
1/30

August 15, 2023

Technical analysis of WarZoneRAT malware
muha2xmad.github.io/malware-analysis/warzonerat/

18 minute read

بسم الله الرحمن الرحيم

FreePalestine

https://muha2xmad.github.io/malware-analysis/warzonerat/

2/30

Introduction

We will start analyzing Ave Maria known as WARZONE RAT. Ave Maria is a Remote Access
Trojan (RAT) which provides some capabilities, such as stealing Cookies stealing
passwords, Keylogging (online and offline), Windows Defender Bypass, and Remote
WebCam.

We can take a look at what this threat actor provides to its customers from its site
warzone[.]ws.

Figure Screenshot of the RAT capabilities from warzone[.]ws

3/30

Figure Screenshot of the RAT capabilities from warzone[.]ws

And special thanks for Abdallah Elshinbary for his continuous help and support.

Technical summary

When the attaker wants to start a command, it will send to the RAT a hex number. Every hex
number has a specific action to be done.

Password and Cookies Recovery: When it comes to RATs, then it has something with
browsers and Email clients. The malware will harvist the cookies, passwords, history,
and configurations of browsers. And steal passords and configruations of Email clients.

https://twitter.com/_n1ghtw0lf

4/30

Keylogging: Any RAT has the capability to log any keystrokes, but Warzone RAT has
the two types of Keylogging which are the live keylogger and the offline keylogger.

Recording audio: The RAT has the capability to record audio and save it to .wav file
and send it to the C2 server.

HRDP: This allows the attacter to connect and control the victim’s device without
knowing or alerting the victim using Hidden RDP.

Enumerate processes, disks, and files: The malware can enumerate the currently
running processes, disks and their types, and files inside a specific directory.

File Manager: The RAT gives its customers the ability to download and upload files
from the victim’s computer, execute a file, and delete files. And compress any directory
or folder inside the victim’s computer using a command and send it to the C2 server.

Other features: The malware can terminate any process the attacker wants, uninstall
itself by terminating its thread and delete itself from registries, restart the device using
commands and create a process to check connectivity, and take screen shots from the
victim’s device.

Password and Cookies Recovery

Onece the attacker sends the command to the RAT which will be 0x20 in hex, the malware
will create a thread to start Password Recovery action. The RAT will start stealing the saved
passwords, configurations, cookies, and history from browsers and extract profiles and
passwords from some email services. Then encrypt the data and send it to the C2 server
then terminate the thread.

First, the malware will steal the Cookies from Chromium-based browsers such as Google
chrome and Microsoft edge by quering select host_key, path, name, encrypted_value,
expires_utc, is_httponly, samesite, is_secure from cookies from the cookies table
in Cookies database and steal Cookies from Mozilla firefox browser by quering SELECT
host, path, name, value, expiry, isHttpOnly, isSecure FROM moz_cookies from the
moz_cookies table.

The w_query_get_chrome_based_cookies (sub_40C5FA) function uses
SHGetSpecialFolderPathW to get the AppData path, than append the the cookies path
\Google\Chrome\User Data\Default\Network\Cookies to Appdata path
C:\Users\user\AppData\Local\.It will be like this
C:\Users\user\AppData\Local\Google\Chrome\User Data\Default\Network\Cookies

The malware uses the same way to get the all sensitive databases that contain sensitive
data such as Login Data, History of browsers.

5/30

Figure Steal Cookies from browsers - sub_40DC9D

Next, the malware will go after the History of the user’s browsers the same as stealing the
cookies. For Chromium-based, quering SELECT url, title, visit_count,
last_visit_time FROM urls and Mozzilla quering SELECT url, title, visit_count,
last_visit_date FROM moz_places.

Figure Steal History from browsers - sub_40DC9D

In the next figure, the malware will steal the passwords and configurations of specific
browsers. By quering select signon_realm, origin_url, username_value,
password_value from logins from logins table of Login Data db.

6/30

Figure Steal password and configurations from browsers - sub_40DC9D

For Email serivices, the malware will go after outlook (sub_4104A0), Foxmail (sub_410981),
Thunderbird (sub_40FA23) Email clients.

As we can see in the next figure, the malware will steal the configurations and login data
from Thunderbird email client.

