
1/10

OVI September 14, 2023

Reverse engineering SuperBear RAT.
0x0v1.com/posts/superbear/superbear/

You’re probably thinking, why is it called SuperBear? Well, here’s why:

I spent some time analyzing this attack campaign that was impacting civil society groups and
thought it would be a good idea to document the technical analysis for the low-level infosec
consumers. You can read our high-level report of the malware campaign here on Interlab’s
website.

Nethertheless I found this sample to be quite interesting since it utilized some interesting
techniques. Notably, the usage of AutoIT to perform process hollowing, and then the C2
protocol itself being somewhat similar to that of commodity RATs.

AutoIT initial access

In the initial finding of the RAT disclosed on the Interlab website discusses how we found it to
be deployed using an AutoIT script. I won’t go into the original maldoc or powershell
commands since it’s covered in that publication. So let’s start by looking at the AutoIT script.

https://0x0v1.com/posts/superbear/superbear/
https://interlab.or.kr/archives/19416?ref=0x0v1.com
https://interlab.or.kr/archives/19416?ref=0x0v1.com


2/10

On inital view, I’d found that the script appeared to be compiled and packed. Since this is a
typical feature of AutoIT scripts, I used AutoITExtractor to decompile the script (we made all
payloads available on both open-source and commercial malware zoo sites, so if you want to
see any of this data yourself check the Interlab post). The source code detailed a trivial
process injection operation by hollowing memory from a spawned instance of Explorer.exe. It
decrypted a payload and injected it into the hollowed memory.

The script is too large to cover in this post and not really necessary. The threat actor actually
just modified an open-source script that I’d found discussed across a bunch of different
forums:

https://www.autoitscript.com/forum/topic/99412-run-binary/page/8/
https://syra.forumcommunity.net/?t=55181142
https://autoit-script.ru/threads/peredacha-parametrov-komandnoj-stroki.24834/

I couldn’t be bothered to reverse the entire crypto operation to get the payload, if you look at
the sample you’ll see what I mean, so for time sake I just executed it dynamically with the
intention of carving out the injected PE.

When the script spawns explorer.exe we can see a Private address space with RWX
permissions. A notable sign of injection!

Inspecting the memory we see an MZ header.

https://www.autoitscript.com/forum/topic/99412-run-binary/page/8/?ref=0x0v1.com
https://syra.forumcommunity.net/?t=55181142&ref=0x0v1.com
https://autoit-script.ru/threads/peredacha-parametrov-komandnoj-stroki.24834/?ref=0x0v1.com


3/10

… and contained within that memory is also a string relating to the C2 server that I’d
previously found in sandbox detonation.

From a detection standpoint, this process hollowing operation is pretty loud and I’d be
surprised if most Avs didn’t pick it up. You can of course use Process Hacker etc to dump the
PE file. Though I ran @hasherezade’s Hollows Hunter to get a dump of the PE file. Once
dumped, I took the PE file to IDA and here’s what I found.

SuperBear RAT static reverse engineering

Much like other RATs the malicious code first creates a mutex object using “CreateMutexW”.
The mutex name is (“BEARLDR-EURJ-RHRHR”). In then handles an “already running” case
by checking if the mutex creation result is 5. If it is, it displays a message stating “already
running” and proceeds to exit the process. If it’s not, it calls sub_401070 which establishes
the C2 connection.

https://github.com/hasherezade/hollows_hunter?ref=0x0v1.com


4/10

The C2 mechanism begins by first allocating memory and initializing a memory block to hold
a string “AAAAAA” providing space to store data. It then defines three variables for URI
paths “/id1”, “/id2” & “/id3”.

It then validates the C2 connection by looping over a call to “InternetOpenW” till it
successfully establishes a valid “hInternet” handle. Once complete, it uses
“InternetConnectW” to connect to the C2 server, in this instance “hironchk[.]com” checking



5/10

the defined URI paths previously. It iterates through these three URI paths indefinitely until a
connection is established. After successful connection it sleeps for 10 seconds before
continuing the loop again.

During dynamic analysis, you can of course see the malware attempting connecting to these
URI paths.

Once the C2 connection is established, it performs a HTTP request. Interestingly, the actor
left a push instruction that pushes the address of the string “Connected to vk.com” onto the
stack. Despite this, the C2 address is not anything to do with VK, though this is an interesting
observation a TI perspective.

