Revisiting BLISTER: New development of the BLISTER loader

& elastic.co/security-labs/revisiting-blister-new-developments-of-the-blister-loader

50,
o

Subscribe

Preamble

In a fast-paced and ever-changing world of cybercrime threats, the tenacity and adaptability of
malicious actors is a significant concern. BLISTER, a malware loader initially discovered by Elastic
Security Labs in 2021 and associated with financially-motivated intrusions, is a testament to this
trend as it continues to develop additional capabilities. Two years after its initial discovery, BLISTER
continues to receive updates while flying under the radar, gaining momentum as an emerging
threat. Recent findings from Palo Alto’s Unit 42 describe an updated SOCGHOLISH infection chain
used to distribute BLISTER and deploy a payload from MYTHIC, an open-source Command and
Control (C2) framework.

Key takeaways

1/11

https://www.elastic.co/security-labs/revisiting-blister-new-developments-of-the-blister-loader
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://www.elastic.co/security-labs/elastic-security-uncovers-blister-malware-campaign
https://twitter.com/Unit42_Intel/status/1684583246032506880
https://redcanary.com/threat-detection-report/threats/socgholish/
https://github.com/its-a-feature/Mythic

» Elastic Security Labs has been monitoring malware loader BLISTER ramping up with new
changes, and ongoing development with signs of imminent threat activity

» New BLISTER update includes keying feature that allows for precise targeting of victim
networks and lowers exposure within VM/sandbox environments

o BLISTER now integrates techniques to remove any process instrumentation hook and has
modified its configuration with multiple revisions, now encompassing additional fields and
flags.

Overview

Our research uncovered new functionality that was previously absent within the BLISTER family,
indicating ongoing development. However, the malware authors continue to use a distinctive
technique of embedding malicious code in otherwise legitimate applications. This approach
superficially appears successful, given the low rates of detection for many vendors as seen in
VirusTotal. The significant amount of benign code and use of encryption to protect the malicious
code are likely two factors impacting detection.

(¥) No security vendors and no sandboxes flagged this file as malicious > Follow (* Reanalyze - Download ¥ = Similar + More ~
19b0db9a%a08ee113d667d924992a29¢d31c05f89582953ff5a52ad8f533f4b Size Last Analysis Date %
cryptopp.dil 1.67 MB 2 hours ago pLL ,-jﬂj

pedil 64bits detect-debug-environment long-sleeps

Community Score

Recently, Elastic Security Labs has observed many new BLISTER loaders in the wild. After
analyzing various samples, it's clear that the malware authors have made some changes and have
been watching the antivirus industry closely. In one sample from early June, we can infer that the
authors were testing with a non-production loader that displays a Message Box displaying the
strings “Test”.

2/11

https://www.virustotal.com/gui/file/b4f37f13a7e9c56ea95fa3792e11404eb3bdb878734f1ca394ceed344d22858f

Readers can see a disassembled view of this functionality below.

3
;5 int _ fastecall mein(int argc, const char **argv, const char **envp)
main proc near
EC 28 sub rsp, 28h
o xor rod, rod ; uType
85 9A E4 92 08 lea r8&, Caption ; "Test"
15 A3 E4 @2 @8 lea rdx, Text ; "Test"
xor eCxX, ecx ; hlind
B3 67 01 @@ call cs:MessageBoxh
XOor eax, eax
c4 28 add rsp, 28h
retn
main endp

By the end of July, we observed campaigns involving a new BLISTER loader that targeted victim
organizations to deploy the MYTHIC implant.

B " Results - WerFault.exe (2464) — | *
2,713 results.

Address Length Result &

0x15f1cledsas 17 , completed”;true

0x19f1cledsba 22 conhost. exe

0x19f1c1ed5d0 34 ond fc "%s” == s

0x15f1c1edsfa 14 DlIRunDIEntry

0x19f1cleda03 14 GetShellwindow

Ox19f1lcleds19 73 {"action™ "get_tasking”, “tasking_size™ -1, get_delegate_tasks":falze, "socks™[

0x19f1c1ed66d 39 {"action™: "past_response”, responses™: [

0x15f1cledaso 31 "process_response”™i{ Yes" "Yes}

0x15f1ciedsbd 14 L status™ "u”

