Loader Galore - TaskLoader at the start of a Pay-per-
Install Infection Chain

inside.harfanglab.io/blog/articles/cyber-threat-intelligence/loader-galore-taskloader-at-the-start-of-a-pay-per-install-
infection-chain/

1/45

https://inside.harfanglab.io/blog/articles/cyber-threat-intelligence/loader-galore-taskloader-at-the-start-of-a-pay-per-install-infection-chain/

2/45

Claudio

Teixeira
CTI Engineer

In June 2023, we’ve observed multiple alerts that seemingly came from different sources. A
quick search through our telemetry allowed us to identify multiple infected machines across
our clients. Although they would sometimes present different behaviour, the initial infection
vector stayed the same.

The servers were still actively delivering the initial payloads in early August in an intermittent
fashion, and some of the malware sill went undetected by anti-virus engines. Even though
there has been evidence of TaskLoader infrastructure and payloads being active as early as
2016, we’ve seen it deliver more recent malware such as the recently observed
CustomerLoader and DotRunpex inector using BYOVD to try and terminate protected
processes.

The overall attack process has similar TTPs as the NullMixer campaign seen in mid-2022
and follows many of the same principles but with different infrastructure and newer malware.

We've taken this opportunity to dig deeper into the distribution of this malware and present
some common malware analysis techniques that can be used to analyze this common threat
and determine its capabilities, as well as providing a reliable source of information and
analysis to allow the wider community to more effectively investigate these threats.

After analysis, we have reason to believe this is part of a PPl (Pay-per-Install) campaign,
which is a kind of Infrastructure-as-a-Service which allows cyber criminals to pay a provider
to launch their malicious software on infected machines.

Table of Contents

Infection Vector

Sitool.exe — Stage 1

Tempexec Delphi Installer — Stage 2

Inetinfo.exe — Stage 3

3/45

https://blog.sekoia.io/customerloader-a-new-malware-distributing-a-wide-variety-of-payloads/
https://research.checkpoint.com/2023/dotrunpex-demystifying-new-virtualized-net-injector-used-in-the-wild/
https://securelist.com/nullmixer-oodles-of-trojans-in-a-single-dropper/107498/

CustomerlLoader

DotRunpeX

LgoogLoader

Fabookie

SmokelLoader

loC Table

Overview

Here is a small schematic to demonstrate the execution flow of the malware.

June 2023 - TaskLoader Killchain

147.251.234.83

Network Request 45.12.253.74
103.233.24.19
85.217.144.228 BYOVD
avkit].Jorg @ Zemana.sys
@ video-box.Jorg @
Contacts IPLogger and Google
Fetch custom-encoded JSON Fetches different malware Analytics —
(Contains URL of next payload) ¢ from hardcoded URLs after launching a payload) l EXE I
— | Customer
Downloads Tempexec Loader DotRunpeX
from JSON URL EXE LgoogLoader
hiapps[.site

— A Y — — Y

— @) , _— , _— SmokeLoader

— [(EXE_|] B8 B [(EXE_|]

Cracked Tempexec launched with inetinfo.exe

Software sitool.exe arguments from JSON. (Stage 3)
Download (stage 1) (Stage 2) — Other Malware

(GCLeaner,
EXE Fabookie...)

Infection Vector

The initial malware came from the crack4windows|[. Jcom website, which offers all kinds of
supposedly pirated software for free. This is a common vector for malware distribution. For
instance, we identified some of the infections came from the download of the TamoGraph
Site survey software, used to measure wireless network signal intensity in a building.

The website also advertises other more common software, but they all distribute the same
malware. It features fake “stars”, a downloads counter, and “thank you” messages written in
different languages to legitimize the activity and lure users into a sense of confidence.

4/45

Search this site...
TamoGraph Site Survey 8.0 Build 271 Crack +

Activator (Updated) Popular Posts

) I F Autodesk Fusion 360 2.0.15299
s & 16274 £ 220MB = Crack Plus License Key
012, Windows 2008 64 bit, Windows 2008,

dows 7 fb FileBot 4.9.6 / 4.8.3 Crack With
! . Activator Latest 2023

& By crackdwindows & TamoSof
dows 10 64 bit, v
8 64 bit, Windo

W 594 K 3.8/5

- AnthemScore 4.16.0 Crack Plus

Keygen
O@ Wb n W R A G| Vevsiaaton: | Sonallenl O] L ! F Cutting Optimization Pro 5.16.7.2
Gy~ A oo B, | Pt suven | rosemes | Optens Crack With Serial Number Latest

Band/ Name Py Add v Delete Floor Manager 2023

sl kia . RaiDrive 2022.6.92 Crack +

[Suevey B/W2013 139606 .. Passi Activation Code Download
¥ Survey WI013 22850 .. Passiv

Recent Posts

= PrimoCache 4.2.0 Crack + Activation

H ",;““(”‘ . Code Updated
-
 fomesln 4 = APOWERRECOVER 1.1.0.8 Crack &
v g Cisco 211n . Serial Number
C5C0% U
g S e = StarUML 5.1.0 Crack Full Version
: f:L'l'?f’.n!‘.. : = Autosofted Auto Keyboard Presser 1.9

1§ TplmkT8021in Acc
] sez11a

Crack + Serial Key Download 2023
= AllPlan 2019 Crack + Serial Key

S 21t

/M@ Cisco 802.11an WL (Updated)
B Cizco-Li B02.11an Ui
BO2.1%ac
@ Chco 82110 Dev v
« > i « »
{ ORMOCO M2.11n S8 | =3 D s |- Zasew 9] T+ | Séaosiig On
e —

Download TamoGraph Site Survey
= [m e

More and more people rely on wireless networks in their own homes, so as to provide
Internet access to all nearby devices, such as smartphones, laptops, tablets and desktop
computers. However, depending on the adapter they use, the signal strength may
decrease and even fall, so users can rely on TamoGraph Site Survey to analyze and
evaluate the status of 802.11 Wi-Fi networks.

In order to make the most of the application, you first need to make sure it has correctly

The download contains a text file with instructions:

TamoGraph Site Survey Crack 8.0 Build 271
Download link: http[:]//free3pc[.]site/download?id=GDtfLsBrxfU&s=C0B24C23
Zip Password: GDtfLsBrxfU_062123

Thee other “file hosting” domains have also been identified at this stage. We noticed that the
password always contains the date of the download. The actual payload is hosted in these
websites, which when accessed, try to pass as legitimate file sharing websites, although they
cannot be used as such or contacted anywhere.

5/45

freelapp.site

Upload files for free, without registration

We don't limit upload or download speeds for pro users, it's as fast as your connection

Simply drag & drop your file into our uploader & get a shareable URL immediately
Upload & share your files immediately, no registration required
We never limit bandwidth or downloads, no matter how popular your file is

Files are encrypted and transferred securely from your browser all the way to our servers

300GE FREE - OVER 2,500TB F 100% SECURE
DOWNLOADS ! OF FILES @ & ANONYMOUS

A full 300GB of free downloads. The biggest database of files, we Our service is 100% anonymous,
Download Movies, Games, Music, have more files than any other absolutely no-one can see what
Software + more! download service! you are downloading!

"Thanks guys! | finally found the file i needed"

Ann, US
Another satisfied user

"It's so simple and easy to use - and it's free!"

Adam, UK
Another satisfied user

EULA | Copyright © 2016-2023

free2app - file sharing and storage made simple

File storage made easy - including powerful features you won't find anywhere else. Whether you're sharing files, photos, videos, audio, or docs, we can simplify your workflow,

v SHARE + COLLABORATE

Share through email, link, or social network. Unlimited ad-supported downloads with no Store and share any file type. Share folders of project files. Easily email large files.
wait times.

v STORE + ACCESS

10GB for free. Up to 50GB free with bonuses. Store all your photos, audio, and videos. Always have your important files with you. Never forget your work at home. View,
manage, and share from anywhere.

As it setups scheduled tasks for persistence, it has been previously dubbed as “TaskLoader”
by other researchers. It also executes a binary called sitool.exe which has the Original
Filename of sihost.exe to blend in with default Windows tools. The day following our initial
investigation, the hash of this particular dropper was different, and it kept being updated
regularly with mitigated differences on its detection rate.

