
1/11

Disclosing the BLOODALCHEMY backdoor
elastic.co/security-labs/disclosing-the-bloodalchemy-backdoor

Subscribe

Preamble

BLOODALCHEMY is an x86 backdoor written in C and found as shellcode injected into a signed benign process. It was
discovered in our analysis and is part of the REF5961 intrusion set, which you can read about here.

BLOODALCHEMY requires a specific loader to be run because it isn't reflexive (it doesn’t have the capability to load and
execute by itself). Additionally, BLOODALCHEMY isn’t compiled as position independent (when loaded at a different
base address than the preferred one the binary has to be patched to take into account the new “position”).

In our analysis, the signed benign process was previously sideloaded with a malicious DLL. The DLL was missing from
the sample data but was likely the container and the loader of the BLOODALCHEMY shellcode.

We believe from our research that the malware is part of a bigger toolset and is still in active development based on its
current lack of capabilities, enabled debug logging of exceptions, and the existence of test strings used for persistence
service setup.

Key takeaways

BLOODALCHEMY is likely a new backdoor and is still in active development
BLOODALCHEMY abuses a legitimate binary for loading

https://www.elastic.co/security-labs/disclosing-the-bloodalchemy-backdoor
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://www.elastic.co/security-labs/introducing-the-ref5961-intrusion-set

2/11

BLOODALCHEMY has multiple running modes, persistence mechanisms, and communication options

Initial execution

During the initial execution phase, the adversary deployed a benign utility, BrDifxapi.exe, which is vulnerable to DLL
side-loading. When deploying this vulnerable utility the adversary could side-load the unsigned BLOODALCHEMY
loader (BrLogAPI.dll) and inject shellcode into the current process.

Command-line used to execute the BLOODALCHEMY loader

Fake BrLogApi.dll, part of BLOODALCHEMY

toolset, sideloaded by BrDifxapi.exe

BrDifxapi.exe is a binary developed by the Japanese company Brother Industries and the version we observed has a
revoked signature.

BrDifxapi.exe with revoked signature

The legitimate DLL named BrLogApi.dll is an unsigned DLL also by Brother Industries. BLOODALCHEMY uses the
same DLL name.

The legitimate BrLogApi.dll is an unsigned DLL file

https://global.brother/en/gateway

3/11

Code analysis

Data Obfuscation

To hide its strings the BLOODALCHEMY malware uses a classic technique where each string is encrypted, preceded by
a single-byte decryption key, and finally, all concatenated together to form what we call an encrypted blob.

While the strings are not null-terminated, the offset from the beginning of the blob, the string, and the size are passed as
a parameter to the decryption function. Here is the encrypted blob format:

Blob = Key0 :EncryptedString0 + Key1:EncryptedString1 + ... + KeyN:EncryptedStringN

The implementation in Python of the string decryption algorithm is given below:

def decrypt_bytes(encrypted_data: bytes, offset: int, size: int) -> bytes:

 decrypted_size = size - 1

 decrypted_data = bytearray(decrypted_size)

 encrypted_data_ = encrypted_data[offset : offset + size]

 key = encrypted_data_[0]

 i = 0

 while i != decrypted_size:

 decrypted_data[i] = key ^ encrypted_data_[i + 1]

 key = (key + ((key << ((i % 5) + 1)) | (key >> (7 - (i % 5))))) & 0xFF

 i += 1

 return bytes(decrypted_data)

The strings contained in the configuration blob are encrypted using the same scheme, however the ids (or offsets) of
each string are obfuscated; it adds two additional layers of obfuscation that must be resolved. Below, we can resolve
additional obfuscation layers to decrypt strings from the configuration:

def decrypt_configuration_string(id: int) -> bytes:

 return decrypt_bytes(

 *get_configuration_encrypted_string(

 get_configuration_dword(id)))

Each function is given below:

The get_configuration_dword function

def get_configuration_dword(id: int) -> int:

 b = ida_bytes.get_bytes(CONFIGURATION_VA + id, 4)

 return b[0] + (b[1] + (b[2] + (b[3] << 8) << 8) << 8)

The get_configuration_encrypted_strng function

4/11

def get_configuration_encrypted_string(id: int) -> tuple[int, int]:

 ea = CONFIGURATION_VA + id

 v2 = 0

 i = 0

 while i <= 63:

 c = ida_bytes.get_byte(ea)

 v6 = (c & 127) << i

 v2 = (v2 | v6) & 0xFFFFFFFF

 ea += 1

 if c >= 0:

 break

 i += 7

 return ea, v2

Persistence

BLOODALCHEMY maintains persistence by copying itself into its persistence folder with the path suffix
\Test\test.exe,