0x19f1c1edsbf 13 %ol Fou_sp¥ou_%hu

0x15f1c1edéed 21 http:ffifconfig.me/ip

0x15f1cledoes 95 {is_file™:%s, "permissions™; {%s}, name ™ "%es”, "access_time™: Yollu, "modify_time ™ %ullu, "size ™ Yelu}

0x19f1lcled743 a2 "file_browser™:{"success":%%s, "update_deleted™%6s, host™ ™%%s", parent_path™ "3ts", 3%s, "files™: [

0x19f1c1ed7al 13 "processes”:[

0x15flclediae 203 s process_id™ %u, host™ "%s ", "architecture ™ "%es”, "name™; "%es", user”. "%s ", hin_path”™: "%s", "parent. ..

0x15f1cledss0 73 "upload™;{"chunk_size™ %, "file_id™: "%es", "chunk_rum™: 3%u, "full _path™: "%%s"}

0x19f1c1edBda a0 "download ™ {"file_id™: "%s", "chunk_num™: %%, “"chunk_data™ "%s"}

0x19f1c1ed917 34 {server_id"™:%ou, "exit™: ¥es, data™:”

0x15f1cieds3d 78 "download ™ {"total_chunks™: %%u, "full_path™:"%s", host™: "3%s", is_screenshot™: Sos}

0x19f1cled9sc 42 2 _profile™™%e", "uuid™ "%es”, "message™:”

0x19f1c 1ed9da 68 ol 2u, ¥l 20, Fe04u o020 %02 %185 Yos

0x19f1cleda20 30 <DIR =

Ox19ficiedas 40 Directory of "%s” W

Filter Save... Copy

At the time of this writing, Elastic Security Labs is seeing a stream of BLISTER samples which
deploy MYTHIC and have very low rates of detection.

3/11

Detections Size First seen Last seen Submitters
19BADBIASABBEET13D6670924992A29CD31CW5F89582953EFFSAS2AD8F533F4B
oo dll 0/70 167 VB 2023-08-09 2023-08-09 y)
cr opp. B
© yproRp 14:12:39 14:12:39 il
pedll 64bits detect-debug-environment long-sleeps
8B6EB2853AEIESFAFF4AFBB8377525C9348571EB1ARESB261C7557D662B158E1 2023-08-00 2023-08-09
lanpref.dl1 17869 1.70 MB s o 1)
© vanpre 14:04:03 14:04:03 nll
pedll B4bits detect-debug-environment long-sleeps
3FFF487BC45B879A1778643E09BB99F67CDCFEBEAF7F 158A4E6DFB2299BAC2TE 2023-08-09 2023-08-09
lanpref.d1l 1170 1.67 MB - - 1)
® vanpre 13:46:43 13:46:43 il
pedll B4bits
6558AC814046ECF3DABC69AFFEA28CEY3524F93488518D847E4F03B9327ACB44
. 2023-08-09 2023-08-09
s} onexui.dll 1170 1.34 MB 1 o
13:28:50 13:28:50 DLL
pedll 64bits
356EFE6B10911D7DAAFFED64278BA7130B51F7138D1C 15F 3CAB6D17D65849FAS
L dll 1770 1,34 VB 2023-08-09 2023-08-09 y o
onexul. -
© 13:14:51 13:14:51 o
pedll 64bits

Comparative analyses

Smuggling malicious code

The authors behind BLISTER employ a consistent strategy of embedding BLISTER's malicious
code within a legitimate library. The most recent variants of this loader have targeted the VLC
Media Player library to smuggle their malware into victim environments. This blend of benign and
malicious code seems effective at defeating some kinds of machine-learning models.

property value

md35 JE11229465A8FDF879912C31817D30A9

shal CD1FABB1C38AETEDSE89450AF40D96F2706ETELD

sha256 46ED2D6CIC183B09F051D253DATFSC5F711680F3460C610982106E07D2630D6C
language English-US

code-page ANSI| Latin 1

CompanyName VideoLAN

ProductName VLC media player

ProductVersion 3,0,16,0

FileVersion 3.0.16

FileDescription VLC media player

LegalCopyright Copyright © 1996-2021 VidecLAN and VLC Authors

LegalTrademarks VLC media player, VideoLAN and x264 are registered trademarks from VideoLAN

The following is a comparison between a legitimate VLC DLL and one that is infected with
BLISTER'’s code. In the infected sample, the entry point that references malicious code has been
indicated in red. This methodology is similar to prior BLISTER variants.