Sitool.exe — Stage 1

Sitool is the first stage of TaskLoader and is quite simple. A quick analysis with DIE shows us
it's an obfuscated .NET binary.

6/45

File name

C:\sers' Jesktop\sitool\e 2dcb80bcf4edbd 1d44adbbeelcd 7a39e 20482963 2fd94c83bba70c3907c52fb. bin

File type Entry paint Base address =

Pea2 0041482 00400000 —
! | | Impart | | Resources | | NET | | 1 | Strings

Sections TimeDateStamp Size0OfImage Resources
0004 2023-04-29 00:53:24 0001cO00 | Manifest || Version |

Entropy

Hex
Scan Endianness Mode Architecture Type

Detect It Easy(DiE) LE 32 1386

protector .MET Reactor(4.8-4.9][-]
library MET(w2.0.50727)[-]
linker Microsoft Linker(6.0)[GUI32, admin]

Entropy

Total Offset

5.90543 00000000

Regions
Size Entropy Status
PE Header 00000400 1.63839 not packed
Section(0)[".text'] 00011400 597287 not packed
Section(1)['.sdata'] 00000400 5.86332 not packed
Section(2)[".rsrc'] D0000eD0 4.84063 not packed
Section(3)[".reloc'] 00000200 0.10473 not packed

%] (W] S (%] = ~J (=]
IIIII|IIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIII

[y

(=]

I L o e e e e e e e e B e e
10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

[
Detect it Easy binary signatures and entropy graph.

Due to how .NET works, we can often decompile it from IL (Intermediate Language) to
something that looks very close to its source code. If you're interested in how .NET works,
there is a great DEFCON talk about .NET malware. The entropy curve shows no significant
areas of entropy, meaning this software is likely not packed or encrypted. Encrypted areas
may show entropy from values ranging anywhere from 7.2 to 7.9.

Here, we simply used the common tool de4dot to deobfuscate the binary. Opening it with

https://media.defcon.org/DEF%20CON%2027/DEF%20CON%2027%20presentations/DEFCON-27-Alexandre-Borges-dotNET-Malware-Threats.pdf

DNSpy, we can read some of its decompiled code. It seems to be a very simple task creator
with primitive anti-analysis functionality. The following images show the main functions used

by this binary.

[] commandLineArgs . s

r cmdHandler = CmdHandler{commandLineArgs) ;

- @
= @;

{cmdHandler[.m_chanParam] !)

L]

1_id = cmdHandler[
{cmdHandler [.m createPara

Qs
Qs
OF

¥

{cmdHandler [

1
y

functin used to create and start scheduled tasks.

8/45

array2. - B > 8 || arrays.

Function to check if analysis processes are running.

The binary retrieves an encoded JSON in text form, which it uses to download a new
payload and execute it from a temporary folder. The domain from which is gets its charge is
different according to each case, although here it comes from the avkit[.]org domain.

9/45

(10808) ;
requestUristring =
t webRequest = He
response = webReq
onseStream = respol
streamReader =
treamReader.

e()s

(text);

"1, text2);

(list[i]-m guid);

Function used to retrieve a payload an creating a Task to run it.
After fuzzing the ID parameters in the domains that were used in the most recent attacks,

we emulated the very simple decoding function which is called “DecryptSimpleString” to be
able to read the JSON contents.

10/45

[1 array

Reverses the string
array? = msg. T
text =

(i = array?.

text += array2[i];
oldValue array

Replace(oldValue, ™");

and removes predefined characters.
Even though we found multiple payloads encoded differently, they all decoded to the same
string at the time of writing:

[{"m_guid" o
<Date>", "m_name":"weblo", "m_fileurl":"http://hiapps[.]site/getmodule", "m_cmdline":"/v
erysilent /n /pro /channel oki","m_log":""}]

With this, we found a new domain from which a payload is being distributed, hiapps[.]site.
The command-line is also unique to this payload and allowed us to better identify this
program.

In the following figure, we can see with the given URL that this website has been delivering
payloads as early as 2017, and some samples that we found on VirusTotal from 2016
already included strings which contacted the avkit[.]org domain.

lllg######20]|]|]|11=
=====a!!t1e]|[[[]|TEE

B
v

WayBackMachine showing archived payload from 2017.

11/45

(D) 30 security vendors and no sandboxes flagged this file as malicious C*Reanalyze == Similar - More ~

30

le7 1233132217d54e63701e4701cBe2cd28c475eedé3707a87050ca2al7a5d1a08d Size Last Analysis Date %“
PingTool.exe 3750 KB 1year ago EXE

peexs assembly

Community Seore

DETECTION DETAILS BEHAVIOR COMMUNITY

Join the VT Community and enjoy additional community insights and crowdsourced detections, plus an APl key to automate checks.

Basic properties ©

MDs f689ba?ef?513c78e7dad7bcf3363a36

SHA-1 becBbb by 16940670638 0ff

SHA-256 1233132217d54e63701e4701cBe2ed28c475eed63707a87050ca2a17a5d1a08d

Vhash 23403665151190a526292050

Authentihash fdabdee049f1b7e92711a0d36ec4207a2981827a21b82b9cad600d02dd5108

Imphash f34d5f2d4577edédPceacs16cif5a744

SSDEEP 768:2n3jKtQGDQNsgi7 UhEJG48yGGc J3LvWPsvLtOV X +y79Q5:y3PGDCgWEaq9svL tOVX+4m5

TLSH T1ECO3D800B7EGA4215F 2BFAF79AD7132450136F9A78912EABEOF91510E1EBEBS1C961BAB

File type Win32EXE executable windows win32 pe peexs

Magic PE32 executable for M$ Windows (GUI) Intel 80386 32-bit Mono/.Net assembly

D Generic CIL Executable (.NET, Mono, etc.) (72.5%) ~ Win64 Executable (generic) (10.4%) Win32 Dynamic Link Library (generic) (6.5%) = Win32 Executable (generic) (4.4%) OS/2 Executable
(generic) (2%)

File size 37.50 KB (38400 bytes)

PEID packer NET executable

History O

Creation Time 2016-04-1716:03:27 UTC
First Submission 2016-04-17 16:44:10 UTC
Last Submission 2017-01-14 23:57:09 UTC
Last Analysis 2021-12-15 09:53:27 UTC

A sample first submitted in 2016.

$ strings -a -el 1233132217d54e63701e4701c8e2cd28c475eed63707a87050ca2al7a5d1a08d.bin
[...]
Software\Mail.Ru\Tech\PartnerLog\Components\Dse
Software\Mail.Ru\Tech\PartnerLog\Components\Vbm
Software\Mail.Ru\Tech

/transfer "down" "{O}" "{1}"

bitsadmin.exe

\location.txt

www.avkit.org

UA-71688099-1

54.171.215.105

Start

[...]

Strings relative to the previous sample showing avkit[.Jorg and Google Container IDs (seen
later) stayed the same.

Tempexec Delphi Installer — Stage 2

Once this charge has been retrieved, it's renamed to a random 18-character name, put in the
Windows Temp folder and executed. For practical purposes we renamed this “Tempexec”.
Here is a command-line example:

C:\Users\user\AppData\Local\Temp\\y7i212t6j1fOttct\slv2r3rd4a7k8k6r3.exe /verysilent
/n /pro /channel oki

12/45

https://www.virustotal.com/gui/file/1233132217d54e63701e4701c8e2cd28c475eed63707a87050ca2a17a5d1a08d/detection

Delphi is a language that evolved from Turbo Pascal for Windows and is often used to make
install wizards.

Delphi is also often a language of choice for malware authors packing their wares. There has
been some discussion on the subject and reports from security vendors such as Mandiant.

One of the install wizards written in Delphi is InnoSetup. It is a program which allows
developers to create installers for Windows. These installers are now often used as a packer
by malware authors since legitimate programs using it are often tagged as malicious by
security software. This is a strategy to make it look like any alerts at this stage are false-
positives. [1], [2]

It is nothing too complex. As we can see in PEStudio, the Overlay section (Which is simply
data that has been appended to a PE), contains the InnoSetup signature. The payload can
be extracted using innoextract, an open-source tool.

