
1/9

September 15, 2023

Reverse engineering natively-compiled .NET apps
migeel.sk/blog/2023/09/15/reverse-engineering-natively-compiled-dotnet-apps/

https://migeel.sk/blog/2023/09/15/reverse-engineering-natively-compiled-dotnet-apps/

2/9

Digging into internals of apps built with native AOT.

.NET 7 introduced a new deployment model: native ahead of time compilation. When a .NET
app is compiled with native AOT, it gets compiled to a standalone native executable with its
own minimal runtime to manage code execution.

This runtime is quite small and in .NET 8 it’s possible to build standalone C# apps under 1
MB. To put it in perspective: the size of a native AOT Hello World in C# is closer to the size of
a Rust Hello World than to a Golang Hello World, or six times smaller than similar app in
Java.

https://migeel.sk/blog/2023/09/15/reverse-engineering-natively-compiled-dotnet-apps/
https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot
https://github.com/MichalStrehovsky/sizegame/blob/6657bf7537e79132f77916922037752d76c87ccf/README.md

3/9

It is also the first time .NET programs are not distributed in the file format defined in ECMA-
335 (i.e. instructions and metadata for a virtual machine), but instead distributed as native
code (PE/ELF/Mach-O file format), with native data structures same as e.g. C++. This means
that none of the reverse engineering tools for .NET built over the past 20 years work with
native AOT.

Unfortunately, these two aspects (small size, harder to reverse engineer) made native AOT a
popular choice for malware writers as demonstrated by recent discoveries:

https://malware.news/t/analysis-of-ms-sql-server-proxyjacking-cases/72766
https://jfrog.com/blog/impala-stealer-malicious-nuget-package-payload/
https://labs.withsecure.com/content/dam/labs/docs/WithSecure_Research_DUCKTAIL_
Returns.pdf

This article will try to go a bit into the details of how to adapt reverse engineering to the new
landscape.

Get your Ghidra and native debuggers ready

To reiterate the point from the introduction: Native AOT does not use the CLR VM file formats
to store the program and its metadata. Tools that read the VM file format are not useful for
native AOT executables. This leaves us with tools used for reverse engineering arbitrary
native code such as native debuggers (WinDBG/VS/x64dbg on Windows, lldb/gdb on Unix-
like systems) and native code analysis frameworks (Ghidra, IDA, Binary Ninja, etc.).

Since native AOT compiles into a single no-dependency executable, the amount of available
metadata considerably shrinks, however there is still some metadata left (as there is with e.g.
C++).

First look at a binary

If you’d like to follow along, install a .NET 8 SDK (I’m using RC1 version which was the latest
available at the time of writing). You can skip installing and just download the ZIP and put the
extracted location on your PATH.

Let’s start with building a Hello World with native AOT:

$ dotnet new console --aot -o TestApp

This will create a new directory TestApp and drop a Hello World console app project
configured for AOT compilation there.

$ cd TestApp

$ dotnet publish

https://malware.news/t/analysis-of-ms-sql-server-proxyjacking-cases/72766
https://jfrog.com/blog/impala-stealer-malicious-nuget-package-payload/
https://labs.withsecure.com/content/dam/labs/docs/WithSecure_Research_DUCKTAIL_Returns.pdf
https://dotnet.microsoft.com/en-us/download

4/9

Once the publish process finishes, you should see a binary under bin\Release\net8.0\win-
x64\publish (I’m doing this on Windows, but this will be similar for Linux/Mac). The binary is
about 1.2 MB in size and there’s a file with native debug information next to it (PDB on
Windows, DBG on Linux and something else on Mac). Let’s take a quick look.

$ dumpbin bin\Release\net8.0\win-x64\publish\TestApp.exe

Microsoft (R) COFF/PE Dumper Version 14.37.32824.0

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file bin\Release\net8.0\win-x64\publish\TestApp.exe

File Type: EXECUTABLE IMAGE

 Summary

 D000 .data

 5E000 .managed

 B000 .pdata

 60000 .rdata

 1000 .reloc

 1000 .rsrc

 64000 .text

 1000 _RDATA

 31000 hydrated

The file looks mostly standard. The section .managed contains managed code (in this case
“native code whose memory is managed by the garbage collector”). The hydrated section is
uninitialized but it gets populated early during startup with runtime data structures.

The rest of sections look fairly standard, .text contains unmanaged code such as the
garbage collector itself, or other native code that was linked into the executable by the user.

Running strings on the executable will find interesting things such as:

8.0.23.41904v8.0.0-rc.1.23419.4+92959931a32a37a19d8e1b1684edc6db0857d7de

(The version of commit hash of the dotnet/runtime repo that produced the executable, can be
handy later.)

But also strings like DivideByZeroException or get_CanWrite giving a hope we might be
able to reconstruct useful type information and method information.