Figure Steal Configurations from Thunderbird - sub_40FA23

7/30

After stealing the sensitive data from browsers and Email clients, the malware will encrypt
the stolen data using customized RC4 encryption algorithm then send it to the C2 server.
The malware uses nevergonnagiveyouup as encryption key to customized RC4 algorithm.
After encryption, the malware will send it using sockets.

Figure Customized RC4 encryption algorithm - sub_406244

The list of targeted browsers

Expand to see more

  Mozilla Firefox

  Google Chrome

  Epic Privacy Browser

  Microsoft Edge

  UCBrowser

  QQBrowser

  Opera Software

  Blisk

  Chromium

  Brave-Browser

  Vivaldi

  Comodo

  Torch

8/30

  Slimjet
  CentBrowser

  Internet Explorer

The list of the targeted Email clients:

Outlook

Thunderbird

Foxmail

Keylogging

The RAT has the two types of keylogging which are the live keylogger and the offline
keylogger. The offline keylogger is run when the victim is offline.

When the attaker sends the command 0x24 in hex, the RAT will start a thread of Live
keylogger function.

Figure Live and offline keylogging - sub_40A78D

The malware will create a directory Microsoft Vision in the AppData directory then create a
file with a timestamp-based name. The malware will try to get the Keyboard input messages
such as WM_KEYDOWN or WM_KEYUP which are generated by the OS when the victim interacts
with the keyboard by using GetMessageA API.

9/30

Figure How keylogging is working - sub_40A86E

Inside the w_mw_get_clipboard_data_keyboard_in (sub_40ADCA) function, we will know that
the malware will try to grab the clipboard data inside the mw_get_clipboard_data
(sub_4174BA). Then encrypte the data and send to the C2 server if it’s the live keylogger or
write the grabbed data to a file then encrypted it and send to the C2 server if it’s offline
keylogger.

Figure clipboard grabber - sub_40ADCA

Figure How malware grab clipboard data - sub_4174BA

10/30

After grabbing the clipboard data, the malware will start keylogging by getting the windows
name and check the keyboad input state using w_GetKeyboardState (sub_40AAFD) function
and check if is Shift or Caps Lock pushed. And if Shift or Caps Lock were pushed, the
w_ToLowerCase (sub_401098) function will convert the uppercase to lowercase.

Then encrypte the logs and send to the C2 server if it’s the live keylogger or write the
grabbed logs to a file then encrypted it and send to the C2 server if it’s offline keylogger.

The logs are #Window Name: , is Shift or Caps Lock pushed, keystrokes.

Figure The RAT keylogging the victim - sub_40ADCA

When the malware receives the command 0x26 in hex, the malware terminate the thread
which runs the keylogging function.

Figure Terminate the thread which runs the keylogging function - sub_40528D

Recording Audio

11/30

The RAT has two functions for recording audio mw_record_audio (sub_40B46F) and
mw_record_audio_0 (sub_040BB1C). The command is 0x54 in hex to start one function in a
thread.

Figure Two recording function - sub_40528D

Inside The first function mw_record_audio (sub_40B46F), we see that waveInOpen API Opens
the audio input device for recording with the configuration parameters from the pwfx
structure. And save the record in a time-based .wav file. And even it can prepare for a new
recording audio. This function only records audio and save the .wav file.

12/30

Figure mw_record_audio function - sub_40B46F

And inside the second function mw_record_audio_0 (sub_040BB1C), it does what this
mw_record_audio function is doing. But after recording audio and save the .wav file, it
encrypt and send it to the C2 server before starting a new record.

Figure Sending the audio file to the C2 server - sub_040BB1C

13/30

waveInUnprepareHeader function is called after the audio was recorded and captured in the
buffer which is a cleanup process.

To terminate recording audio, the RAT get the command 0x5A in hex.

HRDP

The RAT provides a remote access to victim’s device using Hidden RDP (HRDP) to remotely
connect to and control the device without knowing or alerting the victim.

The malware first get value of ServiceDll registry inside the
SYSTEM\\CurrentControlSet\\Services\\TermService\\Parameters which will be the
path %SystemRoot%\System32\termsrv.dll to termsrv.dll.

termsrv.dll is The DLL which handles the functionality and settings of the Remote Desktop
Protocol (RDP).

FigureGet the path to termsrv.dll - sub_412446

After that, the malware will add a new user account special properties or behaviors such as
hiding the user account from login screen.