E] pestudio 9.43 - Malware Initial Assessment - www.winitor.com [c\users\ \desktop\tempexec.bin]

file settings about

?
= i@l c\users), \desktop'\tempexec.bin property value
A
;i indicators (63) mds5 6C2C2E973BCEFOBTE2BFOTBECEFAI4BE
-n dos-header (64 bytes) shal 30A5865448AB0F461EE23CF423C 1 6BFO262AFECA
b os-headel es,
B dos-stub (:92 byt):s) sha256 EGTODEFDDO41788460EB0286546884D4B3D3E1182F275BIFABAO6EIFSOBCEIRS
- entropy 8.000
file-header (Intel-386) i i
optional-header (GUI) size 447804 (bytes)
L # directories (4) signature nnoSetup
sections (files first-bytes-hex 7A 6C 62 1A 16 E1 E6 15 E0 03 5D 00 26 95 8E 70 00 17 F7 EC 05 BB EA FAFF 0...
= libraries (5) * first-bytes-text zZlbuwnnnn] Blaipanninnnnn /D

L7 functions (43) file-ratio 78.68 %

bl
- :_d resources (unknown)
L -abe strings (size)

-k

.5 manifest (aslnvoker)
.-{18 version (1.0.6.6536)

L "I?,-‘

PEStudio identifying the InnoSetup Overlay.

innoex CC.e --E0Eg . .."..'l_—:"]F_:' .D1N
o o "

3 g - rcion 5.6.0 (unicode)
app\inetinfo.
"app\inetinfo.

racting "Internet Information Service” setup data version 5.6.@ (unicode)
app\inetinfo.
"app\inetinfo.

innoextract tool output.

In some newer versions of this stage, seen in August 2023, very early versions (<1.1.0) of
InnoSetup are used, so innoextract will not be able to extract them. However, we have
failed to see these newer versions exhibit any malicious behaviour or even successfully

13/45

https://0x00sec.org/t/delphi-for-malware/22923
https://www.mandiant.com/resources/blog/increased-use-of-delphi-packer-to-evade-malware-classification
https://stackoverflow.com/questions/24864545/inno-setup-executable-seen-as-a-virus
https://stackoverflow.com/questions/68834409/program-installed-with-inno-setup-seen-as-trojan-wacatac-bml

execute at the time of writing. This makes us believe that this stage of the payload is in
undergoing development.

InnoSetup can be scripted, so according to the process tree, it spawns a second process
that is only used to launch the inetinfo binary with the command-line arguments inherited
from its parent.

Inetinfo.exe — Stage 3

This is where the main functionality of TaskLoader resides. It is again a .NET binary that has
been obfuscated with Reactor. It starts by initializing a class with a dictionary associating
keys to certain payloads.

Objects associated with payloads being put in a dedicated dictionary
The KControl classes have a start Method, which will download and launch a payload
according to their keys through the Providerurl class.

This class also requests iplogger[.]org, which gives the attacker a way to log which IP
addresses have executed a certain payload.

It also checks registry keys corresponding to each payload to know if the malware has
already been installed.

14/45

controlName, fullName,

controlName;
fullName ;
ID;

commandLine)

Payload URL to key assciati n.

15/45

("pac{e}.{1}"

The “pac” payload naming convention.

Interestingly, the RunItems function calls upon method_2 Which will send information such as
the IP and the country where the payload is being run and send it back to a Google
Analytics dashboard. This corroborates that this loader may be part of a Loader-as-a-
Service campaign, as this sort of data being sent to services like iplogger and GAnalytics
are typical methods of Pay-per-Install operations.

16/45

result =

comCont

+ comCont

comControl.

(num

(num

Runltems funtion palod exeution.

17/45

method_3(string_o, s string_1, string_2, i string_3, string_4)

string & = " [) "
string & = .Format{"v=18tid={@}&cid={1}&t-eventiec={2}&ea={31&el={4}", j [1]

string_ @,
string_1,
string_2,
string_3,
string_4
1)
Class6 item = r Class&(string_5, string_6);

(.object_8)

_8.Enqueue(item);

string_4)

requestUristring = W . H
s = -Format("v=1&tid={8}&cid={1}&t-eventfec={2}&ea={3}8el={4}",

string_o,
string_1,
string_2,
string_3,
string 4
i
HttpWebRequest httpWebRequest = (HttpWebRequest)WebRequest. te(requestUriString);
httpWebRequest. = "POST";
httpWebRequest. = CredentialCache.
httpWebRequest. = 38000,
UTF8Encoding utf8Encoding = UTF8Encoding();
yte[] bytes = utf8Encoding.GetB s(s);
httpWebRequest. = "text/html”;
httpWebRequest. = 7)bytes. H
| (Stream requestStream = httpWebRequest.GetRequestStream())
{
requestStream.Write(bytes, 8, bytes. 'H
requestStream.Close();
¥
HttpWebResponse httpWebResponse = (HttpliebResponse)httpWebRequest.GetResponse();

(Exception)

Methods for sending data to GAnalytics.
We we’re able to extract the data of the Google Analytics dashboard in debug mode:

ContainerClass.Ec = "oki";

ContainerClass.Tid = "UA-71688099-1";
ContainerClass.HomeDom = "freesmartsoft[.]com";

The command-line options also included some extra functionality:

intptr 8,] [] byte 8, uint_@, uint_1);

intptr_a)

(intptr @, 4, array, 8U,

(intptr_8, 4, array [um], num,

intptr_8, int_®, [In] [1 byte_a);

intptr_@, rawSecurityDescriptor_8)
[1 array [rawSecurityDescriptor_8
rawSecurityDescriptor 0. {array, @);

{intptr_8, 4, array))

g 0
rawSecurityDescriptor

(currentProcess);
ptor. - (e, (AceFlags

{AceFlags. . AceQualifier. . 2835711, (el 1KnownSidType.
urrentProcess, rawSecurityDescriptor);

The “/pro” command-line option modifies the DACL of the current process to deny rights to
the Everyone group.

(ProcessStartInfo

= "/C choice /C Y /N /DY /T 18 & Del \""
= ProcessWindowStyle.

3

s
= "cmd.exe"
1

(Exception ex)

message = ex.

(ProcessStartInfo

= ProcessWindowStyle.

2

s
= "cmd.exe"
1

(Exception ex2)

message? = exl.

Following execution, the binary auto-deletes.

Payloads

In this section we will go over the different payloads we’ve seen deployed in our telemetry.
This section will serve mostly as a short reference to the malwares we’ve seen and point to
the different references and techniques that aided us in our analysis, providing updates
where we’ve seen changes. It is in no way an exhaustive list of all the payloads TaskLoader
may deliver, as these may evolve over time, but rather show the general intention which is
generally criminal activity used to gain initial access to a network or expand infrastructure.

CustomerLoader

The samples we've seen use more recent versions of DotRunpeX, a .NET injector observed
in the wild by CheckpointResearch in March, 15 2023 and studied again after it regained
popularity by the Sekoia.io analysts in July, 12 2023, who studied the a new loader who also
used it and dubbed it CustomerLoader. We saw the same C2 servers (such as
5[.142[.]94[.]169) that were mentioned in Sekoia’s article.

Ca‘l‘ype.ﬁet new object[]

Name Value Type
returned

CustomerLoader sample calling old CustomerLoader C2 and executing the downloaded
payload.

20/45

https://research.checkpoint.com/2023/dotrunpex-demystifying-new-virtualized-net-injector-used-in-the-wild/
https://blog.sekoia.io/customerloader-a-new-malware-distributing-a-wide-variety-of-payloads/

Ve
(intptr_, . |H

, BU, 122880, &4UY;

recey s

(prociddr

(procAddress, 6U

RastaMouse’s AMSI MemoryPatching, as also seen by the Sekoia.io analysts.
As these have been extensively documented in other articles and as the differences we
encountered are very minor, we won’t be analyzing them further.