BLOODALCHEMY folder and binary

name

The root directory of the persistence folder is chosen based on its current privilege level, it can be either:

%ProgramFiles%

%ProgramFiles(x86)%

%Appdata%

%LocalAppData%\Programs

BLOODALCHEMY root persistence folder choice

Persistence is achieved via different methods depending on the configuration:

As a service
As a registry key
As a scheduled task
Using COM interfaces

To identify the persistence mechanisms, we can use the uninstall command to observe the different ways that the
malware removes persistence.

https://learn.microsoft.com/en-us/windows/win32/learnwin32/what-is-a-com-interface-

5/11

As a service named Test.

BLOODALCHEMY deleting previously installed service

As a registry key at CurrentVersion\Run

BLOODALCHEMY

deleting “CurrentVersion\Run” persistence registry key

As a scheduled task, running with SYSTEM privilege via schtask.exe:

b'schtasks.exe /CREATE /SC %s /TN "%s" /TR "\'%s\'" /RU "NT AUTHORITY\\SYSTEM" /Fb'

Using the TaskScheduler::ITaskService COM interface. The intent of this persistence mechanism is currently
unknown.

Instantiation of the ITaskService COM interface

Running modes

The malware has different running modes depending on its configuration:

Within the main or separate process thread
Create a Windows process and inject a shellcode into it
As a service

The malware can either work within the main process thread.

Capability function called within the main function

Or run in a separate thread.

Capability function called in a new thread

Or create a Windows process from a hardcoded list and inject a shellcode passed by parameter to the entry point using
the WriteProcessMemory+QueueUserAPC+ResumeThread method.

Process injection running method

List of target binaries for

process injection

The shellcode is contained in the parameters we call p_interesting_data. This parameter is actually a pointer to a
structure containing both the malware configuration and executable binary data.

https://sevrosecurity.com/2020/04/13/process-injection-part-2-queueuserapc/

6/11

Entrypoint prototype

Provided

shellcode copied in the remote process

Final part of the

process injection procedure

Or install and run itself as a service. In this scenario, the service name and description will be Test and Digital
Imaging System:

Name and description strings used to install the

BLOODALCHEMY service

Also when running as a service and started by the service manager the malware will masquerade itself as stopped by
first setting the service status to “SERVICE_RUNNING” then setting the status to “SERVICE_STOPPED” while in fact
the malware is still running.

BLOODALCHEMY’s service entry point masquerading service status

Communication

The malware communicates using either the HTTP protocol, named pipes, or sockets.

When using the HTTP protocol the malware requests the following URI /Inform/logger/.

URI used to connect to C2

In this scenario, BLOODALCHEMY will try to use any proxy server found in the registry key
SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Internet Settings.

7/11

Host proxy information gathered from registry

We did not uncover any C2 infrastructure with our sample, but the URL could look something like this:
https://malwa[.]re/Inform/logger

When using a named pipe, the name is randomly generated using the current PID as seed.

Random pipe name generation seeded

with current PID

While waiting for a client to connect to this named pipe the malware scans the running processes and checks that its
parent process is still running, this may be to limit access to the named pipe. That said, the malware is not checking that
the pipe client is the correct parent process, only that the parent process is running. This introduces flawed logic in
protecting the named pipe.

Retrieve parent PID

Flawed check for restricting pipe access to parent process

From the malware strings and imports we know that the malware can also operate using TCP/UDP sockets.

Usage of the socket API in one of the implementations of the “communication” interface

8/11

While we haven’t made any conclusions about their usage, we list all the protocols found in the encrypted strings.

DNS://
HTTP://
HTTPS://
MUX://
UDP://
SMB://
SOCKS5://
SOCKS4://
TCP://

For all protocols the data can be encrypted, LZNT1 compressed, and/or Base64-encoded.

Commands

The malware only contains a few commands with actual effects:

Write/overwrite the malware toolset
Launch its malware binary Test.exe
Uninstall and terminate
Gather host information

There are three commands that write (or overwrite) the malware tool set with the received Base64-encoded binary data:

Either the malware binary (Test.exe)
the sideloaded DLL (BrLogAPI.dll)
or the main trusted binary (BrDifxapi.exe)

BLOODALCHEMY tool set overwrite commands

One command that launches the Test.exe binary in the persistence folder.