First, the malware will create this key SOFTWARE\\Microsoft\\Windows
NT\\CurrentVersion\\Winlogon\\SpecialAccounts\\UserList and set the value of
UserList registry to 0 to hide the user account from login screen. inside the
mw_add_user_account (sub_41313D), it adds a new user account using NetUserAdd API and
adds the user to a local group using NetLocalGroupAddMembers API.

14/30

Figure Hide the user acount from login screen - sub_411BC1

Then the malware will create a thread to start start_RDP (sub_412003). This function open a
registry key SYSTEM\\CurrentControlSet\\Services\\TermService to get the entry value
of ImagePath which is %SystemRoot%\System32\svchost.exe -k NetworkService and get
svchost.exe -k NetworkService which is used to run an instance of svchost.exe under
the context of the NetworkService. And get the entry value of ServiceDll which is
%SystemRoot%\System32\termsrv.dll.

This is because The malware will invoke an instance of svchost.exe using svchost.exe -k
NetworkService command and load the termsrv.dll DLL file into svchost.exe.

Figure Load termsrv.dll into svchost.exe - sub_41263D

15/30

Inside sub_412B16 function, the malware continues changing the registry values to enable
RDP.

Change the registry fDenyTSConnections inside
SYSTEM\\CurrentControlSet\\Control\\Terminal Server and set to its value to
false (0) to enable RDP connetions.

Change the registry EnableConcurrentSessions inside
SYSTEM\\CurrentControlSet\\Control\\Terminal Server\\Licensing Core and
set to its value to false (0) to prevent opening two sessions at the same time.

Change the registry AllowMultipleTSSessions inside
SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Winlogon and set to its value
to false (0) to prevent opening two sessions at the same time.

Change the registry Name value to RDPClip and change Type registry its value to 3
inside SYSTEM\\CurrentControlSet\\ControlTerminal Server\\AddIns\\Clip
Redirector to enable copy and paste from attacker device to victim device.

Figure Change some registry keys - sub_412B16

After the malware changed the settings needed, it uses RDP_check which connect to
127.0.0.1:3389 to check if the it’s working and send the return to the C2 server.

16/30

Figure RDP check - sub_412510

Enumerate processes, disks, and files

The RAT has the ability to get more information about victim’s device by enumerating
processes, disks, and files of the victim’s device. And send a spicific file to the C2 server.

Figure Enumerate processes, disks, and files - sub_40528D

The malware has the ability to enumerate currently running processes using
CreateToolhelp32Snapshot API and get the full path of the associated executable file using
K32GetModuleFileNameExW API. The command is 2.

17/30

Figure Get running processes and path of the associated executable file - sub_415C5D

When the malware get the command 4, it starts enumerating logical disks of the victim’s
device using GetLogicalDriveStringsW API and gets its type if it’s removable, disk, or
network drive by using GetDriveTypeW API.

Figure Get list of logical disks and its type - sub_414E4E

18/30

The RAT can enumerate files inside a directory and collect info about each file then collect
these info to be sent to the C2 server.

Figure Enumerate files inside a directory - sub_414F8B

File Manager

The RAT gives its customers the ability to download and upload files from the victim’s
computer, execute a file, and delete files. And even will try to compress any directory or
folder inside the victim’s computer using a command and send it to the C2 server.

The malware has the ability to send a file to the attacker. Inside the mw_send_file_to_c2
function, the malware will create a thread to send a file to the C2 server.

19/30

Figure send a file to the attacker - sub_40929F

And download files from the attacker side to the victim’s machine and execute it.

Figure How the RAT Download and Execute a file - sub_40205E

And execute any dropped files on the victim’s computer. The dropped file will be in the temp
directory.

20/30

Figure Find path of dropped file and execute it - sub_40205E

And execute any specific file on the victim’s computer.

Figure execute a file - sub_40528D

The malware will try to compress one directory or more than one directory using powershell
to a .zip file while hiding the PowerShell window using the command powershell.exe -
windowstyle hidden -Command "Compress-Archive -Path
'C:\Path\To\Your\Directory' -DestinationPath 'C:\Path\To\Your\Archive.zip'"

21/30

Figure Compress directories - sub_41731E

Other features

Terminate a process

The malware will get the currently running processes, and terminate any process the
attacker wants.

Figure Terminate any process - sub_401BA7

Uninstall the RAT

The malware has the ability to uninstall itself by terminating its thread and delete itself from
registries.