DotRunpeX

A lot of the payloads we saw use the DotRunpeX file to inject the malware into processes.
However, upon executing for dynamic analysis, we saw the typical alerts we’'d expect from
this injector, such as the UAC Bypasses documented by Checkpoint Research.

> sigma :'.'! e Cx\Windows), 5y sten3Z\taskkill. exe taskkill /T4 owstp.exe /F -
> 1 driver Recommended driver block list C:\Zemana. sys -
> t hiai L 3l C:\Usersymalware\Desktop\terminator_spyboy.exe C:\Usersi\malware\Desktop\terminator_spyboy.exe -
> sigma : O AR R L T C:\Users\malware\Desktop) terninator_spyboy. exe C:yUsers\naluare\Desktoph terninatar_spyboy.exe -
» Medum sigma I HeylRin " C:\Nindows\MLcrosoft. NET\ Framework6dive 0. 30310'Reghsn. exe C:\Wi ndows \Microsoft. NETVF raneworkG4yvd. 0. 30319'Reghsn. exe -
> sigma AC Bypass Executed wia cmst Cx\Windows\ Sy stendZ\castp. exe c:\windaws\systendZ\cmstp. exe fau C:\windows\temp)dxnb2pu, inf -
> ! s ary €:\Usersmaluare\Desktop\ terminator_spyboy.exe €:\Users\maluare\Desktop\terminatar spyboy.exe -

Various detections from the the payloads execution.

21/45

L——_l[version]

Signaturs=Schicago$

AdvancedINF=2.5

H [DefaultInstall]
CustomDestination=CustInstDestSectionhllUsers
RunPrefSstuplommands=RunPreSetupCommandsSection
I_——_|[RunPreSetupComma.ndsSection]

; Commands Here will be run Before Setup Begins to install
C:\Users\malware\Desktop\terminator_spyboy.exe

taskkill /IM cmstp.exe /F

[CustInstDestSectionAllUsers]
49000,45001=A11U5exr_ LDIDSection, 7

[AllUSer LDIDSection]
"HELM", "SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\CMMGR32.EXE", "ProfileInstallPath", "%UnexpectedErrors", ""

[Strings]

ServiceNams="CorpVEN"
ShortSvcecNams="CorpVPH"

.inf file used with cmstp for UAC Bypass.
This .inf file was copied-pasted from Open-Source_Github projects.

MNow open the inf file in Notepad and scroll down to the RunPreSetupCommandsSection and add

these two lines of code (The first line is the command you want to run elevated):

chwindow
taskkill /1M cms

_ CorpVPM.inf - Notepad

File Edit Format View Help
RunPostSetuplommands=RunPostUnInstCommandsSection

; The following Run(Pre/Post)SetupCommandsSections allow you to run commands before or
; after the profile is installed.

; Similarly the following Run(Pre/Post)UnInstCommandsSections will allow you to run
; commands before or after the profile is uninstalled.

; An example command line is:
3 Myprogram.exe f<switches> <options>

[RunPreSetupCommandsSection]

; Commands Here will be run Before Setup Begins to install
c:\windows\system32\cmd.exe

taskkill /IM cmstp.exe /[F

[RunPostSetupCommandsSection]
;Commands here will be run After setup finishes

You also need to comment out two lines with ;.
Oddvarmoe’s_blogpost on CMSTP UAC bypasses.
The usage of typical tools such as the OldRod Deobfuscator didn’t wield any results,
meaning this is a version that has been modified to bypass common analysis tools. This kind
of obfuscation was previously observed by the Checkpoint Researchers in the
aforementioned article.

22/45

https://oddvar.moe/2017/08/15/research-on-cmstp-exe/
https://oddvar.moe/2017/08/15/research-on-cmstp-exe/
https://github.com/Washi1337/OldRod

While previous articles documented DotRunpeX using the procexp driver, the driver that was
loaded here was the zemana. sys driver. Exploitation of this legitimate driver was a technique
used to terminate EDRs that became popular in May 2023 when an user going by the handle
spyboy advertised a “3000% tool to terminate all AV/EDRSs". It has since then been replicated
in Open-Source projects. The Bring_Your Own Vulnerable Driver (BYOVD) technique is used
to kill protected processes and is now commonly seen in the wild. It can now be considered
general knowledge among adversaries and the usage of this driver by the DotRunpeX
injector is also in accordance to what previous researchers have seen.

all EDR Kkiller tools be like pic.twitter.com/iSyjGZD709

— Florian Roth (@cyb3rops) August 28, 2023

The CERT-PL has recently done an excellent article on extracting the malware embedded in
the resources of the injector, this warranted further research into the payloads so we used
their key dumping tool to continue our analysis.

23/45

https://twitter.com/S0ufi4n3/status/1663059373352943616/
https://github.com/ZeroMemoryEx/Terminator
https://www.sangfor.com/farsight-labs-threat-intelligence/cybersecurity/what-is-byovd-attacks-2023
https://twitter.com/_CPResearch_/status/1692468130776318230
https://t.co/i5yjGZD7O9
https://twitter.com/cyb3rops/status/1696061660950040734?ref_src=twsrc%5Etfw
https://cert.pl/en/posts/2023/09/unpacking-whats-packed-dotrunpex/

C:\Users yesktophdotrunpex keydump>dotrunpex dump.exe terminator.bin
waiting e
CreateProcess event
CreateAppDomain event
NameChange event
LoadAssembly event
Time to add my breakpoint, found System. ComObject!
Ok, hopefully done.
LoadModule event
CreateThread event
LoadAssembly event
LoadModule event
LoadAssembly event
LoadModule event
LoadAssembly event
LoadModule event
LoadClass event
CreateThread event
waiting 1...
NameChange event
LoadAssembly event
LoadModule event
LoadAssembly event
LoadModule event
waiting 2...
LoadAssembly event
LoadModule event
LoadAssembly event
LoadModule event
LoadAssembly event
LoadModule event
Exception event
Exception event
Exception event
Exception event
Exception event
Exception event
Exception event
Exception event
Exception event
LoadAssembly event
LoadModule event
Exception event
Exception event
Exception event
Breakpoint hit!
Parameter: g8/Cid7uddmYdgYVE9FbIKAMOsE2YXIDESIWSHXT akA=

CERT-PL’s tools sucessfully extracting the resource encryption key.

LgooglLoader

Once extracted and decrypted, we can see that one of the payloads tries to pass as a
legitimate version of Windows Sysinternals ShellRunas tool. We’ve identified this as the
LgooglLoader, and since we’ve seen little to no technical analysis of this malware so far,
we’ve decided this is an opportunity give more information as to the internal working of this
malware.

Hex MName Offset Type Value

o
ht';isgr: dwSignature 0000 DWORD feefodbd

Memory map dwStrucVersion 004 DWORD 00010000

iz dwFileVersionMs 0008 DWORD 00010001
Heuristic scan

IMAGE_DOS_HEADER dwFileVersionLS 000c DWORD 00000000

lM]E\IaEﬂNE_:E?EI:ES:DER dwProductVersionMS 0010 DWORD 00010001
GE_FILE | D
« IMAGE_OPTIONAL HEADER dwPreductVersionLs 0014 DWORD 00000000

IMAGE_DIRECTORY_ENTRIES dwFileFlagsMask 0018 DWORD o0000003f

Sections
Import WS_VERSION_INFO. StringFileInfo. 040504b0, CompanyMame: Sysinternals - www . sysinternals.com
WS_VERSION_INFO. StringFileInfo. 040304b0. FileDescription:Run as different user
WS_VERSION_INFO. StringFileInfo. 040304b0.FileVersion: 1.01
- WS_VERSION_INFO. StringFileInfo. 040504b0. Internaliame: Shellkunas

Manifest V5_VERSION_INFO.StringFileInfo. 040904b0. LegalCopyright: Copyright © 2008 Mark Russinovich and Jon Schwartz
Debug WS_VERSION_INFO.StringFileInfo. 040304b0. OriginalFilename: Shellkunas
Load Config WS_VERSION_INFO. StringFileInfo. 040504b0. ProductMame: Sysinternals ShellRunAs
Overlay WS_VERSIOMN_INFO.StringFileInfo. 040504b0.Productversion: 1.01
. WS_VERSIOMN_INFO.VarFileInfo. Translation:04b00409

Resources
Version

Resource information mimicking the ShellRunas tool.