Debugging a memory allocation and virtual call

An interesting experiment to get a feel for how things work is to step through a short piece of
code. Let’s replace Program.cs with this:

https://learn.microsoft.com/en-us/dotnet/core/deploying/native-aot/interop#linking

5/9

using System.Runtime.CompilerServices;

class Program

{

 // Mark NoOpt/NoInline so that all of this doesn't get devirtualized

 // or inlined into managed startup code.

 [MethodImpl(MethodImplOptions.NoOptimization | MethodImplOptions.NoInlining)]

 static void Main() => Console.WriteLine(new Program().ToString());

 public override string ToString() => "Hello World!";

}

We dotnet publish again and run the program under a debugger. We will leverage the
luxury of having debugging symbols for the app. When investigating malware, chances of
getting hold of PDB/DBG are very low. We’ll set a breakpoint on the Main line and look at the
disassembly:

00007FF730B8FD50 push rbp

00007FF730B8FD51 sub rsp,30h

00007FF730B8FD55 lea rbp,[rsp+30h]

00007FF730B8FD5A xor eax,eax

00007FF730B8FD5C mov qword ptr [rbp-8],rax

00007FF730B8FD60 lea rcx,[TestApp_Program::`vftable' (07FF730BCC688h)]

00007FF730B8FD67 call RhpNewFast (07FF730AF1DE0h)

00007FF730B8FD6C mov qword ptr [rbp-8],rax

00007FF730B8FD70 mov rcx,qword ptr [rbp-8]

00007FF730B8FD74 call TestApp_Program___ctor (07FF730B8FDB0h)

00007FF730B8FD79 mov rcx,qword ptr [rbp-8]

00007FF730B8FD7D mov rax,qword ptr [rbp-8]

00007FF730B8FD81 mov rax,qword ptr [rax]

00007FF730B8FD84 call qword ptr [rax+18h]

00007FF730B8FD87 mov rcx,rax

00007FF730B8FD8A call System_Console_System_Console__WriteLine_12
(07FF730B56190h)

00007FF730B8FD8F nop

00007FF730B8FD90 add rsp,30h

00007FF730B8FD94 pop rbp

00007FF730B8FD95 ret

The code looks quite standard. There’s extra register/stack shuffles because we disabled
optimizations for pedagogic reasons. The symbolic names are only visible because we had
debugging information. If we didn’t have it, TestApp_Program::vftable' would only be
07FF730BCC688h.

Let’s zoom in:

00007FF730B8FD60 lea rcx,[TestApp_Program::`vftable' (07FF730BCC688h)]

00007FF730B8FD67 call RhpNewFast (07FF730AF1DE0h)

6/9

Here we can see how allocation works – we load the address of a magical vftable structure
describing the Program class and call a helper RhpNewFast to allocate an instance of this
from the GC heap. Since .NET is open source, we can look at the details, but essentially this
reads a field from the magical vftable structure to figure out the size of the allocation (size
of a Program class instance), slices off a chunk from a zero initialized memory (bump
allocation), and writes the address of the vftable in the first field of the newly allocated
instance, giving the piece of memory “identity”. If the bump allocator runs out of memory,
there is a slow path, but it’s not interesting.

RhpNewFast is written in assembly and rarely changes, so chances are good you’ll be able to
identify it even if no debugging symbols are present.

After allocating a fresh object instance, the instance constructor is called:

00007FF730B8FD70 mov rcx,qword ptr [rbp-8]

00007FF730B8FD74 call TestApp_Program___ctor (07FF730B8FDB0h)

Because we have debugging symbols, we can see the name of the symbol
(TestApp_Program___ctor). If we didn’t have the symbols, this would be call
07FF730B8FDB0h.

After the constructor returns, we do the virtual call to ToString. This is another interesting
part:

00007FF730B8FD81 mov rax,qword ptr [rax]

00007FF730B8FD84 call qword ptr [rax+18h]

First we dereference the reference to the object. As we saw during allocation, this will leave
us with the address of the magical vftable structure in rax. Then we call an address 0x18
bytes into the vftable structure. That’s presumably where the address of Program.ToString
method is stored.

The magical vftable structure is the vtable or “virtual method table” how we know it from
C++. It lists all the virtual method addresses the type implements. It also contains additional
metadata such as the size of the object instance, whether it’s a struct or class, etc. In .NET
world, you’re pretty much guaranteed the first 3 slots of the vtable will be implementations of
object.ToString, object.GetHashCode and object.Equals (the order of these three
depends on whole program optimizations though).

The native AOT codebase calls the vtable structure MethodTable or EEType interchangeably
and you can learn more about it by looking at the implementation of the writer or the reader.
(Be warned, there is also a MethodTable in the CoreCLR virtual machine, but layout of that
one is different.)

https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/nativeaot/Runtime/amd64/AllocFast.asm#L7-L42
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/tools/aot/ILCompiler.Compiler/Compiler/DependencyAnalysis/EETypeNode.cs
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/nativeaot/Common/src/Internal/Runtime/MethodTable.cs

7/9

While the MethodTable data structure contains a lot of information, the extremely useful one
such as names of types is not readily available. Other things that are not available are:

List of all the methods (we can at least list the addresses of the virtual ones, as when
reversing C++ though)
List of all the fields (however, the GC information that prefixes MethodTable is able to
tell us at what offsets within an object instance are GC pointers - it’s better than
nothing)
Containing assembly of the type
Etc.