22/30

Figure Terminate its thread and delete reg - sub_4166D0

Restart the system and check connectivity

The RAT can restart the device using commands and create a process to check connectivity.

there is two methods to restart the device:

1. using command shutdown.exe /r /t 00 to restart the computer or force the restart
using shutdown.exe /r /f /t 00 command while hiding the execution window using
WinExec function.

2. The malware will attempt to elevate privileges to perform a hard system shutdown. It
first loads ntdll.dll, retrieves the function pointers for RtlAdjustPrivilege and
NtRaiseHardError, adjusts the privilege level, and then raises a hard system error with
the status code STATUS_FLOAT_MULTIPLE_FAULTS.

Figure Restart the system - sub_4022D8

Take screenshot

The malware can start a thread and run the function to take screen shots. The malware
checks for recent user activity using GetLastInputInfo compares to 30 minutes. If there
was recent activity, it captures the foreground window’s content as a screenshot and saves it
as a JPEG file with a time-based name.

23/30

Figure Taking screen shots - sub_413896

Configuration extractor

The malware encrypt its configuration with customized RC4 algorithm. The malware stores
the configuration in the .bss section and the The format of the configuration is: [Key
length][RC4 key][Encrypted data]. So we used m4n0w4r’s to decrypt the configuration.

You can see the code in the jupyter notebook in my github from here

https://twitter.com/kienbigmummy
https://github.com/muha2xmad/Python/blob/bdc7a711d5a775f8ae47b591f20fdd2e1360b77b/warzonerat/warzonerat_config_extraction.ipynb

24/30

Refs: https://stackoverflow.com/questions/9433541/movsx-in-python

def SIGNEXT(x, b):

 m = (1 << (b -1))

 x = x & ((1 << b) -1)

 return ((x ^ m) - m)

This routine is responsible for decrypting the stored C2.

def rc4_customized_decryptor(data, key):

 idx = 0

 counter1 = 0

 counter2 = 0

 # Initialize RC4 S-box

 rc4Sbox = list(range(256))

 # Modify RC4 S-box

 for i in range(256):

 counter2 += (rc4Sbox[i] + key[i%250])

 counter2 = counter2 & 0x000000FF

 rc4Sbox[i] ^= rc4Sbox[counter2]

 rc4Sbox[counter2 & 0xFF] ^= rc4Sbox[counter1 & 0xFF]

 rc4Sbox[counter1 & 0xFF] ^= rc4Sbox[counter2 & 0xFF]

 counter1 = i+1

 # Decrypt data

 counter1 = 0

 counter2 = 0

 j = 0

 decrypted = []

 while(idx < len(data)):

 counter1 = j + 1

 k = (j+1)

 rc4Sbox_value1 = rc4Sbox[k]

 counter2 += (SIGNEXT(rc4Sbox_value1, 8) & 0xFFFFFFFF)

 rc4Sbox_value1_ = (SIGNEXT(rc4Sbox_value1, 8) & 0xFFFFFFFF)

 rc4Sbox_value2 = rc4Sbox[counter2 & 0x000000FF]

 rc4Sbox[k] = rc4Sbox_value2

 rc4Sbox[(counter2 & 0x000000FF)] = rc4Sbox_value1

 tmp1 = rc4Sbox[((0x20 * counter1) ^ (counter2 >> 3)) & 0x000000FF]

 tmp2 = rc4Sbox[((0x20 * counter2) ^ (counter1 >> 3)) & 0x000000FF]

 tmp3 = rc4Sbox[((tmp1 + tmp2) & 0x000000FF) ^ 0xAA]

 tmp4 = rc4Sbox[(rc4Sbox_value2 + rc4Sbox_value1_) & 0x000000FF]

 tmp5 = (tmp3 + tmp4) & 0x000000FF

 tmp6 = rc4Sbox[(counter2 + rc4Sbox_value2) & 0x000000FF]

 decrypted.append(data[idx] ^ (tmp5 ^ tmp6))

 counter1 += 1

 j = counter1

 idx += 1

 return bytes(decrypted)

25/30

def unicode_strings(buf, n=4):

This function makes problems when i upload it in github. So you need to got from
OALABS