The binary starting by loading some strings into the stack and then decrypting them, it does
this with simple xor operations. These correspond to function names that will probably be
used to resolve their addresses.

rd ptr
=

XOR Loops for decrypting stings.

25/45

Result of quickly XORing them in a script.

Given these strings, we can assume that they will be used to dynamically resolve the
address of these functions, the same operation is repeated multiple times with different
strings.

.K.e.r.n.e.1.3.2...d.1.

dLibrary:
e

in memory.

The decryption of “kernel32.dII", “GetModuleHandle”, “VirtualAlloc” and “GetProcAddress”
usually indicate that this sample will resolve the address of certain functions and allocate
memory to decrypt itself and execute the malicious payload without touching the disk. This is
usually the behaviour of what we call “packed” malware.

With this information, we’ve decided to find which imports this binary was using with the
Miasm framework. This framework allows us to create Python scripts that emulate code
execution using its own JIT. This allows us to hook certain WinAPI calls to inspect and
modify their behaviour, allowing us to bypass anti-debugging techniques without having to
patch them manually. Another advantage is, if the script is written correctly, it may be used to
unpack future similar samples. Although in this case, as we’ll see next, a debugger script will
be more appropriate.

26/45

https://miasm.re/blog/

S OK = 0
first =

get proc addr file = open

import pointers®

dst ad = jitter.cpu

fname = (args.fname args.fname <
€ 1 str a{jitter,

sb.jitter.user globals['get proc

ad = sb.libs.lib get add funcia

ad

ret ad, ad

Here for instance, we hooked the GetProcAddress function to print which API functions the

27/45

wsprintfw

RegQuer
RegQuer lueExA
RegEnumkKeyW
RegQueryInfokeyW
RegOpenk
RegCloseKey
CoCreateGuid
Strstriw
Str5trIA
PathFileExistsW
strCatw
PathAppendWw
PathAppendA
malware is using into a file. Strstra
StrNCatA
HttpQueryInfow
HttpSendRequestW
InternetSetOptionW
HttpAddRequestHeadersw
InternetReadFile
InternetCloseHandle
InternetCrackUrlw
InternetOpenW
InternetConnectw
InternetQueryOptionW
HttpOpenRequestW
URLDownloadToFileW
RtlRandomEx

imported functions, indicating capabilities of HTTP communication.
We were also met with some anti-debugging techniques, such as checking if a Display is

present and opening Raw Devices such as the MBR of the Displays to check their names.

If the Display Registry keys are not opened successfully, the program terminates itself.

28/45

68 B4447100
FFBS BBFSFFFF
8BBD B4FAFFFF
FF15 00407100
85C0
OF85 D2Z000000
81BD 84FAFFFF OOFFFFE cmp dmord ptr ss:[
0OF85 CZ000000 713363
81BD 88FAFFFF FFFFFF(cmp dword ptr ss:[ebp
0OF85 B2000000 713363
FFB5S BBFSFFFF
FFO5 74347100 inc dword ptr ds:
FFD7 edi
81BD BAFAFFFF 0Q00000F cmp dword ptr ss:[e
8DB5 BFFAFFFF lea eax,dword ptr s
&4 00 il 0
5A i d>
OF45C2 C e eax,edx
808D D1FAFFFF 1 ecx,dword ptr S5
81BD CCFAFFFF OO00000F C dhord ptr ss:i[
OF45C8 CMovne ec
81BD DEFAFFFF 000000 cm
BDB5 E3ZFAFFFF 1ea eax,dword ptr
OF45C1 CMOVNE eax,ecx
81BD FOFAFFFF OO00000F C dword ptr ss:[ebp
8D8BD FSFAFFFF 1 =CX, duord ptr ss:
OF45CH C
85C9
74 3B 3
8033 0A cmp byte ptr ds:[ec
8BC2 MoV eax,edx
74 07 713320
40 inc eax
S03C08 DA cmp byte ptr ds: [ea
75 F9
851408 Mo byte ptr ds:[e
8DB5 3I4FFFFFF ':1 eax,dword ptr ss:
L% | DS __\
50 push eax
FFD& es
83BD ACFSFFFF cmp dword ptr ss:[
8DB5 3I4FFFFFF lea eax,dword ptr ss:
74 07 713343
68 CO0447100
EB 05
68 CC447100
50
FFD2
EE 24 13371
68 DB447100 push 7144D8
8D85 3I4FFFFFF lea eax,dword ptr ss:[eb
S0 push eax
FFD& es1
FFO5 74347100 inc dword ptr ds:[
EB OE 713371
658 E4447100 il 7144E4
BDBS 3I4FFFFFF lea eax,dword ptr ss:[eb
push eax
or eax,eax
8885 GCFEFFFF m byte ptr ss:[eb
8DB5 GCFEFFFF 1 2ax, duord ptr ss:
68 FO447100 DS
S0 push eax
FFD3 ebx
8D85 34FFFFFF lea eax,dword ptr ss:[eb
S0 push eax
SDSS GCFEFFFF = ax ,dword ptr ss:

Code checking for the EDID (Extend Display /dent/f/cat/on) of a mon/tor and checking its
validity. EDIDs usually aren’t emulated in certain VM software.

It would be quite tedious to patch every check manually for each. Instead, we wrote an
x64dbg script to automate our debugging process.

This will usually fail in some step or another depending on the sample you have. Instead of
trying to patch the control flow of the function to ignore the checks and verification of the

EDID parameter. We decided that adding the
\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet®01\Enum\DISPLAY\Default_ Monitor\

<monitor>\Device Parameters\EDID registry key to our VM was simpler.

C:\Users\malware

reg add "HKLM\SYSTEM\ControlSetB881\Enum\DISPLAY\Default_Monitor\4&17feff54&B8RUIDB\Device Parameters” /f /v "EDID" /t REG_BI
NARY /d eeffffffffffffeeecb3f1227c1cBe80321c0164a5301b7822ebf5a656519c26185854bfefoed1cob36095683180814081c8714F0101623a80187
1382d48582c4560dcBcl106001e000000Tf0B4a434c4d544a3038373239320a0008001dB0324c1e5011600a2020202620200008000TcBB4153555328564132
32396a202608671
The operation completed successfully.

Adding valid EDID value to Registry after grabbing_one from this repo.

https://github.com/linuxhw/EDID

e Memory Map

OF83 33010000
56

8B35 CC40A100
33C0

66: 898400 CBFFFFFF

8D85 CBFFFFFF
68 A445A100

0OF85 FDOOODOO0O0
68 B445A100
8D85 CBFFFFFF
50

FFDE&

85C0

0OF85 ETOO0000
68 CC45A100
8D85 CBFFFFFF
50

FFDE&

85C0

0OF85 D1000000
658 D845A100
8D85 CBFFFFFF

0OF85 BBOOODOOO
658 E445A100
BDBS CBF7FFFF
50

FFDE&

85C0

OF85 AS000000
658 0046A100
8D85 CBF7FFFF
50

FFDE&

85C0

OF85 BSFOOO000
68 1C46A100
8D85 40FDFFFF
50

FF15 29440A100
808D 44FDFFFF
E8 E4FLFFFF
8B35 DO40A100
8D85 40FDFFFF
68 6845A100

68 7045A100
8D85 40FDFFFF
50

FFDE&

a

lea eax,dword ptr ss:
h eax

dword ptr ds:[<&]

lea ecx,dword ptr ss:

LZESL

i,dword ptr ds:
ax,dword ptr ss:[

Al456

3x,|:lwc;rt| ptr ss:

85C0

75 48

68 FC45A100
8D85 40FDFFFF
50

FFDE&

85C0

After opening the MBR by using CreateFileW on \\.\PhysicalDrive0 and use the
DeviceIocontrol call to check it against a list of predefined names for virtual machine
prefixes.