Dehydrated data

Additional hurdle is that MethodTable data structures get laid out into the hydrated segment
of the executable that is defined as zero init. There is a small piece of code early in the
startup path that populates this segment with actual data. Static analysis tools therefore will
have extra trouble interpreting the contents of MethodTables, unless this gets dumped from
the memory.

Data dehydration was added in this pull request and describes what happens better than
what I could do here. But essentially this data is stored in a more compact form in the file
format and gets inflated at runtime. One could potentially simulate this inflation in static
analysis tools by locating the data blob that has it, starting from the RTR header. However,
this file format is not part of any ABI, it’s likely to change, and might need to be updated
every year for new .NET versions.

Reflection data structures

While the information about names is not easily accessible, it is still there, as we saw in the
strings dump. Reflection keeps track of all type names since in .NET one can just call
object.GetType on anything and ask about the name of it.

A data blob that maps MethodTable data structures to metadata handles is linked from the
RTR header, and so is the metadata blob itself. One could in theory use the metadata
reading APIs to reconstruct symbolic names for all MethodTables in the program. However,
none of these formats or APIs are meant for public consumption and will likely change with
every major .NET release.

Dedicated malware writer could also publish their app with IlcDisableReflection property
set to true, which will turn on a reflection disabled mode that doesn’t generate any reflection
metadata. This mode is not supported or documented outside of the dotnet/runtime repo.

Stack trace data structures

https://github.com/dotnet/runtime/pull/77884
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/tools/aot/ILCompiler.Compiler/Compiler/DependencyAnalysis/ReadyToRunHeaderNode.cs#L64-L65
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/tools/aot/ILCompiler.Compiler/Compiler/DependencyAnalysis/TypeMetadataMapNode.cs
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/tools/aot/ILCompiler.Compiler/Compiler/DependencyAnalysis/MetadataNode.cs
https://github.com/dotnet/runtime/tree/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/tools/Common/Internal/Metadata/NativeFormat
https://github.com/dotnet/runtime/blob/0bd362370bdd649f0f09eb5c1e58cf11d9538804/src/coreclr/nativeaot/docs/reflection-free-mode.md

8/9

Similarly, as we saw in the strings dump, information about method names should also be
present. The sole reason why it’s present is backtrace generation – when an exception is
thrown, the developer can call ToString on it or access the StackTrace property to obtain
the textual stack trace. This is implemented by keeping a map between native method
addresses and metadata that allows constructing names and signatures. This is similar to
how reflection data is generated and the file formats are same (these are also referenced
from the RTR header). Let’s try it:

using System.Runtime.CompilerServices;

class Program

{

 // Mark NoOpt/NoInline so that all of this doesn't get devirtualized

 // or inlined into managed startup code.

 [MethodImpl(MethodImplOptions.NoOptimization | MethodImplOptions.NoInlining)]

 static void Main() => Console.WriteLine(new Program().ToString());

 public override string ToString() => throw new Exception();

}

(We updated the previous program by having ToString throw an exception and leave it
unhandled.)

Unhandled Exception: System.Exception: Exception of type 'System.Exception' was
thrown.

 at Program.ToString() + 0x24

 at Program.Main() + 0x37

Notice that the app was able to print names and signatures of the involved methods. This will
still work even if we delete the debug information by deleting the PDB/DBG file.

However, a user can set StackTraceSupport property to false at the time of publishing their
app to disable generating this data (stack trace data generation is on by default). Then the
program will print this instead:

Unhandled Exception: System.Exception: Exception of type 'System.Exception' was
thrown.

 at TestApp!<BaseAddress>+0x9dab4

 at TestApp!<BaseAddress>+0x9da77

If the app was built like this, our chances of reconstructing the names or signatures of
methods drops close to zero. Some method names might still be available within reflection
metadata, but the list of methods that are visible from reflection is typically very small - the
compiler aggressively strips it unless trimming analysis tells it to keep it.

Summary

https://learn.microsoft.com/en-us/dotnet/core/deploying/trimming/trimming-options?pivots=dotnet-7-0#trimming-framework-library-features

9/9

To sum up, analyzing .NET binaries compiled with native AOT requires similar skills to
analyzing e.g. C++. Some information is there (like unwinding, limited type information, etc.),
but we can forget about luxuries such as being able to break down types into individual fields
and monitor their access. Fields basically dissolve into instruction access (we can guess
something could be an int if it gets read as a 4-byte). Method names will disappear if stack
trace data is turned off. And type names can also disappear if reflection is turned off.