Get unicode_strings function from
https://research.openanalysis.net/warzone/malware/config/2021/05/31/warzone_rat_confi
g.html

import pefile

import struct

Load the PE file using pefile

pe = pefile.PE(r"") # Put your file path

Initialize variable to store .bss section data

bss_section_data = None

Iterate through sections to find the .bss section

for section in pe.sections:

 section_name = section.Name

 if section_name.startswith(b'.bss'):

 bss_section_data = section.get_data()

Extract the key size and key from the .bss section

key_size = struct.unpack('<I', bss_section_data[:4])[0]

key = bss_section_data[4:4 + key_size]

because the key is 250 bytes. We extracted 50 bytes from bss section and fill the
rest with zeros

key = key + b'\x00' * (250 - len(key))

Extract encrypted data from the .bss section

enc_data = bss_section_data[4 + key_size:]

enc_data = enc_data.split(b'\x00\x00\x00\x00\x00\x00\x00\x00')[0]

Decrypt the encrypted data using a custom RC4 decryptor

dec_data = rc4_customized_decryptor(enc_data, key)

Extract C2 host length and host string

host_len = struct.unpack('<I', dec_data[:4])[0]

host_wide = dec_data[4:host_len+4]

c2_host = unicode_strings(host_wide)[0]

Extract C2 port

c2_port = struct.unpack('<H', dec_data[host_len+4:host_len+4+2])[0]

Print the extracted C2 host and port

print("C2 host: %s, port: %d" % (c2_host, c2_port))

26/30

The C2 host is 89.117.76.41 and the port is 4422.

Yara

27/30

rule warzonerat_aveaariarat {

 meta:

 description = "Detects warzonerat/aveaariarat malware"

 author = "muha2xmad"

 date = "2023-08-24"

 hash1 = "f65a8af1100b56f2ebe014caeaa5bb2fbbca2da76cb99f3142354e31fbba5c8c"

 strings:

 $browser_str001 = "\\Google\\Cache\\" fullword ascii wide

 $browser_str002 = "\\Google\\Chrome\\User Data\\Local State" fullword ascii
wide

 $browser_str003 = "\\Google\\Chrome\\User Data\\Default\\Network\\Cookies"
fullword ascii wide

 $browser_str004 = "\\Microsoft\\Edge\\User Data\\Default\\Network\\Cookies"
fullword ascii wide

 $browser_str005 = "\\Google\\Chrome\\User Data\\Default\\History" fullword
ascii wide

 $browser_str006 = "\\Google\\Chrome\\User Data\\Default\\Login Data" fullword
ascii wide

 $browser_str007 = "\\Google\\Chrome Beta\\User Data\\Default\\Login Data"
fullword ascii wide

 $browser_str008 = "\\Microsoft\\Edge\\User Data\\Default\\Login Data"
fullword ascii wide

 $browser_str009 = "\\logins.json" fullword ascii wide

 $browser_str010 = "\\Tencent\\QQBrowser\\User Data\\Local State" fullword
ascii wide

 $browser_str011 = "\\UCBrowser\\User Data_i18n\\Default\\UC Login Data.17"
fullword ascii wide

 $browser_str012 = "\\Google\\Media\\" fullword ascii wide

 $browser_str013 = "\\Google\\Cache\\" fullword ascii wide

 $browser_str014 = "\\Google\\Cache\\" fullword ascii wide

 $reg_str001 =
"Software\\Microsoft\\Office\\15.0Outlook\\Profiles\\Outlook\\9375CFF0413111d3B88A001
04B2A6676" fullword wide

 $reg_str002 = "software\\Aerofox\\FoxmailPreview" fullword wide

 $reg_str003 = "SOFTWARE\\Microsoft\\Windows
NT\\CurrentVersion\\Winlogon\\SpecialAccounts\\UserList" fullword wide

 $reg_str004 = "SYSTEM\\CurrentControlSet\\Services\\TermService\\Parameters"
fullword wide

 $reg_str005 = "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Winlogon"
fullword wide

 $reg_str006 = "SYSTEM\\CurrentControlSet\\ControlTerminal
Server\\AddIns\\Clip Redirector" fullword wide

