicator of an encryption/decryption function.

8/11

2 local 4 a1l 38[0x3); Lots of bitwise operators (>> / shr) and
—{E local 28 = 0x0; (*/ xor).
""" A strong indicator that this function is
doing some kind of
Encryption/Decryption.

At tis point, we can have high confidence that the decryption method has been identified.
There are a few interesting things that can be done here.

o Ask ChatGPT to identify the type of Encryption/Decryption Used
e Try to extract bytes that can be used in a Yara rule
e Use a debugger to obtain the decoded results.

Using ChatGPT to Identify an Encryption Function

To identify the type of decryption/encryption used, | copied out the entire decompiled function
as asked ChatGPT if it could identify it.

To do this, | asked can you identify the type of encryption or decryption used in
this ghidra decompiled code? and then pasted in the entire function.

9/11

+ GPT-4

Can you identify the type of encryption or decryption used in this ghidra decompiled code? | &

undefined8 FUN_180027a80(byte *param_1,int param_2,int param_3,uint *param_4)

{

uint uVart;

ChatGPT suggested that the encryption type was AES. | personally don't know enough about
AES to confirm this, but it's a useful suggestion and probably correct.

At this point you could try to identify the decryption key and write a script to decode the
encoded data using an AES library.

@ The decompiled code you've shared is part of the key expansion process for the AES

(Advanced Encryption Standard) algorithm. The key indicators include:

. The various key lengths checked: 0x10 (128 bits), 0x18 (192 bits), and 0x20 (256 bits) are
standard AES key sizes.

. The use of S-box lookups in the code (referenced by the addresses like “&DAT_180036£a0",
*&DAT_1800373a0", etc.).

. The cyclic shifting and substitution operations.

4. The function “FUN_18002a060 " likely computes the AES key schedule's round constants or
involves some AES-specific transformation (like the SubWord operation followed by an
Rcon addition).

. The generation and expansion of keys, as seen by the loop structures and bitwise

operations.

The code performs key expansion to generate round keys from the initial key, which will be

used in the encryption or decryption process of AES.

Extracting Encryption Bytes For a Yara Rule

With the encryption function identified, you can try to find bytecodes that can be turned into a
Yara rule.

This works best when the malware uses its own unique encryption/decryption function. It
may not be the best here (since the AES usage may not be unique on its own), but it's
something that can work for a lot of malware.

(Here's an example where it worked well for IcedID)

10/11

https://twitter.com/embee_research/status/1592067841154756610?s=20&ref=embee-research.ghost.io

To create a Yara rule, you want to look for blobs that contain at least 2 math/bitwise
operators. (XOR, SHR, SHL etc). From there you can extract bytecodes that can be used for
Yara rules.

Possible target for yara rule.

Extracting Decoded Content With a Debugger

With knowledge of the decryption function and location of encrypted content, you can use a
debugger to set breakpoints and extract information of interest.

To do this, you can either set a software breakpoint on the encryption/decryption function.
Then jump to the end of the function and find the register or location containing decrypted
content.

OR

With knowledge of where the encrypted content is located, you can set a hardware
breakpoint on the location and receive an alert when it is acted on.

Both of these methods will achieve the same result. This is something | may write about in
another blog post.

Conclusion

In this post, we have used Ghidra to identify an encryption function present inside a Cobalt
strike sample. We have identified an area of high entropy and also identified that the
encryption used might be AES.

This information can be leveraged further to identify the decrypted contents via debugger, or
to develop a Yara rule based on bytecodes present in the encryption.

11/11