One of the anti-debug techniques used by LgooglLoader is trying to open it's own file in
exclusive access mode. When a process is started for debugging, a handle to the file is
stored when the CREATE_PROCESS _DEBUG_EVENT occurs, if that handle is not closed,
then the file can’t be opened for exclusive access. This is a known issue with x64dbg but is
not present in other debuggers such as 011ybbg, making it somewhat unreliable.

FF15 1C407100

&8 80000000

1100
FAFDFFFF

2C407100

83F FF
pO712DBA 0OF84 83000000

CreateFileW Anti-Debug Technique.

Terminate Process

After these AntiDebug and AntiVM checks, it will then inject itself into another process using
the RunPE injection technique. We won’t go into details of how it works here, but it consists of
creating a new process in suspended mode, and uses the virtualAllocEx and
WriteProcessMemory to write its payload into the child process, and uses the
SetThreadContext followed by ResumeThread calls to change the execution flow of the child
process’s main thread.

31/45

https://unprotect.it/technique/process-hollowing-runpe/

rd ptr ss
i,dword ptr
rd ptr ss

wor d
it 20FDFFFF 1 rd
35 04FDFFFF 1

0407 100

18FDFFFF

SDFEFFFF
; 20FDFFFF

5 D4FDFFEF
. 48407100

E9FEFFFF
1CFDFFFF

FSFCFFFF
0401 0000

0
41
980 1CFDFFFF

) FOFCFFFF dword ptr
5 20FDFFFF <, dword ptr

. F4FCFFFF
; F4FCFFFF

15 FCFCFFFF

5 04FDFFFF

5 48407100
28
F4FCFFFF
J4FDFFFF
24FDFFFF
OBFDFFFF
5.

35 OBFDFFFF

showing the writes the different sections of the PE header to avoid a single breakpoint PE
dump and then resuming the thread.

We can then attach ourselves to the new process using the debugger and resume the thread
to see the payload’s execution flow. We then start seeing the process trying to download it's
encrypted config containing a payload. However, the domain seen in our infections was

32/45

already inactive when we analyzed it.

The UserAgent used in the HTTP request.

ad
URL used in our sample to retrieve the configuration.
Here is the 'x32dbg" script used that allowed us to automate the analysis up to the injection
point. It's not meant to be used as is and work with all samples but rather give an idea of how
to proceed to write scripts that analyze binaries like this.

33/45

bc ; Clear breakpoints
bphwc

bp CreateFilew

run

rtr ; run to return
step

bpd CreateFilew

; Find first Hardware MBR name check
zzz 100

log "found {0}", $result

bp $result

run

; Patch name
memset ebp-838, A, 32

; Find second hardware Display device name check

log "found {0}", $result
bp $result

run

; Patch name
memset ebp-2C0, A, 64

; AntiDebug - Opening itself and trying to set info

bpe CreateFileW

run
run

; Patch CreateFile stack to succeed
mov [esp+8], 00080000

mov [esp+C], 00000007

rtr

step

; Patch set file information handle,
bp SetFileInformationByHandle

run

rtr

mov eax, 1

step

; Patch second CreateFile

this isn't important

34/45

run
mov [esp+8], 00080000
mov [esp+C], 00000007
rtr

step

run

; Patch second SetFilelInfo
rtr

mov eax, 1

step

; disable these breakpoints and move forward
bpd CreateFilew
bpd SetFileInformationByHandle

; Another round of GetProcAddress

bp GetProcessHeap
run
rtr
step

bpd GetProcessHeap
bp CreateProcessW
run

rtr

step

; Here it should resume the thread which it hijacked in the new process
bp SetThreadContext
run

; Continue by attaching to the new process with a debugger and resuming the thread.
; Or

; Look at [[esp+4]+0xb8] (It should contain the _CONTEXT structure from the
SetThreadContext call), this gives us the EIP.

; You can dump the executable with tools such as pd64.exe and adjust its context in
the debugger as you wish.

Fabookie

Fabookie is a malicious software targeting Facebook Ads. In our specific case, the samples
were trying to disguise as dxdiag.exe, a legitimate DirectX tool.

35/45

Hex

Disasm

Strings

Memory map

Entropy

Heuristic scan

IMAGE_DOS_HEADER

IMAGE_NT_HEADERS
IMAGE_FILE_HEADER

* |IMAGE_OPTIONAL_HEADER

IMAGE_DIRECTORY_EMTRIES
Sections
Import
= Resources

Manifest

Exceptions

Relocs

Debug

Bound import

- O X

D Readonly

Mame Offset Type Value W
dwSignature 0000 DWORD feefDd4bd I
dwStrucVersion 0004 DWORD 00010000
dwFileVersionM5 0008 DWORD 00060001
dwFileVersionLs 000c DWORD 1dbo4oo1r
dwProductVersionMSs 0010 DWORD 00060001
dwProductVersionlLs 0014 DWORD 1dbo4001
dwFileFlagsMask 0018 DWORD 0000003F
dwFileFlags 001c DWORD 00000000
rhwFil=g nnan. MAORN monannna

WS _VERSION_INFO.5tringFileInfo. 04090480, CompanyMame:Microsoft Corporation

VS _VERSION_INFO.StringFileInfo. 04090480, FileDescription:Microsoft Direct¥ Diagnostic Tool

VS _VERSION_INFO.StringFileInfo. 04090480, FileVersion: 6. 1. 7600, 16385 (win7_rtm.090713-1255)
VS_VERSION_IMFQ.StringFileInfo. 04090480, InternalMame: dxdiag. exe

VS _VERSION_INFO.StringFileInfo. 04090480, LegalCopyright: © Micresoft Corporation. All rights reserved.
WS _VERSION_INFO.StringFileInfo. 04090480, OriginalFilename: dxdiag.exe

VS _VERSION_INFO.StringFileInfo. 04090480, ProductiMame :Microsoft® Windows ® Operating System
WS_VERSION_IMFO.StringFileInfo.04090480. ProductVersion: 6. 1. 7600. 16385

VS_VERSION_IMFQ.VarFileInfo, Translation: 04000403

Attempt to disquise itself as DxDiag.

Fabookie steals Facebook session cookies from web browsers and employs Facebook
Graph API Queries to gather more details about a user’s profile, connected payment
methods, account balance, friends, and more. These hijacked credentials can subsequently
be employed to launch ads using the victim’s account. This particular sample contacts it's C2
servers and downloads an image, which contains the final Fabookie payload.

36/45

"Ethernet
File Edit View Go (Capture Analyze Statistics Telephony Wireless Tools Help
Am /@ MRE] ETeEEaqaH

[Jip.addr == 103.100.211.218

Mo. Time Source Destination Protocol Length Info
9 2.668141 183.100.211.218 l1e.0.2.15 TCP 60 80 » 49828 [FIN, ACK] Seq=1 Ack=1 Win=65535 Len=@
18 2.668299 10.6.2.15 183.100.211.218 TCP 54 49828 - 8@ [ACK] Seq=1 Ack=2 Win=65116 Len=0
11 3.171616 10.6.2.15 183.100.211.218 TCP 66 49832 + 8@ [SYN] Seq=@ Win=65535 Len=8 MSS5=146@ WS=256 SACK_PERM=1
12 3.350689 1683.100.211.218 1@.8.2.15 TCP 60 8@ + 49832 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=8 MS5=1468
13 3.3508826 18.6.2.15 183.180.211.218 TCP 54 49832 » 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
14 3.351392 18.8.2.15 183.160.211.218 HTTP 157 GET /sts/imagc.jpg HTTP/1.1
15 3.351748 183.100.211.218 l1e.0.2.15 TCP 60 80 + 49832 [ACK] Seq=1 Ack=104 Win=65535 Len=@
re a rasase 1A% _aAA ass aan 1n A ar en AFAA BA . AAASA AL Fan A Aale AAA Lile AEEAE | an AA4SA TTEA amaman R i

Frame 14: 157 bytes on wire (1256 bits), 157 bytes captured (1256 bits) on interface \Device\NPF_{42251BD5-51DF-4FA3-BE4E-A9524CFC94AA}, id @
Ethernet II, Src: PcsCompu_f@:aa:f9 (08:00:27:f@:aa:f9), Dst: RealteklU_12:35:02 (52:54:00:12:35:02)

Internet Protocol Version 4, Src: 10.6.2.15, Dst: 163.180.211.218

Transmission Control Protocol, Src Port: 49832, Dst Port: 8@, Seq: 1, Ack: 1, Len: 1e3

Hypertext Transfer Protocol

52 54 6@ 12 35 @2 08 @@ 27 0 aa T9 @8 @@ 45 @@ RT- -5 ' E
@0 8f 96 32 40 00 80 B6 00 00 0a @D B2 of 67 64 28 gd
d3 da c2 a8 @@ 5@ 9d 21 b9 af 10 ed4 38 @2 50 18 p-l 8P
ff ff 47 cf @0 @0 47 45 54 20 2f 73 74 73 2f 69 G - GE T /sts/i
6d 61 67 63 2e 6a 70 67 20 48 54 54 50 2f 31 2e magc.jpg HTTP/1.