 $reg_str007 = "SYSTEM\\CurrentControlSet\\Services\\TermService" fullword
wide

 $str001 = "QAaR$43!QAFff" fullword wide

28/30

 $str002 = "?lst@@YAXHJ@Z" fullword wide

 $str003 = "RDPClip" fullword wide

 $str004 = "AllowMultipleTSSessions" fullword wide

 $str005 = "fDenyTSConnections" fullword wide

 $str006 = "svchost.exe -k" fullword wide

 $str007 = "#Window Name: " fullword wide

 $str008 = "profiles.ini" fullword wide

 $str009 = "-Clipboard Grabbed-" fullword wide

 $str010 = "#Window Name: " fullword wide

 $str011 = ".zip" fullword wide

 $str012 = "SeDebugPrivilege" fullword wide

 $str013 = "rudp" fullword wide

 $str014 = "rpdp" fullword wide

 $APIs_str001= "SHGetKnownFolderPath" fullword ascii

 $APIs_str002= "SHGetSpecialFolderPathW" fullword ascii

 $APIs_str003= "SHCreateDirectoryExW" fullword ascii

 $APIs_str004= "SHGetFolderPathW" fullword ascii

 $APIs_str005= "Wow64DisableWow64FsRedirection" fullword ascii

 $command001 = "powershell Add-MpPreference -ExclusionPath " fullword wide

 $command002 = "powerShell.exe -windowstyle hidden -Command \"Compress-Archive
-Path ' " fullword wide

 $command003 = "shutdown.exe /r /t 00" fullword wide

 $command004 = "cmd.exe /C ping 1.2.3.4 -n 4 -w 1000 > Nul & cmd.exe /C "
fullword wide

 $command005 = "powershell Add-MpPreference -ExclusionPath " fullword wide

 $command006 = "%SystemRoot%\\System32\\termsrv.dll" fullword wide

 condition:

 uint16(0) == 0x5a4d and (10 of ($browser_str0*) or 5 of ($reg_str0*) or 10 of
($str0*) or 5 of ($APIs_str*) or 5 of ($command0*))

}

Commands

Hex command Description

0xC Terminate a process

0xE start remote shell

2 enumerate processes

4 enumerate disks

6 enumerate files

8 or 0x4A send file to c2

29/30

Hex command Description

0x22 download and execute

0x1A uninstall the RAT from device

0x1C execute dropped file

0x20 password recovery

0x24 start keylogger

0x26 terminate keylogger

0x28 setup and start RDP

0x4E start RDP

0x3A execute a specific file

0x48 create cmd process inject shellcode

0x4C restart, cleanup, and delete

0x5C take screenShot

0x5E terminate taking screenshot

0x60 compress directory/directories

0x5A terminate recording audio

0x54 record audio

IoCs

Sample sha256 hash:
f65a8af1100b56f2ebe014caeaa5bb2fbbca2da76cb99f3142354e31fbba5c8c

C2: 89.117.76.41:4422

MITRE ATT&CK

I used pestudio PRO tool for helping to draw MITRE ATT&CK.

https://www.unpac.me/results/46f34766-957e-49be-898b-b4a36b6f3b7d?hash=f65a8af1100b56f2ebe014caeaa5bb2fbbca2da76cb99f3142354e31fbba5c8c#/
https://www.winitor.com/download

30/30

T1595: Active

Scanning

T1592:
Gather Victim
Host Information

T1589: Gather
Victim Identity
Information

T1590: Gather
Victim Network
Information

T1591:
Gather Victim
Org Information

T1598: Phishing

for Information

T1597: Search

Closed Sources

T1596: Search
Open Technical
Databases

T1593:
Search Open
Websites/Domains

T1594: Search
Victim-Owned
Websites

Reconnaissance

T1650:

Acquire Access

T1583: Acquire

Infrastructure

T1586: Compromise

Accounts

T1584: Compromise

Infrastructure

T1587: Develop

Capabilities

T1585: Establish

Accounts

T1588: Obtain

Capabilities

T1608: Stage

Capabilities

Resource
Development

T1189: Drive-by

Compromise

T1190: Exploit
Public-Facing
Application

T1133: External

Remote Services

T1200: Hardware

Additions

T1566:

Phishing

T1091: Replication
Through
Removable Media

T1195: Supply

Chain Compromise

T1199: Trusted

Relationship

T1078: Valid

Accounts

Initial
Access

T1651: Cloud
Administration
Command

T1059: Command
and Scripting
Interpreter

T1609: Container
Administration
Command

T1610: Deploy

Container

T1203:
Exploitation for
Client Execution

T1559:
Inter-Process
Communication

T1106:

Native API

T1053: Scheduled

Task/Job

T1648: Serverless

Execution

T1129: Shared

Modules

T1072: Software

Deployment Tools

T1569: System

Services

T1204: User

Execution

T1047: Windows
Management
Instrumentation

Execution

T1098: Account

Manipulation

T1197:

BITS Jobs

T1547: Boot or
Logon Autostart
Execution

T1037: Boot or
Logon Initialization
Scripts

T1176: Browser

Extensions

T1554:
Compromise Client
Software Binary

T1136: Create

Account

T1543:
Create or Modify
System Process

T1546:
Event Triggered
Execution

T1133: External

Remote Services

T1574: Hijack

Execution Flow

T1525: Implant

Internal Image

T1556: Modify
Authentication
Process

T1137: Office
Application
Startup

T1542:

Pre-OS Boot

T1053: Scheduled

Task/Job

T1505:
Server Software
Component

T1205: Traffic

Signaling

T1078: Valid

Accounts

Persistence

T1548:
Abuse Elevation
Control Mechanism

T1134:
Access Token
Manipulation

T1547: Boot or
Logon Autostart
Execution

T1037: Boot or
Logon Initialization
Scripts

T1543:
Create or Modify
System Process

T1484:
Domain Policy
Modification

T1611: Escape

to Host

T1546:
Event Triggered
Execution

T1068: Exploitation
for Privilege
Escalation

T1574: Hijack

Execution Flow

T1055: Process

Injection

T1053: Scheduled

Task/Job

T1078: Valid

Accounts

Privilege
Escalation

T1548:
Abuse Elevation
Control Mechanism

T1134:
Access Token
Manipulation

T1197:

BITS Jobs

T1612: Build

Image on Host

T1622: Debugger

Evasion

T1140:
Deobfuscate/Decode
Files or Information

T1610: Deploy

Container

T1006: Direct

Volume Access

T1484:
Domain Policy
Modification

T1480: Execution

Guardrails

T1211:
Exploitation for
Defense Evasion

T1222: File and
Directory Permissions
Modification

T1564: Hide

Artifacts

T1574: Hijack

Execution Flow

T1562: Impair

Defenses

T1070: Indicator

Removal

T1202: Indirect

Command Execution

T1036:

Masquerading

T1556: Modify
Authentication
Process

T1578: Modify
Cloud Compute
Infrastructure

T1112: Modify

Registry

T1601: Modify

System Image

T1599: Network

Boundary Bridging

T1027:
Obfuscated Files
or Information

T1647: Plist

File Modification

T1542:

Pre-OS Boot

T1055: Process

Injection

T1620: Reflective

Code Loading

T1207: Rogue

Domain Controller

T1014:

Rootkit

T1553: Subvert

Trust Controls

T1218:
System Binary
Proxy Execution

T1216:
System Script
Proxy Execution

T1221: Template

Injection

T1205: Traffic

Signaling

T1127: Trusted
Developer Utilities
Proxy Execution

T1535:
Unused/Unsupported
Cloud Regions

T1550: Use Alternate
Authentication
Material

T1078: Valid

Accounts

T1497:
Virtualization/Sandbox
Evasion

T1600: Weaken

Encryption

T1220: XSL

Script Processing

Defense
Evasion

T1557:

Adversary-in-the-Middle

T1110:

