
1/11

August 28, 2023

DreamBus Botnet Resurfaces, Targets RocketMQ
vulnerability

blogs.juniper.net/en-us/threat-research/dreambus-botnet-resurfaces-targets-rocketmq-vulnerability

In May 2023, a vulnerability affecting RocketMQ servers (CVE-2023-33246), which allows
remote code execution, was publicly disclosed. In a recent blog post, Juniper Threat Labs
provided a detailed explanation of how an exploit targeting this vulnerability works.

This vulnerability opened the gates for hackers to exploit the RocketMQ platform, leading to
a series of attacks. In fact, Juniper Threat Labs has detected multiple attacks where threat
actors took advantage of the vulnerability to infiltrate systems and subsequently install the
malicious DreamBus bot, a malware strain last seen in 2021.

In this blog post, we delve into the details of the attacks and the bot.

Attack Timeline

In early June, as shown above in Fig. 1, we began seeing attacks targeting this RocketMQ
vulnerability. The attacks reached a peak in volume towards mid-June. While the default port
for RocketMQ is 10911 (depicted in green in the figure above), it is worth noting that the
attacks targeted at least seven other ports.

https://blogs.juniper.net/en-us/threat-research/dreambus-botnet-resurfaces-targets-rocketmq-vulnerability
https://nvd.nist.gov/vuln/detail/CVE-2023-33246
https://blogs.juniper.net/en-us/threat-research/cve-2023-33246-apache-rocketmq-remote-code-execution-vulnerability

2/11

Fig. 1: Timeline of Recent RocketMQ attacks Observed by Juniper Threat Labs.
Interestingly, the initial attacks were non-destructive in nature. Rather than do damage,
malicious threat actors employed an open-source reconnaissance tool called ‘interactsh’ to
assess server vulnerabilities. Gathering information like this demonstrates their ability to
probe without relying on their own infrastructure. This method allows hackers to collect
valuable reconnaissance data.

Fig.

2: Attacks employing interactsh.

Fig. 3: Webpage of one interactsh server describing the tool.
Starting on June 19 , we detected a series of attacks that involved downloading and
executing a malicious bash script named, “reketed”. As it happens, on that same day, we
also observed malicious threat actors using two different methods to retrieve and execute
this malicious shell script. In one (refer to Fig. 4 below), the threat actors made use of the
TOR onion router web traffic service via a TOR proxy service called, “tor2web.in”. (Note that
use of this TOR proxy allows for the anonymous downloading of malicious payloads without
the presence of the actual TOR browser client on the victim’s system). In the other,
cybercriminals called for the retrieval and execution of the malicious “reketed” payload form
a specific IP address, 92[.]204.243.155 on port 8080 (refer to Fig. 5 below).

th

3/11

Fig. 4: Attack directly using TOR proxy service tor2web.in to download the payload.

Fig. 5: Attack showing threat actors using IP address 92[.]204.243.155 to download the
payload.

Reketed: Downloader Bash Script

Upon successful exploitation, the payload will execute the bash script named ‘reketed’
(hash: 1d0c3e35324273ffeb434f929f834b59dcc6cdd24e9204abd32cc0abefd9f047).
Interestingly, at the time of our analysis here at Juniper Threat Labs, this file had no
detections in VirusTotal (VT) as you can see below in Fig. 6.

Fig. 6: VT shows zero (0) anti-malware vendors detected malicious ”reketed” bash script.
The primary function of the reketed bash shell script is to download the DreamBus main
module from a TOR hidden service,
“ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad.onion”. When run,
the malicious reketed bash shell script downloads the DreamBus main module, which is an
ELF binary file, and installs it. The script assigns it a 20-character filename. To determine
the filename, the script uses the first 20 characters of the 32-character md5 checksum
performed on the current date (i.e., date|md5sum|head -c20).

In our analysis, the reketed bash script exhibits some obfuscation techniques, with
randomized names assigned to functions and variables. However, after fixing the variables,
the script becomes intelligible and thus more readily analyzed. See the contents of the
reketed script after being deobfuscated in Fig. 7 below.

Once the DreamBus main module is successfully downloaded, “reketed” script promptly
executes the ELF binary and subsequently deletes it, adding a layer of complexity to
potential forensic investigations.

4/11

Fig.

7: Reketed script after fixing the structure and renaming the variables.

DreamBus Main Module

The sha256sum of the downloaded main module is
601a2ff4a7244ed41dda1c1fc71b10d3cfefa34e2ef8ba71598f41f73c031443. At the time of
our analysis, the malicious DreamBus main module – like the reketed malicious shell script –
showed no detections in VirusTotal (as shown in Fig. 8 below).

The DreamBus main module is an ELF Linux binary that has been packed with UPX, but with
modified headers and footers that make unpacking more challenging. With this simple trick
by the malware authors, the out-of-the-box UPX tool cannot unpack it (refer to Fig. 9 below).
This will also make static detection challenging as engines typically need to unpack files first
(e.g., UPX packed samples) before scanning. For this file, we needed to fix the UPX
headers. Doing so proved sufficient for the UPX tool to unpack it.

5/11

Fig. 8: VT shows zero (0) anti-malware vendors detected DreamBus main module ELF file

Fig. 9: Modified UPX

header of the ELF binary.
After unpacking, and upon static analysis of the DreamBus main module binary, we
discovered that it executes numerous base64 encoded strings. These encoded strings (refer
to Fig. 10 and Fig. 11 below) are script files with different functionalities, that include
downloading other malicious modules. We will provide more details on these later in this blog
post.

6/11

Fig. 10: Snippet of code executing the base64 encoded shell scripts in the linux binary.

Fig.