1--User- A
TTPREAD

) 7 wireshark_EthemetZBNZB2.pcapng

HTTP request of an imagc JPEG in Wireshark.

Tools/VirusSamples

binwalk shows us there’s a PE within the image and allows us to extract it.

align 4

37/45

.rdata: H080301BBAFBETFC
.rdata; 08000881 BRAFBTFC
.rdata:paoBaa1ER8FE01
.rdata: deee8e81500F B80S
.rdata: MP00R301E0AFBERE
.rdata; Ge0ea881BR8FBE1T
.rdata: ea0Ba81E08F B3 28
.rdata: PeBAE1EMEFEE2e
.rdata: 8000801 B0AFEE2S
.rdata: 60808801 BRBFEEEE
.rdata: paeBa01588r B368
.rdata; dH00301806FBET2
.rdata; d8000801BRAFBETE
.rdata: 09808881 E0BFE3EE
.rdata: deee8201E00F BEEE
.rdata; 30000001 B00FBESY
.rdata; G8008801BRaFBEAR
.rdata: Pa0Ba01E500F B3AB
Jrdata: e0000e0180arB8A9
.rdata: 0000001 BOAFBEEG
.rdata:ee8e8081E0BFEEEF
rdata:ea0Ba815088F LR
.rdata; SS008301E06FBECE
. rdata; 60008801 BREFEECE
.rdata:29a9B881E588FE3CE
.rdata: MPeeRa81EeFBACA
. rdata; MH00061B06FBACC
.rdata; B8000881888FBECC
.rdata:2e8e8881888FBACC
_ .roata: eesson1searBACE
«rdata: GRRA0001BOEFEE0O
.rdata: epae8881808FB3DE
.rdata: 0Pa08801508FB3ER
rdata; d000S01000F BEER
. rdata; GO000801BREFBEEC
.rdata:eeee281ERBFBEFR
.rdata: PAARBE1EMEFEEFR
.rdata; 60000001 B0FBEFY
. rdata: G2008801BBEFEI08
.rdata: 2980880 1506F B0
Lrdata: 9000001 808F B300
. rdata; BRG0G0 BBHF BIOG
.rdata: 8p80B881E08FEI43
.rdata: BPEAE301E06F E944
rdata; MH0RG01E00F B34S
. rdata: GOOR0001BBEFBI4A
.rdata: epaeB8015208F 8958
.rdata: BPA0RBA1EBAFBISE
. rdata; MHOROR1E0EFEISE
.rdata: 30800801 ER8F BIE8
.rdata:eeeeBaRlERerEoeR
Lrdata: 0000801 888FBI60
. rdata; GR000OR1BBEFBITA
.rdata: epaoBa01EREF EIER
.rdata: MPEABAE1EMEFEIER
. rdata: 9200001 B00F BB
. rdata; BR0000E]BBEFEIBS
.rdata: epaeB881E8288FBIF2
.rdata: SP0AB301EEFBIFE
. rdata; 0000001 B0AFEIFE
.rdata: 0pa0BA01BREFEIFE
rdata: epa08801508F BAZA
.rdata: Pe0R301E0AFBAZR
. rdata; GS00R881BRAFBAZS
.rdata: 39a0Ba01ER8F BADE
.rdata: MPBAEAE1EMEFBASE
.rdata; 9000001 B0AFEBADE
. rdata; GROOEOE] BBEFBADD
.rdata: 0paenan 1 EReF BAMS
Jrdata: 2008801 884F BAAD
. rdata; 0S000S0]1 BRAFBAAD
.rdata: 0800801 E08FBACS
.rdata: 6pa088081508F BACE
.rdata; 33000301 008FBACE
. rdata; GS00R80]1BRAFBAER
.rdata: 0PE0B201EBEFBAER
.rdata: MeeeRS81E00FBAFE
.rdata; 0002001 B0RFEERE
.rdata: G8080881808FBEEE
.rdata:eae8a81588FEBLY

e AR DRAE DO Y

; const char aPaid[]
afaid db “paid’,®
align B
3 const char aBillingStatus[]
aPillingStatus db "billing status',® ; DATA XREF: sub 1B08GSFIB+21to
align 2ah
aHttpsBusinesaF db "https://business.facebook.com/billing hub/payment_settings/Passet'
; DATA XREF: DLl1Main+194Cto

; DATA XREF: sub_lB@@@sFie+asto

db *_id=",®

align B
akssetId db "tasset_id",8 ; DATA XREF: D11Main+laAE7to
align &
sdccountId db ""ACCOUNT_ID":" .8 ; DATA XREF: DLl1lMain+lB88to
align B
aGlobalscopeid db ""globalScopelD™:",8 ; DATA XREF: DLlMain+lC13to
align 28h
aToken db "token":"',8 ; DATA XREF: DL1Main+lC92teo
3 Dl1Main+1DBCta
align 1@h
aDtsginitdata db ""DTSGInitData"™',8 ; DATA XREF: DL1Main+lCAZ%o
align 2ah
alLsd_@ db "TLED"" 8 ; DATA XREF: D11Main+1D23to
align &
asc_lER@FSBCE db ., ; DATA XREF: DL1Main+1D73%to
i D11Main+1DF1fo ...
align 4
; const char asc_lB@aFE3CC[]
asc_lBB@FSBCC db i@ ; DATA XREF: DllMain+lD8Ato
; Dl1Main+1E88to ...
align 1@h
aSpihr db " _spin_r=',B ; DATA XREF: DllMaint+iDAlte
align 2eh
aspinT db ""__spin_t™',8 3 DATA XREF: DLl1Main+lElFto
align 4
alv db "av=",8 ; DATA XREF: DLl1Main+lEBEte
; const char alser|]
allser db "E__user=',@ 3 DATA XREF: D11Main+lEEEto

align Zah
; const char aAlCsrReqSDprlc[]
aAlCsrReq5DpriC db "&__a=18 csr=&_ req=58dpr=18 ccg=EXCELLENTE comet_req=0&fb_dtsg'
; DATA XREF: DLl1Main+lF1lto

db "=",8
align 4

i const char alsd_1[]

alsd_1 db “&lsd=",8 ; DATA XREF: DL1Main+1F3Ato
align 1@h

i const char aSpink_a[]

aSpinf_@ db "&__spin_r=',@ ; DATA XREF: D1l1Main+lF63to
align 2@h

; const char aSpinBTrunkSpin(]
aspinBTrunkSpin db "& spim_b=trunk& spin_t=",@
; DATA XREF: DL1Main+1F8Cto
align 2ah
; const char aFbApiCallerCla[]
afFbapiCallerfla db "&fb_api_caller_class=felaytodernlfb_api_req_friendly_name=Billing'
; DATA XREF: DL1Main+1FBSto
db "&MMexusRootQuerylvarisbles={"paymentAccountID®:"',8
align &
3 const char aServerTimestam|]
aServerTimestom db " }Aserver_timestamps=trueldoc_id=4123775161871594" 8
DATA XREF: Dl1Main+1FE3te