BLOODALCHEMY command to run the malware

executable binary

The uninstall and terminate itself command will first delete all its files at specific locations then remove any persistence
registry key or scheduled task, then remove installed service and finish by terminating itself.

Command to uninstall and terminate itself

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-xca/94164d22-2928-4417-876e-d193766c4db6

9/11

Uninstall function

One host information gathering command: CPU, OS, display, network, etc.

Information gathering command

Summary

BLOODALCHEMY is a backdoor shellcode containing only original code(no statically linked libraries). This code appears
to be crafted by experienced malware developers.

The backdoor contains modular capabilities based on its configuration. These capabilities include multiple persistence,
C2, and execution mechanisms.

While unconfirmed, the presence of so few effective commands indicates that the malware may be a subfeature of a
larger intrusion set or malware package, still in development, or an extremely focused piece of malware for a specific
tactical usage.

BLOODALCHEMY and MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced
persistent threats used against enterprise networks.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the reason for performing
an action.

Malware prevention capabilities

BLOODALCHEMY

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to identify the BLOODALCHEMY
malware:

https://attack.mitre.org/
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_BloodAlchemy.yar

10/11

BLOODALCHEMY

rule Windows_Trojan_BloodAlchemy_1 {

 meta:

 author = "Elastic Security"

 creation_date = "2023-05-09"

 last_modified = "2023-06-13"

 threat_name = "Windows.Trojan.BloodAlchemy"

 license = "Elastic License v2"

 os = "windows"

 strings:

 $a1 = { 55 8B EC 51 83 65 FC 00 53 56 57 BF 00 20 00 00 57 6A 40 FF 15 }
 $a2 = { 55 8B EC 81 EC 80 00 00 00 53 56 57 33 FF 8D 45 80 6A 64 57 50 89 7D E4 89 7D EC 89 7D F0 89 7D
}

 condition:

 all of them

}

rule Windows_Trojan_BloodAlchemy_2 {

 meta:

 author = "Elastic Security"

 creation_date = "2023-05-09"

 last_modified = "2023-06-13"

 threat_name = "Windows.Trojan.BloodAlchemy"

 license = "Elastic License v2"

 os = "windows"

 strings:

 $a1 = { 55 8B EC 83 EC 54 53 8B 5D 08 56 57 33 FF 89 55 F4 89 4D F0 BE 00 00 00 02 89 7D F8 89 7D FC 85
DB }

 $a2 = { 55 8B EC 83 EC 0C 56 57 33 C0 8D 7D F4 AB 8D 4D F4 AB AB E8 42 10 00 00 8B 7D F4 33 F6 85 FF 74
03 8B 77 08 }

 condition:

 any of them

}

rule Windows_Trojan_BloodAlchemy_3 {

 meta:

 author = "Elastic Security"

 creation_date = "2023-05-10"

 last_modified = "2023-06-13"

 threat_name = "Windows.Trojan.BloodAlchemy"

 license = "Elastic License v2"

 os = "windows"

 strings:

 $a = { 55 8B EC 83 EC 38 53 56 57 8B 75 08 8D 7D F0 33 C0 33 DB AB 89 5D C8 89 5D D0 89 5D D4 AB 89 5D
}

 condition:

 all of them

}

rule Windows_Trojan_BloodAlchemy_4 {

 meta:

 author = "Elastic Security"

 creation_date = "2023-05-10"

 last_modified = "2023-06-13"

 threat_name = "Windows.Trojan.BloodAlchemy"

 license = "Elastic License v2"

 os = "windows"

 strings:

 $a = { 55 8B EC 83 EC 30 53 56 57 33 C0 8D 7D F0 AB 33 DB 68 02 80 00 00 6A 40 89 5D FC AB AB FF 15 28
}

11/11

 condition:

 all of them

}

Observations

All observables are also available for download in both ECS and STIX format in a combined zip bundle.

The following observables were discussed in this research.

Observable Type Name Reference

e14ee3e2ce0010110c409f119d56f6151fdca64e20d902412db46406ed89009a SHA-
256

BrLogAPI.dll BLOODALCHEMY
loader

25268bc07b64d0d1df441eb6f4b40dc44a6af568be0657533088d3bfd2a05455 SHA-
256

NA BLOODALCHEMY
payload

https://github.com/elastic/labs-releases/tree/main/indicators/ref5961