4/11

https://www.videolan.org/vlc/

public vlc_towc public vlc_towc

vlc_towc proc near ; CODE XREF: sub_140@13E40+F@1p | wvlc_towc proc near ; CODE XREF: sub_7FF6F3263E40+F01p
; sub_140014190+7381p ... ; sub_7FF6F3264190+7381p ...
movzx r9d, byte ptr [rcx] sub rsp, 18h
mov rax, @FFFFFFFFFFFFFFFFh mov rax, OFFFFFFFFFFFFFFFFh
cmp rob, OF4h <mp rob, @Fdh
ja locret_14008F84A [call entry_point_blister_loader |
mov réd, rod not ecx

not r8d mov ecx, 1
movzx rl@d, r8b

bsr r8d, riled
xor r8d, 1Fh

movzx rled, r8b
bsr r8d, rled
xor r8d, 1Fh

sub r8d, 18h
sub r8d, 18h cmp r8d, 2
Smp réd, 2 jz loc_7FF6F32DF6D@
iz loc_14008F880 jbe loc_7FF6F32DF6AQ
jbe loc_14908F850
Original Infected

Different hashing algorithm

One of the changes implemented since our last write-up is the adoption of a different hashing
algorithm used in the core and in the loader part of BLISTER. While the previous version used
simple logic to shift bytes, this new version includes a hard-coded seed with XOR and multiplication
operations. Researchers speculate that changing the hashing approach helps to evade antimalware
products that rely on YARA signatures.
L

__intle _CX; // cx

unsigned int v3; // [rsp+@h] [rbp-18h]

v3 = @x78F1E5SBF;
while (*al)
{
_CX = *al ~ v3;
_asm { rcl cl, 56h }
v3 = ((Bx5BD1E995 * (*al ™~ v3)) »>> 15) ™ (@x5BD1E995 * (*al ™ v3));
++al;
¥
return vi;

F

Configuration retrieval

Following the decryption of malicious code by the BLISTER'd loader, it employs an identical
memory scanning method to identify the configuration data blob. This is accomplished by searching
for a predetermined, hardcoded memory pattern. A notable contrast from the earlier iteration of
BLISTER lies in the fact that the configuration is now decrypted in conjunction with the core code,
rather than being treated as a separate entity.

Environmental keying

A recent addition to BLISTER is the capability to exclusively execute on designated machines. This
behavior is activated by configuring the appropriate flag within the malware’s configuration.
Subsequently, the malware proceeds to extract the machine's domain name using the
GetComputerNameExW Windows API. Following this, the domain name is hashed using the
previously mentioned algorithm, and the resulting hash is then compared to a hash present in the

5/11

https://www.elastic.co/security-labs/blister-loader

configuration. This functionality is presumably deployed for the purpose of targeted attacks or for
testing scenarios, ensuring that the malware refrains from infecting unintended systems such as
those employed by malware researchers.

| BOOL8 _ fastcall fxh::check_domain_name(struct 000 *al, int domain_hash_config) |
{
const CHAR *kernel32_module; // rax
FARPROC kernel32_dll_GetComputerNameExW; // rax

int nSize; // [rsp+8h] [rbp-228h] BYREF

int status_; // [rsp+4h] [rbp-224h]

__int16 dns_domain[268]; // [rsp+18h] [rbp-218h] BYREF
nSize = Ox20A;

memset_(dns_domain, @, @x20Auibd);

kernel32 fxh::utils: :GetModuleHandle(al, kernel32_dll kernel32_dll);

putertlameExll = fxh::utils::GetProcAddress(al, kernel32 module, kernel32_d1l_GetComputerNameExl);
cernel3? dll GetComputerhtameEx) (ComputerNameDnsDomain, d n, &nSize);

s 1=1 || strlen_(dns domain) <= @ || hashing_algo(dns domain) != domain hash config;

¥

One of the few malware analysis tools capable of quickly exposing this behavior is the awesome
Tiny Tracer utility by hasherezade. We’ve included an excerpt from Tiny_Tracer below which
captures the BLISTER process immediately terminating after the GetComputernNameExw validation is
performed in a sandboxed analysis VM.