It checks if the request was successful and then allocates memory using “VirtualAlloc”. The
allocated memory is then read from the HTTP connection using the InternetReadFile
function. This is looped, and retrieves data from the connection into the “lpBuffer”.



6/10

The HTML data is checked for the string “NdBrldr”, if the string “NdBrldr” is not found during
the processing of the loop the loop will exit. If it’s found, it will continue and a string “Found
watermark” is pushed to the stack.

After the loop ends the allocated memory is released using “VirtualFree” and the request
handle is closed using “InternetCloseHandle”.

Once the connection is established it will do one of four operations depending on the
command message received from the C2.

Do nothing
Exfiltrate process and system data
Download and execute a shell command
Download and run a DLL

When exfiltrating data, the RAT uses “CreateToolhelp32Snapshot” to create a snapshot of
the running processes and saves them to a file located here:
“C:\Users\Public\Documents\proc.db”

It then executes the SystemInfo command and saves the output to a file located here:
“C:\Users\Public\Documents\sys.db”

Each of these text files are uploaded to the C2 located at URI “/upload/upload.php”



7/10

If the download execute command is seen, it reads a base64 encoded string from the C2
server and decodes it. It then uses the ShellExecuteW to execute this.



8/10

If the DLL command is found, it will pull a DLL payload from the C2 and use rundll32 to
execute it. This DLL data is base64 encoded, and when pulled from the C2 it decodes it and
stores the decoded result in a memory block. The resultant payload is allocated using
“VirtualAlloc” and memory freed by VirtualFree. It attempts to generate a random string for
the DLL filename, if it can’t it uses a default string of “SuperBear”.



9/10

I won’t document the “do nothing” portion :). In the sample I had, the C2 was instructing to
only initiate the exfiltration recon activity described above. I wasn’t able to pull an addition
DLL payload. Maybe we will see what that DLL contains in the future. Definitely something to
look out for.

Final thoughts

I made all these samples available here:

VT Collection:
https://www.virustotal.com/gui/collection/454cfe3be695d0a387d7877c11d3b224b3e2c7d22fc
2f31f349b5c23799967ec/summary

Malware Bazaar:

SuperBear RAT (dumped PE from memory):
https://bazaar.abuse.ch/sample/282e926eb90960a8a807dd0b9e8668e39b38e6961b00
23b09f8b56d287ae11cb

https://www.virustotal.com/gui/collection/454cfe3be695d0a387d7877c11d3b224b3e2c7d22fc2f31f349b5c23799967ec/summary?ref=0x0v1.com
https://bazaar.abuse.ch/sample/282e926eb90960a8a807dd0b9e8668e39b38e6961b0023b09f8b56d287ae11cb?ref=0x0v1.com


10/10

AutoIT process injector:
https://bazaar.abuse.ch/sample/5305b8969b33549b6bd4b68a3f9a2db1e3b21c5497a5
d82cec9beaeca007630e/

Generally I think the RAT is pretty trivial and also demonstrated functionality similar to
xRAT/Quasar. Signature detection for it seem either generic or heuristic, so I’m not sure how
much more samples we’ll see but since Kimsuky have utilized that in the past, I am
wondering why this seems novel. Why did they move from using Quasar to something like
this? Also another question that makes me ponder is the utilization of AutoIT. There have
been recent reports of open-source tooling being used more by other threat groups in NK, is
there a connection here? Maybe I’m just trying to make something out of nothing but I think
it’s an interesting point to consider.

When I get round to it, I’ll add some Yara rules here and update this post.

Ovi

A bit about my new website:

This is a new site for me, I recently moved from Hugo to using Ghost. I am an independent
research - I do not work for corporations and only work with non-profit groups. For me,
getting my research out to as many people for the betterment of digital security is my goal. I
also wish to contribute directly to information security and human rights. In creating a
subscription list for my work, it helps me publish my research and get it out to the right
people. I hope, in time, I can continue to publish my research here without needing to rely on
media outlets to get the work heard. If you would like to support me, please consider
subscribing:

https://bazaar.abuse.ch/sample/5305b8969b33549b6bd4b68a3f9a2db1e3b21c5497a5d82cec9beaeca007630e/?ref=0x0v1.com