2

align léh

aHttpsBusinessF_@: ; DATA XREF: DllMain+2@91to
text "UTF-16LE", “https://business.facebook.com/api/graphgl/?11]l=ppp”,0
align &

alata db “data’,® ; DATA XREF: D11Main+21ADto
; DLIMain+2286ta
align 2@h
aBillableAccoun db "billable_account_by_payment_account’ ,@
; DATA XREF: DL1Main+2198%to
; DLIMaint2271te
align B
aBillingPayment @ db "billing payment_account’,@
; DATA XREF: DLl1Main+2183%to
aBillingPayment db "billing payment_methods' ,8
; DATA XREF: DLl1Main:loc_18@88837FEte

i

aPaymentModes db “payment_modes” ,@ ; DATA XREF: DllMain+225Cto
align B

asupportsPostpa db "SUPPORTS_POSTPAY',@ ; DATA XREF: DllMain+233Ete
align 2@h

B - P L T L + MRATA YWOECE: AT Tlaimi 39S C8a

38/45

SRl LpIUEI L eSS .
text "UTF-1BLE", "https://business.facebook.com/select’,B
align 1lgh

ata:e aBusinessId db "business_id=",8
-data: GSOGOG0 1 ﬂligﬁ i

Stringé of the Fa'ce656;€ Billing APl in the e;dracted PE.
We've added the domains and hashes to the 1oC table but won’t be looking at this malware
any further as it is well-known.

SmokelLoader

SmokeLoader is a modular malware downloader first observed in 2011. It uses code
obfuscation, API function resolution, and sandbox detection for evasion. After execution, it
establishes persistence and contacts a C2 server to download additional payloads like
banking trojans or ransomware, the C2s we’ve seen were already inactive by the time we
investigated them. It also employs process injection techniques for stealth. Over the years, it
has undergone various updates and revisions, making it a continually evolving sophisticated
threat.

The inner workings of this loader deserve an article of its own. However, there is already
literature from a few years back describing the majority of its functionality.

39/45

https://n1ght-w0lf.github.io/malware%20analysis/smokeloader/

! push 3 Function Hash

" push ; DLL Hash
D eall sub_4F11FB
. mowv [ebp-B], eax

b push offset unk_348BFA
I push offset unk DMEES
P call sub_4F11FB

| mov [ebp-34h], eax

i jmp loc_4F12B@

} 3 Attributes: bp-based frame

i 3 int _ stdcall sub 4F11FB(int, int)

i sub_4F11FB proc near ; CODE XREF: debugBad:ee4rliDCtp
: ; debugBa4:@84F11EETP

} arg_@8= dword ptr &
| arg_4= dword ptr @Ch

i push ebp

I mov ebp, esp Code for
: push ebx

* push esi

! push edi

. push ecx

! push large dword ptr fs:38h ; PEB header

I pop eax

i mow eax, [eax+BCh] ; PEE_LDR_DATA *DWORD PointerToSymbolTable
| mov ecx, [eax+8Ch] ; struct _LIST_ENTRY InLoadOrderModulelist
)

! loc_4F121@: ; cobE xREF: sub_ 4F11FB+2CL]

I mov edx, [ecx]

! mowv eax, [ecx+38h] ; UNICODE STRING FullDllNMame

i push 2

" mowv edi, [ebptarg_@]

. push edi

i push eax

D call sub_4F127C ; CalculateNameHash

. test eax, eax

b jz short loc 4F1229 ; eax = void * DllBase

i mowv ecx, edx

" jmp short loc 4F1218@

hashing Library and function names in first stage shellcode.

python3 hash dll and funcs.py sc unpacked.raw

Hashing emulation with the Miasm framework.

40/45

OSDUEYS4I¥Ys1ls51 A ¥Lan
debug@54:88511252 db =
gl L S T R

debug@54:8@511253 jnz short near ptr loc_511257+2 ; Garbage

debug@54:88511255 jz short near ptr loc_511257+2 ; Garbage

debug@54: 88511257

debug@54:8@511257 loc_511257: 3 CODE XREF: debug@54:885112531]
debug@54:88511257 3 debug®54:885112551]
debugB54:88511257 mov eax, ds:4C483C3h ; Garbage

debug@54:8851125C mov edi, dword_FFFFFFFC[esp]

debug®54:88511268 retn
= A A e 1T e R

Opaque Predicate

Conclusion

After an extensive analysis of the data and patterns across our telemetry, it's clear that the
infections we’ve observed are part of a coordinated PPl campaign. The use of common initial
infection vectors and active C2 servers indicate that this is an ongoing operation with simple
but time-tested and effective methods of compromise.

What's alarming is the long history and adaptability of this infrastructure. The fact that some
aspects date back as far as 2016 demonstrates both resilience and a continual development
cycle, including the ability to deliver newer forms of malware like CustomerLoader.

We've laid out some analysis techniques that can be employed to study this threat further.
Companies should update their loC tables and implement strict security measures. We will
continue to monitor this threat closely and provide updates as more information becomes
available.

I0OC Table

While an loC table is provided, it should be used more of an anchor for other researchers to
pivot and for the wider cybersecurity community to act on rather than a foolproof detection
method. HarfangLab’s EDR has used Sigma and Yara rules to block the threats described in
this article.

Fabookie Stealer

072cdef00c51d1c76eaa74cfc008890cd95288a745796963b441236ada7c1f73

07d7f33376901a832dbdb441e57d72390d28225cd5fe5042f9048e5d55f40493

155dd3b4d2665fc6486167b4f8ee758f5a848039216¢76614ebf3167990e9ec6

2c389fe6cbdf4948992278c96a3341f7d05659¢5fd913d8ecceab651961f496fd

us[.]imgjeoigaal.Jcom

app[.Jnnnaajjjgc[.Jcom

41/45

DotRunpeX (LgoogStealer)

b120d8658812d9d5dd2b0322b3e7aefabd34ee2acaebdf15a8ef2d73f9743f22

2f4daafe79aa0dc29829991c3983f35cae602c8eb6ab1de28f7cfc95e2160a66

109[.]206[.]241[.]33

CustomerLoader (DotRunpeX)

3d85c2571969b2a54161f766f8b4ec4e167048d9b28b63ef742e7c0114d4575

4c9b551910643eb2c5a4adaf517f41¢cf1c5035¢1526b11f108accd970e675e31

SmokelLoader

1df80330b824fe5e09ee3b12f1cdab76c223a627b54ccda3188945317¢c1f90a4

Initial Compromise Websites

crack4windowsl[.Jcom

free1appl.]site

free2appl.]site

free3appl.]site

freesmartsoft[.Jcom

Sitool.exe (TaskLoader Stage 1)

a6d9ebae8cadfd1f6e90cc8ebaf88eeee9dc98e73¢c10cd9d0c67fef35099e96f

e2dcb80bcf46dbd1d44adb6eeOcd7a39e2c4829632fd94c83bba70c3907c52fb

7bbca270f423c44dbcfSbcbe1db17fbbd9e701619dea1ef9c6086b7ecee8c6bb

video-box[.Jorg

avkit[.]Jorg

Tempexec Delphi Installer

b278922ccdd484c70503d72ed4f747b77a869b40e7f632d1bef6a2f80011de36

61581f8f1f64f392d7c887f1f6ae2ealb6638b5deb2a9731094ae64f3d7d43d4

9c81817acd4982632d8c7f1df3898fca1477577738184265d735f49fc5480f07

hiappsl.]site

42/45

Inetinfo

37517181539521918488ce48e50196caf3afdfc1a87cec9bc524e8fc065ed81e

hhk[.Jghwiwwhh[.Jcom

ashoktodmal[.Jcom

45[.]12[.]253[.]74

85[.]217[.]144[.]228

43/45

Group 3
Newsletter

Our tech content in your mailbox !

More blog post :

CYBER THREAT INTELLIGENCE

The vast majority of Industrial Spy targets are mainly from the US and western Europe (80%)
while few victims are from Asia and South...

A Top of the page

45/45

https://inside.harfanglab.io/blog/articles/cyber-threat-intelligence/industrial-spy-ransomware/