15a040;section: [.text]

15ac57;ntdll.RtlinitializeCriticalSection
15a06d;ntdll.[RtIDeactivateActivationContextUnsafeFast+1b3]*
15a026;ntdIl.[RtiDeactivateActivationContextUnsafeFast+1b3]*
15a06d;ntdIl.[RtiDeactivateActivationContextUnsafeFast+1b3]*
15a026;ntdIl.[RtIDeactivateActivationContextUnsafeFast+1b3]*

33fb4;ntdll.ZwProtectVirtualMemory
33ff4;ntdll.ZwProtectVirtualMemory
34001;[.text] -> [.rsrc]

2b8e3c;section: [.rsrc]
2cf669;kernel32.GetComputerNameExW
2cf86b;ntdll.ZwTerminateProcess

Time-based anti-debugging feature

Similar to its predecessors, the malware incorporates a time-based anti-debugging functionality.
However, unlike the previous versions in which the timer was hardcoded, the updated version
introduces a new field in the configuration. This field enables the customization of the sleep timer,
with a default value of 10 minutes. This default interval remains unchanged from prior iterations of
BLISTER.

6/11

https://github.com/hasherezade/tiny_tracer
https://twitter.com/hasherezade

|| (flag & fxh::config _setup::flag 1000) != @
&& ((flag & fxh::config setup::flag 2000) == @ ? (sleep timer = 600000) : (sleep timer = config->sleep_timer),
fxh::utils_sleep(struct_000, sleep_timer)))

Unhook process instrumentation to detect syscalls

In this latest version, BLISTER introduces noteworthy functionality: it unhooks any ongoing process
instrumentation, a tactic designed to circumvent userland syscall detection mechanisms upon which
certain EDR solutions are based.

__inte4 _ fastcall fxh::anti_detection::unhook_syscall detection(struct_000 *al)
{

FARPROC ntdll_d11_NtSetInformationProcess; // rax

const CHAR *ntdll_module; // [rsp+26h] [rbp-28h]

PROCESS_INSTRUMENTATION_CALLBACK_INFORMATION process_instrumentation_callback; // [rsp+28h] [rbp-20 BYREF
process_instrumentation_callback.Callback = 0i64;
pro S trumentation_ k.Reserved = 0;
pro nstrumentation_callback.Version = 0;
if (al->mapped_ntdll)
ntdll module = al->mapped_ntdll;
else
ntd le = a2l1->ntdll_module;
ntdll_ SetInformationProcess = fxh::utils::GetProcAddress(al, ntdll module, ntdll_dll NtSetInformationProcess);
return (ntdll_dl1l NtSetInformationProcess)(
-1i64,
PROCESS_INFO_CLASS_INSTRUMENTATION,
&process_instrumentation_callback,
0x10i64);

BLISTER's configuration

The BLISTER configuration structure has also been changed with the latest variants. Two new
fields have been added and the flag field at offset 0 has been changed from a WORD to a DWORD
value. The new fields pertain to the hash of the domain for environmental keying and the
configurable sleep time; these field values are at offset 4 and 12 respectively. The following is the
updated structure of the configuration:

7/11

https://github.com/ionescu007/HookingNirvana/blob/master/Esoteric%20Hooks.pdf

BLISTER configuration structure
struct
uint32_t flag
uint32_t domain_hash
uint32_t payload_export_hash
uint32_t sleep_timer

wchar_t w_payload_filename_and_cmdline

size_t compressed_data_size
size_t uncompressed_data_size
uint8_t pe_deciphering_key[16
uint8_t pe_deciphering_iv

Changes have also been made to the configuration flags, allowing the operator to activate different
functions within the malware. Researchers have provided an updated list of functions built upon our
prior research into BLISTER.