11: Base64 encoding shell scripts in the linux binary.
These base64 encoded strings decodes into a bash script resembling the “reketed” script
described earlier in this blog post. The script can perform various functions, such as
downloading other modules, by sending requests to the TOR onion service using different
path names. For instance, the bot can send requests to the following paths:

ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad[.]onion/ping
ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad[.]onion/mine
ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad[.]onion/cmd1
ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad[.]onion/kill

During our analysis, we identified several capabilities possessed by the malware. Upon
executing each capability, it will send a corresponding request to the server, providing
notification of the actions it has taken.

Request Description

{onion
site}/ping

Beacon out to the server advertising that it is alive

{onion
site}/exec

Download and execute main module

7/11

{onion
site}/mine

Download and install a monero miner

{onion
site}/cmd1

Execute bash script

{onion
site}/cmd2

Execute a bash script while including in the request machine ID, IP,
hostname

As part of the installation routine, the malware terminates processes and eliminates files
associated with outdated versions of itself. Subsequently, it sends a request to {onion
site/kill} to notify the server about this action.

Spreader

DreamBus main module also has other paths in the request like the one ending in /scan,
which we are not able to verify as the request did not return anything at the time of our
analysis. DreamBus expects this request to return a file which it will install and execute. We
believe this module will scan a set of external and internal IP ranges and spread via exploits
as seen in previous DreamBus variants.

Furthermore, the DreamBus bot malware spread laterally. The malicious threat actors
leverage widely recognized IT automation tools like ansible, knife, salt and pssh (parallel
ssh). They employ a Base64 encoded string containing shell commands to infect remote
systems, facilitating the installation of the DreamBus main module. Additionally, this function
extracts hosts from the user’s bash_history, /etc/hosts file and ssh known_hosts file,
further aiding in the spread of the malware.

Fig. 12: Snippet of code showing how the malware spread using IT automation tools and

8/11

SSH.

Monero Miner

Upon initiating a request to the designated path
“ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad[.]onion”, the system
successfully retrieved an open-source Monero cryptocurrency miner program called XMRig.
The XMRig file’s sha256sum is
1c49d7da416474135cd35a9166f2de0f8775f21a27cd47d28be48a2ce580d58d. Again, as
with the DreamBus binary, XMRig is packed with UPX and has modified headers. Once
unpacked, the binary reveals its hardcoded configuration (refer to Fig. 13 below), which
includes joining the mining pool ‘p2pool.it’ for Monero cryptocurrency mining purposes. The
binary incorporates the username ‘x‘ and password ‘x‘ for authentication within the mining
pool.

Fig. 13:

Configuration of XMRig Monero cryptocurrency miner.

Persistence

To ensure persistent presence, the malware employs multiple mechanisms. Firstly, it
establishes a service named $HOME/.config/systemd/user/systemd-tmpfiles-cleanup.
Then, a “timer service” is implemented (refer to Fig. 14 below), scheduled to initiate the
above service on an hourly basis. Furthermore, a cron job (refer to Fig. 15 below) is created
and configured to execute the downloader script with the same hourly frequency. These
approaches enable the threat actor to maintain their foothold consistently.

https://wiki.archlinux.org/title/systemd/Timers

9/11

Fig. 14:

Snippet of code that creates Timer service for persistence.

Fig.

15: Snippet of code that creates cron job.

Conclusion

As DreamBus malicious threat actors resurface, their primary objective remains the
installation of a Monero cryptocurrency miner. However, the presence of a modular bot like
the DreamBus malware equipped with the ability to execute bash scripts provides these
cybercriminals the potential to diversify their attack repertoire, including the installation of
various other forms of malware. Their preferred means of initial access revolves around
exploiting vulnerabilities, particularly recent ones that result in remote code execution like the
RocketMQ vulnerability CVE-2023-33246. To protect organizations from DreamBus malware,
RocketMQ and similar attacks, Juniper highly recommends implementing robust patch
management processes to ensure any would-be vulnerable systems are updated in a timely
manner and protected against these and an evolving set of malicious threats.

Juniper ATP Cloud detects this malware using Machine Learning based on static and
behavioral analysis.

https://www.juniper.net/us/en/products/security/advanced-threat-prevention.html

10/11

Juniper SRX customers with an IDP license are protected against this RocketMQ
vulnerability using the signature below (released with IDP sigpack #3604):

TCP:C2S:APACHE-ROCKETMQ-UPDT-CE

Indicators of Compromise

Indicator Description

92[.]204.243.155 Download
Server

ru6r4inkaf4thlgflg4iqs5mhqwqubols5qagspvya4whp3dgbvmyhad.onion .onion
Download
and Control
Server

1d0c3e35324273ffeb434f929f834b59dcc6cdd24e9204abd32cc0abefd9f047 Bash script
downloader

1c49d7da416474135cd35a9166f2de0f8775f21a27cd47d28be48a2ce580d58d XMRig
Miner

601a2ff4a7244ed41dda1c1fc71b10d3cfefa34e2ef8ba71598f41f73c031443 DreamBus
Bot

153b0d0916bd3150c5d4ab3e14688140b34fdd34caac725533adef8f4ab621e2 DreamBus
Bot

e71caf456b73dade7c65662ab5cf55e02963ee3f2bfb47e5cffc1b36c0844b4d DreamBus
Bot

9f740c9042a7c3c03181d315d47986674c50c2fca956915318d7ca9d2a086b7f DreamBus
Bot

11/11

371319cd17a1ab2d3fb2c79685c3814dc24d67ced3e2f7663806e8960ff9334c DreamBus
Bot

21a9f094eb65256e0ea2adb5b43a85f5abfbfdf45f855daab3eb6749c6e69417 DreamBus
Bot

0a8779a427aba59a66338d85e28f007c6109c23d6b0a6bd4b251bf0f543a029f DreamBus
Bot