Brute Force

T1555:
Credentials from
Password Stores

T1212:
Exploitation for
Credential Access

T1187: Forced

Authentication

T1606: Forge

Web Credentials

T1056: Input

Capture

T1556: Modify
Authentication
Process

T1111: Multi-Factor
Authentication
Interception

T1621: Multi-Factor
Authentication
Request Generation

T1040: Network

Sniffing

T1003:
OS Credential
Dumping

T1528:
Steal Application
Access Token

T1649: Steal or
Forge Authentication
Certificates

T1558:
Steal or Forge
Kerberos Tickets

T1539: Steal Web

Session Cookie

T1552: Unsecured

Credentials

Credential
Access

T1087: Account

Discovery

T1010:
Application
Window Discovery

T1217: Browser
Information
Discovery

T1580: Cloud
Infrastructure
Discovery

T1538: Cloud

Service Dashboard

T1526: Cloud

Service Discovery

T1619:
Cloud Storage
Object Discovery

T1613: Container
and Resource
Discovery

T1622: Debugger

Evasion

T1652: Device

Driver Discovery

T1482: Domain

Trust Discovery

T1083: File
and Directory
Discovery

T1615: Group

Policy Discovery

T1046: Network

Service Discovery

T1135: Network

Share Discovery

T1040: Network

Sniffing

T1201: Password

Policy Discovery

T1120: Peripheral

Device Discovery

T1069: Permission

Groups Discovery

T1057: Process

Discovery

T1012: Query

Registry

T1018: Remote

System Discovery

T1518: Software

Discovery

T1082: System
Information
Discovery

T1614:
System Location
Discovery

T1016: System
Network Configuration
Discovery

T1049: System
Network Connections
Discovery

T1033:
System Owner/User
Discovery

T1007: System

Service Discovery

T1124: System

Time Discovery

T1497:
Virtualization/Sandbox
Evasion

Discovery

T1210:
Exploitation of
Remote Services

T1534: Internal

Spearphishing

T1570: Lateral

Tool Transfer

T1563:
Remote Service
Session Hijacking

T1021: Remote

Services

T1091: Replication
Through
Removable Media

T1072: Software

Deployment Tools

T1080: Taint

Shared Content

T1550: Use Alternate
Authentication
Material

Lateral
Movement

T1557:

Adversary-in-the-Middle

T1560: Archive

Collected Data

T1123: Audio

Capture

T1119: Automated

Collection

T1185: Browser

Session Hijacking

T1115:

Clipboard Data

T1530: Data from

Cloud Storage

T1602: Data from
Configuration
Repository

T1213: Data
from Information
Repositories

T1005: Data from

Local System

T1039:
Data from Network
Shared Drive

T1025: Data from

Removable Media

T1074:

Data Staged

T1114: Email

Collection

T1056: Input

Capture

T1113: Screen

Capture

T1125: Video

Capture

Collection

T1071:
Application
Layer Protocol

T1092: Communication
Through
Removable Media

T1132: Data

Encoding

T1001: Data

Obfuscation

T1568: Dynamic

Resolution

T1573: Encrypted

Channel

T1008: Fallback

Channels

T1105: Ingress

Tool Transfer

T1104:
Multi-Stage
Channels

T1095:
Non-Application
Layer Protocol

T1571:

Non-Standard Port

T1572: Protocol

Tunneling

T1090:

Proxy

T1219: Remote

Access Software

T1205: Traffic

Signaling

T1102:

Web Service

Command
and Control

T1020: Automated

Exfiltration

T1030:
Data Transfer
Size Limits

T1048: Exfiltration
Over Alternative
Protocol

T1041:
Exfiltration
Over C2 Channel

T1011: Exfiltration
Over Other
Network Medium

T1052:
Exfiltration Over
Physical Medium

T1567:
Exfiltration
Over Web Service

T1029: Scheduled

Transfer

T1537:
Transfer Data
to Cloud Account

Exfiltration

T1531: Account

Access Removal

T1485: Data

Destruction

T1486:
Data Encrypted
for Impact

T1565: Data

Manipulation

T1491:

Defacement

T1561:

Disk Wipe

T1499: Endpoint

Denial of Service

T1495: Firmware

Corruption

T1490: Inhibit

System Recovery

T1498: Network

Denial of Service

T1496: Resource

Hijacking

T1489:

Service Stop

T1529: System

Shutdown/Reboot

Impact

Figure MITRE ATT&CK

Quote

ما كان ذنب السراب إنما دهشة العطشى

تم بحمد الله وتوفيقه لا بعلم ولا بعمل

References

[QuickNote] Decrypting the C2 configuration of Warzone RAT

WarZone RAT OALABS

Securonix Threat Labs Security Advisory

Phishing Campaign Delivering Three Fileless Malware: AveMariaRAT

WARZONE: BEHIND THE ENEMY LINES

https://kienmanowar.wordpress.com/2023/03/25/quicknote-decrypting-the-c2-configuration-of-warzone-rat/
https://research.openanalysis.net/warzone/malware/config/2021/05/31/warzone_rat_config.html
https://www.securonix.com/securonix-threat-labs-security-advisory-multistorm-leverages-python-based-loader-as-onedrive-utilities-to-drop-rat-payloads/
https://www.fortinet.com/blog/threat-research/phishing-campaign-delivering-fileless-malware-part-two