8/11

BLISTER configuration files enum

kDoPersistance Ox1
kOwnProcessReflectiveInjectionMethod
kOwnProcessHollowingMethod Ox8
kRemoteProcessHollowingMethod Ox10
kExecutePayloadExport Ox20
kExecuteShellcodeMethod Ox40
kInjectWithCmdLine Ox80
kUseSysCalls Ox100
kUseFreshMappedNtdll Ox200
kEnableSleepBeforeInjection Ox1000
kCustomSleepTimerSet Ox2000
kEnableProcessInstrumentationUnhook Ox80000
kEnableKeying OXx100000

Payload extractor update

In our previous research publication, we introduced an efficient payload extractor tailored to dissect
and extract the configuration and payload of the loader. To dissect the most recent BLISTER
variants and capture these new details, we enhanced our extractor which is available here.

I I
I
AN T U 7 N
VAL I)
AN

"Configuration": {

"flag": "0x181541"

"domain keying hash": "0x9042e452",

"payload_export_hash": "Oxc7dbed4f9",

"sleep_time": 600000,

"rabbit_key": "0d2c198f2dld5f4a74edd91281a58e73",

"rabbit_iv": "22c4d67871364c52",

"compressed_data_size": "Ox2b75f",

"uncompressed_data_size": "0x43a03",

"injection_method": "Execute shellcode",

"is pe": false,

"enabled features": [
"kDoPersistance",
"kExecuteShellcodeMethod",
"kUseSysCalls",
"kEnableSleepBeforeInjection",
"kEnableProcessInstrumentationUnhook",
"kEnableKeying"

https://github.com/elastic/labs-releases/tree/main/tools/blister

Conclusion

BLISTER is one small part of the global cybercriminal ecosystem, providing financially-motivated
threats to gain access to victim environments and avoid detection by security sensors. The
community should consider these new developments and assess the efficacy of BLISTER
detections, Elastic Security Labs will continue to monitor this threat and share actionable guidance.

Detection logic

Prevention

Windows.Trojan.Blister

Detection

+ Windows Error Manager/Reporting_ Masquerading
Potential Operation via Direct Syscall

Potential Masquerading_as Windows Error Manager
Unusual Startup Shell Folder Modification

Potential Masquerading_as VLC DLL

YARA

Elastic Security has created YARA rules to identify this activity. Below is the latest rule that captures
the new update to BLISTER.

rule Windows_Trojan_Blister {
meta:

author = "Elastic Security"
creation_date = "2023-08-02"
last_modified = "2023-08-08"
0os = "Windows"
arch = "x86"
category_type = "Trojan"
family = "Blister"

threat_name = "Windows.Trojan.Blister"
license = "Elastic License v2"
strings:

$b_loader_xor = { 48 8B C3 49 03 DC 83 EO 03 8A 44 05 48 [2-3] ?? 03 ?? 4D 2B ?? 75
}
$b_loader_virtual protect = { 48 8D 45 50 41 ?? ?? ?? ?? 00 4C 8D ?? 04 4C 89 ?? ??
41 B9 04 00 00 00 4C 89 ?? FO 4C 8D 45 58 48 89 44 24 20 48 8D 55 FO }
condition:
all of them

Observed adversary tactics and techniques

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and
procedures that advanced persistent threats use against enterprise networks.

10/11

https://www.trendmicro.com/en_us/research/22/d/Thwarting-Loaders-From-SocGholish-to-BLISTERs-LockBit-Payload.html
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Blister.yar
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/defense_evasion_windows_error_manager_reporting_masquerading.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/defense_evasion_potential_operation_via_direct_syscall.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/defense_evasion_potential_masquerading_as_windows_error_manager.toml
https://github.com/elastic/detection-rules/blob/main/rules/windows/persistence_evasion_registry_startup_shell_folder_modified.toml
https://github.com/elastic/detection-rules/blob/ef432d0907548abf7699fa5d86150dc6b4133125/rules_building_block/defense_evasion_masquerading_vlc_dll.toml
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Blister.yar

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the
reason for performing an action.

o Execution
o Defense Evasion
e Persistence

Techniques / Sub techniques

Techniques and Sub techniques represent how an adversary achieves a tactical goal by performing
an action.

References

The following were referenced throughout the above research:

Observables

All observables are also available for download in both ECS and STIX format in a combined zip
bundle.

The following observables were discussed in this research.

Indicator Type Reference

5fc79a4499bafal3a881778ef51ce29ef015ee58a587e3614702e69da304395db sha256 BLISTER
loader
DLL

11/11

https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/tactics/TA0003/
https://github.com/elastic/labs-releases/tree/main/indicators/blister

